Effiziente Algorithmen und Datenstrukturen I

Abgabetermin: 26.04.2005 vor der Vorlesung

Aufgabe 1 (10 Punkte)

Sei G ein Graph auf der Knotenmenge $V = \{1, 2, \dots, 8\}$. Die Nachbarschaften der Knoten sind in der folgenden Tabelle gegeben:

Knoten	adjazente Knoten
1	(2, 3, 4)
2	(1, 3, 4)
3	(1, 2, 4)
4	(1, 2, 3, 6)
5	(6, 7, 8)
6	(4, 5, 7)
7	(5, 6, 8)
8	(5,7)

Nehmen Sie im Folgenden an, dass bei einer Graphtraversierung die zu einem Knoten adjazenten Knoten in der Reihenfolge zurückgegeben, in der sie in der obigen Liste stehen.

- \bullet Zeichnen Sie den Graphen G.
- Ordnen Sie die Knoten in der Reihenfolge an, in der sie bei einer BFS besucht werden, die im Knoten 1 startet.
- Ordnen Sie die Knoten in der Reihenfolge an, in der sie bei einer DFS besucht werden, die im Knoten 1 startet.

Aufgabe 2 (10 Punkte)

Ein Graph G=(V,E) heißt bipartit, genau dann wenn es eine Partition $P=(V_1,V_2)$ von V gibt, so dass für alle Kanten $\{u,v\}$ gilt: $u\in V_1$ und $v\in V_2$. Geben Sie einen Algorithmus an, der testet, ob ein ungerichteter, zusammenhängender Graph bipartit ist. Ihr Algorithmus sollte eine Laufzeit von O(n+m) haben, wobei n=|V| und m=|E| gilt.

Aufgabe 3 (10 Punkte)

Eine unabhängige Menge eines ungerichteten Graphen G=(V,E) ist eine Teilmenge $I\subseteq V$, so dass für zwei Knoten $u,v\in I$ gilt: $(u,v)\notin E$. Eine maximale unabhängige Menge M ist eine unabhängige Menge, so dass für alle Knoten $v\notin M$ gilt: $M\cup\{v\}$ ist keine unabhängige Menge. Geben Sie einen möglichst effizienten Algorithmus an, der für einen ungerichteten Graphen eine maximale unabhängige Menge bestimmt und bestimmen sie die Laufzeit Ihres Algorithmus.