WS 2005/06

Diskrete Strukturen

Ernst W. Mayr

Fakultät für Informatik TU München

http://www14.in.tum.de/lehre/2005WS/ds/

20. Januar 2006

2. Definitionen für ungerichtete Graphen

2.1 Pfade und Kreise

Definition 250

Ein Pfad (Weg) in einem Graphen ist eine Folge von Knoten $v_0, v_1, \ldots, v_k \text{ mit } \{v_i, v_{i+1}\} \in E, i = 0, \ldots, k-1.$

Ein Pfad heißt einfach, wenn alle v_i paarweise verschieden sind.

Ein Kreis ist ein Pfad, bei dem gilt: $v_0 = v_k$.

Ein Kreis heißt einfach, wenn die Knoten v_0, \ldots, v_{k-1} paarweise verschieden sind.

2.2 Isomorphe Graphen

Definition 251

Zwei Graphen $G_i = (V_i, E_i), i = 1, 2$ heißen isomorph, falls es eine Bijektion $\varphi: V_1 \to V_2$ gibt, so dass gilt:

$$(\forall v, w \in V_1) [\{v, w\} \in E_1 \iff \{\varphi(v), \varphi(w)\} \in E_2].$$

Beispiel 252

$$K_{2,2}\cong C_4\cong Q_2$$
 oder $T_{4,4,4}\cong Q_6$

Beispiel 253



2.3 Adjazenz

Definition 254

Sei $G = (V, E), u, v \in V$ und $\{u, v\} \in E$. Dann heißen u und vadjazent (aka benachbart). u und v sind Endknoten von $\{u, v\}$; uund v sind inzident zur Kante $\{u, v\}$. Zwei Kanten heißen adjazent, falls sie einen Endknoten gemeinsam haben.

2.4 Nachbarschaft

Definition 255

Sei $u \in V$.

$$N(u) := \left\{ v \in V; u \neq v, \{u, v\} \in E \right\}$$

heißt die Nachbarschaft von u.

$$d(u) := deg(u) := |N(u)|$$
 heißt Grad von u .

Falls d(u) = 0, so heißt u isoliert.

2.5 Gradfolge

Definition 256

Sei
$$V = \{v_1, \dots, v_n\}$$
 so, dass

$$d(v_1) \ge d(v_2) \ge \ldots \ge d(v_n).$$

Dann heißt $(d(v_1), d(v_2), \dots, d(v_n))$ die Gradfolge von G.

Bemerkung:

Isomorphe Graphen haben dieselbe Gradfolge.

Satz 257

Sei G = (V, E). Dann gilt:

$$\sum_{v \in V} d(v) = 2 \cdot |E|$$

Beweis:

 $\sum d(v)$ zählt Halbkanten.

Korollar 258

In jedem Graphen ist die Anzahl der Knoten mit ungeradem Grad gerade.

2.6 Reguläre Graphen

Definition 259

Ein Graph G = (V; E) heißt k-regulär genau dann, wenn

$$(\forall v \in V) \Big[d(v) = k \Big].$$

Beispiel 260

 Q_k ist k-regulär; T_{m_1,\ldots,m_k} ist 2k-regulär.

2.7 Teilgraphen

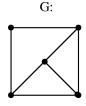
Definition 261

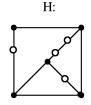
• G' = (V', E') heißt Teilgraph von G = (V, E), falls

$$V' \subseteq V \quad \land \quad E' \subseteq E.$$

② Ein Graph $H=(\overline{V},\overline{E})$ heißt Unterteilung von G=(V,E), falls H aus G dadurch entsteht, dass jede Kante $\{v,w\}\in E$ durch einen Pfad $v=\overline{v}_0,\overline{v}_1,\ldots,\overline{v}_k=w$ ersetzt wird. Dabei sind $\overline{v}_1,\ldots,\overline{v}_{k-1}$ jeweils neue Knoten.

Beispiel 262 (Unterteilung)





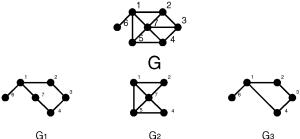
Bemerkung: (Satz von Kuratowski) Ein Graph ist genau dann nicht planar, wenn er eine Unterteilung des K_5 oder des $K_{3,3}$ als Teilgraph enthält.

2.8 Induzierte Teilgraphen

Definition 263

Ein Graph G' = (V', E') heißt (knoten-)induzierter Teilgraph von G = (V, E), falls G' Teilgraph von G ist und $E' = E \cap (V' \times V')$.

Beispiel 264

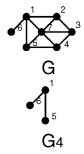


 G_1 ist Teilgraph von G_1 aber nicht knoteninduziert; G_2 ist der von $\{1,2,4,5,7\}$ induzierte Teilgraph; G_3 ist nicht Teilgraph von G.

Sei $V'\subseteq V$. Dann bezeichnet $G\setminus V'$ den durch $V\setminus V'$ induzierten Teilgraphen von G.

Beispiel 265

$$G_4 = G \setminus \{2, 3, 4, 7\}$$



2.9 Erreichbarkeit

Definition 266

Sei G = (V, E); $u, v \in V$. v heißt von u aus in G erreichbar, falls G einen Pfad mit Endknoten u und v enthält.

Satz 267

Die Relation $R \subseteq V \times V$ mit

 $uRv \iff ..v \text{ ist von } u \text{ aus in } G \text{ erreichbar}^*$

ist eine Äquivalenzrelation.

Beweis:

Es ist leicht zu sehen, dass R reflexiv, symmetrisch und transitiv ist.

2.10 Zusammenhangskomponenten

Die Äquivalenzklassen der Erreichbarkeitsrelation heißen Zusammenhangskomponenten von G. G heißt zusammenhängend, falls G aus genau einer Zusammenhangskomponente besteht.

2.11 Bäume

Definition 268

Ein Graph G=(V,E) heißt Baum, falls G zusammenhängend und kreisfrei ist.

Satz 269

Die folgenden Aussagen sind äquivalent:

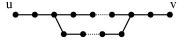
- G = (V, E) ist ein nichtleerer Baum.
- ② $V \neq \emptyset$ und für je zwei Knoten $u, v \in V$ mit $u \neq v$ gibt es genau einen einfachen Pfad zwischen u und v.
- **3** G ist zusammenhängend und |V| = |E| + 1.

Beweis:

$1. \Rightarrow 2.$

Seien $u, v \in V$, $u \neq v$. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.

Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v.



Dann gibt es einen Kreis in G, was einen Widerspruch zur Annahme darstellt.

 $2. \Rightarrow 3.$

Beweis durch Induktion:

Dass G zusammenhängend und V nichtleer sein muss, ist klar. Für |E|=0 gilt |V|=1 (Induktionsanfang).

G muss einen Knoten mit Grad 1 enthalten: Wähle $u \in V$ beliebig. Wähle einen Nachbarn u_1 von u. Falls $deg(u_1) > 1$, wähle einen Nachbarn $u_2 \neq u$ von u_1 usw. Da V endlich und G zusammenhängend und kreisfrei ist (sonst gäbe es ein Knotenpaar mit zwei verschiedenen einfachen Pfaden dazwischen), kommt man so schließlich zu einem Blatt (Knoten mit Grad 1).

Entfernt man nun dieses Blatt (sowie die inzidente Kante) und wendet man auf den entstehenden Graphen die Induktionsvoraussetzung an, erhält man:

$$(|V| - 1) - 1 = |E| - 1$$

Damit ist bewiesen, dass |V| = |E| + 1.

 $3. \Rightarrow 1.$

Sei nun G zusammenhängend mit |V| = |E| + 1.

Zu zeigen: G ist kreisfrei.

Widerspruchsannahme: G enthält einen einfachen Kreis $C=(V_C,E_C).$

Da wir G aufbauen können, indem wir die Knoten in $V \setminus V_C$ mit jeweils einer neuen Kante hinzufügen und zum Schluss noch eventuell übrig gebliebene Kanten hinzufügen, gilt:

$$|V| = |V_C| + |V \setminus V_C| \le |E_C| + |E \setminus E_C| = |E|$$

Das ist ein Widerspruch zur Voraussetzung |V| = |E| + 1.

Korollar 270

Seien T=(V,E) ein Baum mit |V|=n und (d_1,d_2,\ldots,d_n) die Gradfolge von T, dann gilt:

$$\sum_{i=1}^{n} d_i = 2 \cdot |E| = 2n - 2$$

2.12 Spannbäume

Definition 271

Ein Teilgraph T=(V',E') von G=(V,E) heißt Spannbaum von G, falls T ein Baum und V'=V ist.

Satz 272 (Arthur Cayley, 1889)

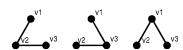
Sei t(n) die Anzahl der verschiedenen markierten Bäume mit Knotenmenge $\{1,\ldots,n\}$. Dann gilt:

$$t(n) = n^{n-2}$$

Beispiel 273

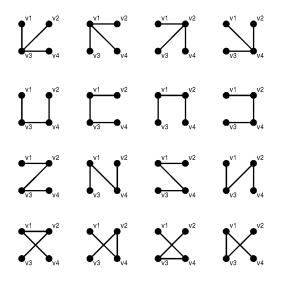
• n = 2:

• n = 3:



Beispiel (Forts.)

• n = 4:



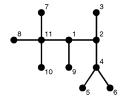
Beweis:

Wir geben eine Bijektion zwischen der Menge $\mathcal{T}(n)$ der markierten Spannbäume mit n Knoten und der Menge $\{1,\ldots,n\}^{n-2}$ an. (Diese Bijektion geht auf H. Prüfer zurück; man bezeichnet sie deshalb auch als Prüfer-Code.)

Sei $T \in \mathcal{T}(n)$. Konstruiere $(a_1, \ldots, a_{n-2}), a_i \in \{1, \ldots, n\}$ wie folgt:

$$\begin{array}{l} \underline{\text{for}} \ i = 1 \ \underline{\text{to}} \ n-2 \ \underline{\text{do}} \\ v_i := \text{Blatt mit minimalem Index} \\ a_i := \text{Index des Nachbarn von } v_i \ \text{in } T \\ T := T \setminus \{v_i\} \\ \underline{\text{od}} \end{array}$$

Beispiel 274



Prüfer-Code: (2, 4, 4, 2, 1, 11, 11, 1, 11)