10 Locality-aware overlay networks

One of the main challenges of distributed systems is how to efficiently store and locate ever increasing
amounts of content. The solution suggested by Karger et al. [3] is to use consistent hashing. We
showed in the previous section how this consistent hashing method can be integrated into a decen-
tralized overlay network to result in a dynamic, distributed hash table (or DHT) with low dilation and
congestion. However, just minimizing the number of hops may not be a good idea in general since the
lookup request could go, for example, from Boston through New Zealand, Brazil, France and finally
to New York. Although the number of hops is small in this example, this clearly is not a desired out-
come. While bounding the number of hops by a logarithm is important, several works [2, 7, 4, 5, 6]
have argued that a far more important measure is the total cost of communication between peers.

The natural way to model costs is to assume a cost funetibat induces a metric space on the
universe of peers. Given such a cost function, our goal is to design an overlay network so that the ratio
between the direct cost of a source-destination pair and the cost of a route for it in the overlay network
is as close as possible. To measure this ratio, we use a parametersti@teld This is defined as
follows.

Let u be a lookup starting point and be the target of the lookup (i.e., the closest node containing
the searched object). Let= v, vs, ..., v, = w be the nodes traversed in the lookup route. Then the
stretchof that route is defined d8(vy,v) + ... + c¢(vg_1, vx)]/c(u, w) and the stretch of the overlay
network is the maximum over all paifs, w) € V2 of the minimum achievable stretch fou, w) in
that overlay network.

The seminal work of Plaxton, Rajaraman, and Richa [5] is one of the first works to provide a
distributed lookup protocol with analytical bounds on the stretch. They present a randomized scheme
for a class of metric spaces representing realistic networks, in which the expected stretch in finding
targets is a (rather large) constant. Several efforts were made to deploy this scheme, e.g., Tapestn
[7] and Pastry [2]. These systems construct a dynamic DHT based on the principles of [5], yielding
efficient, locality-aware overlay networks. The best result obtained so far in this line of research is
due to Abraham, Malkhi, and Dobzinski [1]. They preseftae-stretch DHT calledl AND in which
for all routes the cost ratio between the distance and the route is guaranteed to be latHao3the
guarantee of constant stretch is achieved while not impairing on other parameters of the network such
as degree and memory requirements. We will present the LAND scheme in detail in this section.

10.1 Preliminaries

Let V' denote the set of nodes in the system, wHéte= n, and letc : V? — IR, be a function
expressing the cost of communicating directly between any pair of nodés We assume thatis
positive, reflexive, symmetric and satisfies the triangle inequality. T, forms a metric space.
From here on, we refer to the cost as thstancebetween nodes. The set of nodes within distance
from nodev is denotedV (v,).

We assume that the minimal distance between every pair of nodes is 1. Growth bounded metrics
are considered (e.g., [10]) as a realistic model for the Internetgéarth bounded metrigsve assume
a parameteA such that for every nodeandr > 1 we have

|N(v,2r)| < A|N(v,7)]| .

Each node: hosts an assembly abuting entitiegor routerg. A routerr hosted by node is denoted
u.r. Each router is identified by a stringd. When it is clear from the context, we sometimes refer to
w.r simply asr. Identifier strings are composed &f digits in radix B = 2b. The radixB is chosen
such thatB > A2, For a network withn nodes, the length of each identifidd,, is chosen such that
M = [z] for x satisfying B* = n. A routeru.r has an additional level property, denoted.level,
between 1 and/ + 1.

Let s be ak-digit identifier. Denotes|j] as the prefix of thg most significant digits, and denote
as thejth digit of s. A concatenation of two strings s’ is denoted by o s'.

For convenience, all definitions used in the LAND construction (including those mentioned above
already) are summarized here.

The radixB satisfiesB > AZ.

The number of identifier-digits satisfidg = [z] for « so thatB* = n.

The constantv is chosen such thdte ¢ < 1.

A;(v) denotes the smallest ball around nedsontainingmin(a B¢, n) nodes, and;(v) denotes
the radius of4;(v).

Lety = B2 and note that > 4.

For the desired stretch choosel so that

1 1
Ezvd<+2++> .

The main properties implied by the growth-bound assumption are summarized in the following
technical lemma. These properties suffice by themselves to uphold the LAND construction, and from
here on we refer to the network properties only through them.

Lemma 10.1 Letv andw be any two nodes. For anywith w € A;(v):
(i) Ai(v) € Aipa(w)
(i) Ai(w) C Aisa(v)

(il)) ai1(v) > ya;(v), wherey = Blosa?

Proof. Letr = a;(v) denote the radius of;(v), so A;(v) = N(v,r) whereN(v,r) = {u € V|
c(u,v) < r}. Sincew € N(v,r) we get

N(v,r) C N(w,2r) C N(v,3r)
and from the growth bounded assumption it follows that
IN(v,3r)| < A?|N(v,7)| = A% A;(v)] < A*aB' < aB™!.

For (i), N(v,3r) C A;11(v), and soA,,;(w), the ball aroundv with a B! nodes, must contain
N(w,2r) and so must contain;(v). For (i), A;(w) € N(w,2r) € N(v,3r) C A;41(v). For
(iii), notice thaty = B°ea? = 2\°ea B and, hence|N (v, Bl¢a2r)| < Al#aB|N(v,7r)| < aB™!,
Therefore,A;11(v) 2 N(v,~r), which implies that;,;(v) > va;(v). O

2

10.2 The LAND architecture

Our goal is to support a lookup operation that locates nearest copies of objects such that the nodes o
the network share the lookup load evenly. All nodes in the network take part in the lookup process
and pass queries to the nodes they have outgoing links to. (Copies of) objects may be stored at any
node, but references to objects are mapped to nodes with the help of the distributed hash table (DHT)
approach. More formally, letl be a set of objects. We make use of a pseudo-random hash function

h that maps object names to identifiers[i]* uniformly at random. For any (copy of an) object

obj € A being stored in some nodg reference information aboub;’s location is stored in nodes
whose identifiers match prefixes of various lengthh@fbj). The objectob; may be replicated in
various locations in the network. As it will turn out, the LAND network is able to locate a nearby copy

of everyobj € A from any node in the network.

The basic entity in the LAND network is the router entity (simply referred to as 'router’ in the
following). Each router has an identifier and a level. The routers are connected in a manner similar to
the butterfly graph, i.e., levélrouters have outgoing links only to level 1 routers. In LAND, each
node in the system initially maintaing + 1 routers, each with a different level from 13d + 1. In
addition, it is possible that some nodes will need to maintain additional shadow routers to ensure worst
case locality. When we mention a routemwe interchangeably mean either the routing entity itself or
the node that hosts the router. The precise meaning will be evident from the context.

More formally, each node hosts an initial set of/ + 1 routers denoted?y, ..., Ry;1. Router
v.R; has identityv. R;.id and leveli, i.e., R;.level = i. The identifiers of routers are represented as
radix B = 2b numbers. The identifiers of the initial routers are chosen uniformly and independently at
random.

Let » be a router of levet.level = ¢ hosted by node. The routerr could be either the initial
v.Ry, or a shadow router hosted byas we shall see below. Routehas outgoing links of two types,
neighbor and publish links, denoted. andr.P respectively. These outgoing links are defined as
follows:

Neighbor links

If ¢ < M, then router- hasB neighbor links, denoted(0), ..., L(B — 1). Theith neighbor-.L(7) is
selected as the closest router witlif(r) N A,(v) where

Ci(r) ={u € V' | 3s so thatu.s.id[¢] = r.id[¢ — 1] o i andu.s.level = { + 1} .

The link L(i) fixes thefth digit of r.id to i, namely, it connects to the closest nadthat hosts a level
¢ + 1 routeru.s that matches the idid[¢ — 1] o 7 within the ball 4,(v) (i.e., among thexB* closest
nodes tw).

If C;(r) N Ay(v) = 0, then nodey hosts a shadow routerwith identifierr.id[¢ — 1] o i and level
¢ + 1. Nodew maintains all of the links of the shadow router (including the publish links described
below). Since a shadow router also requires its own neighbor links, it may be thahtheighbor
link of a shadow routes does not exist irC;(s) N Asever(v). In such a case also hosts a shadow
router that acts as theL(j) endpoint. Shadow hosting continues recursively until all links of all the
shadow routers hosted byare found (or until the limit of\/ + 1 levels is reached).

Publish links

If ¢ < M, the publish links. P are all the nodes hosting any levél- 1) router with the same first
¢ — 1 bits asr.id which are inside the ball,, 4,5(v). Formally,r.P = C(r) N Agya15(v) where

C(r) ={u €V | ds sothatu.s.id[¢ — 1] = r[¢ — 1] andu.s.level = ¢ + 1} .

Publish and lookup

The publishing of an objeei; residing on a nodeproceeds as follows. Starting with a level-1 router
wy.r (Wherew; = t), move from a nodev; using the neighbor links of the levetouterw;.r by fixing
theth digit to that ofh(obj). This links tow;, 1, @ node hosting a levehl- 1 routerw; . ;.r (this might

be a shadow router in which case = w; ;) such thatw, ,,.r.id[i] = h(obj)[i]. Thus, routerw;;.r

has levelw,,.r.level = i + 1, and idw;1.1r.id[i] = h(obj)[i]. Continue until thelM/th digit (i.e.,
until there are no more neighbor links to follow). Each negealong the publishing route stores a
reference twb;j which points back tav; ;. In addition,w; stores such a reference on every node of
w;.r.P=C(r)N Aipars(w).

A lookup operation of an objeeb; € A can be initiated by any node in the system, and its purpose
is to find the closest node storing;. The lookup operation from a nodeproceeds in two stages.
The first stage fixes target digits one by one. The loop goes as follows: Starting with a level-1 router
atv denotedv;.r, and so long as the target was not found, then from the current rqutgfirst check
if there is a reference tobj with a link to a nodew,_;. If so, move tow;_, and continue with the
second stage. Otherwise, continue at a ngge with a routerv; ;.- such that, ,.r.level = i + 1
andwv;,1.1r.id[i] = h(obj)[i] (this might be a shadow router). The second stage traversesuffom
backward ta usingob;j’s reference links.

The publish and lookup algorithms for a routeare provided in pseudo-code in Figure 1.

A nodet that wants to store an objedtij initiatest. Ry .publish(obj,t,1).

publish (obj, w, £) at router w.r:
store ‘obj; w” on nodeu;
send ‘obj; u” to every node inu.r. P;
if £ < M thenu.r.L(h(obj),).publisiobj, u, ¢ + 1);

A nodev that wants to lookup objeeb; initiatesv. Ry .lookup(obj, v, 1).

lookup (obj, v, £) at router wu.r:
if u storesobj returnobj to v;
else ifu stores vbj; w” thenw.lookup(oby, v, £);
else if¢ < M thenu.r.L(h(obj),).lookup(obj, v, ¢ + 1);

Figure 1: The publish and lookup algorithms.

10.3 Analysis

We first bound the expected degree and then the stretch of the LAND construction.

4

Expected degree

Lemma 10.2 For every initial routerr hosted by a node the expected number of shadow routers
hosted by due tor is constant.

Proof. For any levell < ¢ < M, the probability that linkZ(z) will be found insideA,(u) is at least

1 aBk
1_<1_Bk) >1—e .

For0 <i < M —/, letb,,; be arandom variable that counts the number of letel<] shadow routers
thatu recursively emulates due to missing links. Such shadow routers are creatadufs emulation
of a level-¢ + 1) shadow router; one of that shadow router’s links is also emulated by a leye®)
shadow router; and so on, up to levél- i). Sob, = 1, and forl < i < M — /¢, each of thé,; ;
routers has3 neighbor links with a probability of emulating each one boundedsy Therefore,

Elbeti | beyio1] < bppi1Be™@
and due to the independence of the identifiers,
Elbeyi| < Elbpyi—1)Be™®

Thus, by inductionE([b,;] < (Be~“)". This implies that the expected total number of shadow routers
incurred by router is bounded by

E[Y b <Y (Be™)' = T_Be o
i=0

0<i<M—¢

Lemma 10.3 For every routen- the expected number of publish linksP| is constant.

Proof. Consider any router of some node: and letr.level = (. The probability that a node hosts
an initial level{¢ + 1) routerv.r’ that matches the firgt— 1 bits of r.id is at mostB—(*~1),

Further, we need to consider the probability that a nodmulates a shadow router of leyéh- 1)
with identifier matching-.id[¢ — 1], hencer also has a publish link to it. Using the same arguments as
in the proof of Lemma 10.2 above, for< i < ¢, the probability that a node has a level- + 1 — i)
router with identifier-prefix-.id[¢ — 1 — i] and needs to emulate a levél-+ 1) shadow router with
prefixid[¢ — 1] (i.e., emulate recursively to depihis bounded by3~(—i=De—ie,

Hence, the total probability that a node hosts a lg¢e}- 1) router (real or shadow) matching
r.id[¢ — 1] is bounded by

LS| i 1 1
Z B¢-1 (Be) - Bt-1 (1 _ Be—a))

=0
Thus, the expected number of nodes amongitBé+> nodes that satisfy this criterion is bounded
by

1 1 _aB™
B~1(1—Be®) 1—Be™’

E[|lu.P|] < aB"4+>

As an immediate consequence of the above two lemmas, we get the following theorem.

5

Theorem 10.4 The expected degree of all nodesigV/) = O(logn).

Corollary 10.5 The expected number of reference pointers for each objéxtig) = O(logn).

Stretch

Next we show that the worst case stretch of the lookup operatidntis. For the analysis of a
lookup path, we denote the first node performing a lookup of an objgcby s, and the (closest)
target node containingbj by ¢. Denote the sequence of steps taken by the routing algorithm as
vy, Va2, U3, . .. Wherev; = s. Denote the relevant routers asr, vy.7, v3.7, . . . Wherev;.r.level = i and
v;.riadfi — 1] = h(obj)[i — 1]. Similarly, let the sequence of publishing nodes taken frtdme ¢ =

wy, we, ws, . .. and the sequence of relevant routers be wy.r, wo.r, ws.r, ... Hencew;.r.level = i
andw;.r.id[i — 1] = h(obj)[i — 1]. Note that some nodes may repeat within this sequence due to
shadow-router emulation. For ease of notation, we use bejewv, = s.

Lemma 10.6 For everyi > 1,v; € A;(v;-1) C A;1(s) and similarly,w; € A;(w;_1) C A;11(¢).

Proof. By induction oni. Fori = 1 we haves = v;. Assume by induction that_; € A;(s). If v;.r
is emulated them; = v;,_; and we are done. Otherwise, by Lemma 10.14i),1(s) 2 A;(v;—1). By
constructiony; € A;(v;_1), and hencey; € A;,1(s). (The case ofv; andt is identical). O

Lemma 10.7 For every: > 1, the total distance of the path froe= v; throughu; is at most

ﬁaiﬂ(s)
Proof. By Lemma 10.6, for every < j < 4, v; is in the ballA;(v;_,) that is fully contained in the
ball A;.,(s). Hence, its radius is at mosf(s), and therefore(v;_;, v;) < a;41(s).

By Lemma 10.1(iii),a;,1(s) < v @ 7a;,(s). Hence, the total distance of the path fram
throughv; is at most

1

C(”J'? Uj+1)
1

.
|

IA

i
Z aji1(s)
j=1
i—1

Y 7 ai(s) < ! ai+1(s) -
=0 v—-1

J

IN

Lemma 10.8 Letk be the first index such thate A, ,.2(¢). Thenu, contains a reference tab;.

Proof. From Lemma 10.6p, € Aj.1(s). Applying Lemma 10.1(ii) ons € A 4:2(t) gives
Agrara(s) € Agrars(t). Now, from Lemma 10.6w;_1 € Ag(t). Applying Lemma 10.1(i) on
Wi—1 € Agrass(t) givesAg ai3(t) € Agrara(wi_1). Combining the above yields, € Ay 4.2(s) C
Ajrars(t) € Agrara(wi—1). Routerw,_i.r has publish links such that it publishes a reference for
objectob; in all the nodes within the balll;, 4, 4(wy_1) containing a levek router whose identifier
matches the prefin,_;.r.id[k — 1]. Thus,v;, must contain a reference of the typ&; wy_,". |

Using Lemma 10.8, we know that when the lookup path reachasproceeds tav,_1,...,w; =
t. Itis left to see what is the total distance of the route vy, vo, v3, ..., Uk, Wp_1, Wi_a, ..., w1 = L.

6

Theorem 10.9 The stretch of the path fromto ¢ is 1 + .

Proof. The first phase of the route is the path fram= v, to v,. Sinces & Ay q4.1(¢), it holds
thatc(s,t) > ariqr1(t) and thereforeN(s,2¢(s,t)) O Agrqs1(t). This implies thatdy4.1(s) C
N(s,2¢(s,t)) because of node count, and thuys 4.1 (s) < 2¢(s,t). With Lemma 10.7,

k—1 1-d
gl 2y
(05, 051) < apaa(s) < ce(s,t).
; I Y+ v—1 + y—1

The second phase is the hop frepto w;_,. Using the triangle inequality, it follows that

< c(vg, s) + c(s,t) + c(t,wg—1)
< appa(s) +e(s,t) +ar(t) <27+ 1+ e(s 1)

The third and last phase of the route is the traversal figm, w;_o, . . . back tow; = t. Because of
ag+a+1(t) < c(s,t) and from Lemma 10.7,

—d

k—2 N
> clwy, wi) < c(s,t) .
=1 v—1

J

The theorem is proven by choosirg= O(log(1/¢)) such that

1 [2y 1 1)
e>—|—=+2+—+—.
7d<7—1 vy o y-1

10.4 Dynamic node arrivals and departures

In this section we sketch how nodes may dynamically arrive and depart from the system. We assume
that once two nodes andw connect (byv sending a message that arrivesiatthey may exchange
messages and discover the real distarieew) between them.

Node arrival

When a new node arrives to the system it needs to do several things: (1) acquire an id for each of its
routers, (2) establish network links for each of its routers, (3) acquire necessary object references.

Acquiring an identifier for each router. Each node chooses for each initial routey, . .., Ry 1,
an identifier of M radixB digits independently and uniformly at random. Note that due to a significant
change in the number of nodes, the param&tanay change. In such a case, routers may need to add
a new digit to each of their identifiers.

Finding the nearest neighbor. As part of the process of establishing router links, a node first
needs to identify the closest neighbor it has in the network. Using the LAND architecture, the nearest
neighbor is always found, and a load-balanced distributed nearest neighbor search will take an expectec
logarithmic number of steps. Algorithm find-closest for a nods as follows. Let: be any node in
the network known ta, e.g., an initial contact point. We denatg,,; = u, and its leveltM + 1)

7

initial router by wy; 1.7 = u.Ry4q. FOré = M + 1 down to 2, take from among all incoming
links into w,.r the routerw,_,.r closest tov. By constructionu,_;.r is a level{¢ — 1) router with
wy_q.rad[l — 2] = wyr4.7.0d[¢ — 2]. At the end, set the closest node knowntaenoted.closest,
to w;.

The find-closest algorithm is depicted in pseudo-code in Figure 2

A nodew that wants to find its closest neighbor invokegosest = v.Rys1.find-closest(, M + 1).

find-closestg, £) at router wu.r:
If £ =1 then send: to v and return;
Let S; denote the set of all incoming links intor;
Let w amongs; be the closest to;
w.r.find-closest(, ¢ — 1);

Figure 2: The find-closest algorithm.

Establishing network links. Once the id and level of a router is set, and the closest node to the
node hosting it is known, the router is left with the task of establishing links as defined in Section
4. For a routen.r with level ¢, the main difficulty is to find all the level + 1 routers with prefix
v.r.id[¢ — 1] in the ball A, 4, 5(v). Routerv.r also needs to inform all routetsr of level ¢ — 1 with
prefix v.r.id[¢ — 2] such thatv € A, 4.4(u). This can be done, again, by finding all routers in
Apiars(v) with prefixv.r.id[¢ — 2]. The locate algorithm for a routerr of level is as follows.

Let s be the closest node to For every combination of digits , b, € [0, B — 1], route froms to
a level{¢ + 2) routeru.r such thatu.r.id[¢ + 1] = v.r.id[¢ — 1] o bl o b2. This routing is done in an
identical manner to the routing phase of lookup in Figure 1, i.e., using thdinks. LetY denote the
set of routers..r reached by this procedure. L&t/ + 3) be the set of leve(¢ + 3) routers that appear
as publish links of routers i, i.e., S(¢ 4 3) = U,cy y.P. ObtainS(¢ + 2) by taking all incoming
publish links intoS(¢ + 3) from routers of level + 2. Then, recursively, obtaifi(¢ + 1) by taking all
publish links going inta5 (¢ 4 2). And so on, until we hav&(¢ — 1). FromS(¢+ 1), routerv.r selects
neighbor links whose distance fromdoes not exceed,(v), and keeps publish links whose distance
from v does not exceed, ,5(v). Thenv informs nodes ir6 (¢ — 1) about its arrival.

The locate algorithm is depicted in pseudo-code in Figure 3

Node departure

When a regular node of level ¢ leaves the network, the levél— 1 nodes whose neighbor link
contained a router.r need to be updated and- removed from their list. 1. was a neighbor link

of a routeru.r, thenu.r’s next closest publish link becomes the neighbor link, unless this link is too
far away in which case emulates a shadow node. The links for this emulation are acquired using the
locate algorithm.

Analysis of dynamic algorithms

Lemma 10.10 For a nodev, Algorithm find-closest finds the closest neighbos.of

locate at router v.r of level ¢
for every combination of digits;, b, € B
v.closest. Ry .searclw.r.id[¢ — 1] o bl 0 b2, ¢, v);
wait for replies, accumulate i§i;
setv.r.L(i) = argmin, ,.cg{c(u,v) | u.r.level =+ 1 Aw.r.idl] =v.id[l — 1] oi A c(v,u) < ag(v)};
// emulatev.r.L(7) if empty
setv.r.P = {u.r € S | u.rlevel =0+ 1 ANuridll — 1] = voradll — 1] A c(v,u) < apra5(v)};
inform all level{¢ — 1) routers inS aboutv’s arrival;

searchfprefix, ¢, v) at router u.r:
if u.r.level = ¢+ 2 then
for eachw € r.P with w.r’".level = £ + 3: w.r’.inlinks(v, 4);
elseu.r.L(prefiz, jever).S€ArCHPTe fiz, £, v);

inlinks(v, j) at router u.r:
// recurse forj levels searching for in-links
let I denote the incoming publish links aofr;
if (j > 0) then
for eachw.r € I: w.r.inlinks(v, j — 1);
else send the set/;

Figure 3: The locate algorithm.

Proof. Denote byu the node at which find-closest is initiated byDenotew,, 1.7 = u.Ry41, and
denote the sequence of routers traversed by the algorithmMhy.r, wy, .7, . .., wy.r. Lets denote the
closest node to in the network. We show by induction backward framh+ 1 to 1 thatw; € A;2(v)
andw;.r is the closest router towhich satisfiesu;.r.id[i — 1] = wys41.7.id[i — 1]. The base obviously
holds. We now prove the induction step.

Consider the routing path from to w,,..r.id using the regular digit-fixing routing method.
Denote the router reached in thid routing step byy;.r, i.e., y;.r.level = i andy;.r.idli — 1] =
wpr41.74dfi — 1]. By Lemma 10.6y; € A;11(s). Sinces € A;(v), by Lemma 10.1(ii),4;11(s) C
Air2(v), and soy; € A;o(v). Hence, if there is any levélrouterc;.r closer tov thany,.r, then
¢; € A;i2(v) as well. By the induction hypothesig,.; € A;.3(v), and hence, by Lemma 10.1(i),
Ai+2<U) - AZ’+3(U) - Ai+4(wi+1). From Lemma 101(|), this mean&+4(wi+1) - Ai+5<ci)1 and
therefore¢;.r has a publish pointer to, . ;.. Therefore, Algorithm find-closest would firglr in this
step, and in facty;.r = ¢;.r. This completes the proof. O

Lemma 10.11 For a router v.r with level?, Algorithm locate finds all the appropriate level-+ 1)
routers inA,, 415(v) and all appropriate routersv.r with level? — 1 such that € Ay, 4.4(w).

Proof. Let s be the closest node. From Lemma 10.1 it follows tHat, . 5(v) € Aprgi6(s). By
Lemma 10.6, each routerr that is routed to in algorithm locate is i, 3(s) € Aprgre(s). In
addition, each such router has leve}l 2 so its publish links cover all appropriate level 3 routers
in Agiorars(y). Applying Lemma 10.1 again we gelty, ;.5(v) C Apraie(s) € Aprarr(y). Hence,
by following incoming links backwards down to levél— 1, all appropriate level# — 1) routers

9

within A,. 4,5(v) are guaranteed to be found. For everysuch thatv € A, 4.4(w), we have that
Aprara(w) € Apiays(v). By a similar reasoning to the above, we find all such. a

Lemma 10.12 For a node arrival:
(i) The expected number of nodes that change their state is logarithmic.

(i) The expected number of messages seftig?)

Proof. For eacly € [1, M], routing to each of the levél+ 2 routers takeg + 2 messages. Once such

a router is reached, a message is sent to each of its links. The expected number of links is constan
(see Theorem 5.1), and all choices are independent. Thus recursively finding all appropriate links for
all M routers will cause sending an expected\/) number of messages. The number of nodes that
change their state for eaéhe [1, M| is the number of appropriate routersAn, 4,5(v), the expected
number of these routers is constant. O

Maintaining the correct ball radius a;(v)

In order to maintain the ball radius, the peers cannot count the exact number of nodes within a radius
of » from them since this would not be scalable. Instead, a simple sampling trick works foaiy
If aB* = O(logn), then node can keep track of the exact number of nodes. Otherwiskposes
a set of random prefixes of length- log(clogn) for some constant and maintains an exact number
of all nodes within a distance whosei-router matches one of the prefixes. If there ar¢ nodes
within a distance of from v, thenwv should find, on expectation,

clogn

5 -aB' = aclogn

many such nodes. This also holds with high probability since the router labels are chosen indepen-
dently at random. Hence, if for a given radiugv) the number of nodes counter byis less than
aclogn, v needs to increasg(v), and if it is more thanclog n, v needs to decreasg(v).

References

[1] I. Abraham, D. Malkhi, and O. Dobzinski. LAND: Stret¢h + ¢) locality-aware networks for dhts. In
Proc. of the 23rd IEEE Symp. on Principles of Distributed Computing (POPp&jes 550-559, 2004.

[2] P. Druschel and A. Rowstron. Pastry: Scalable, distributed object location and routing for large-scale peer-
to-peer systems. IRroc. of the 18th IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware 2001)2001.

[3] D.Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent hashing and random
trees: Distributed caching protocols for relieving hot spots on the World Wide WeBroln of the 29th
ACM Symp. on Theory of Computing (STO®ges 654-663, 1997.

[4] X.Liand C. Plaxton. On name resolution in peer-to-peer networkBrao. of the 2nd ACM Workshop on
Principles of Mobile Computing (POMCpages 82—-89, 2002.

10

[5] C. Plaxton, R. Rajaraman, and A. Richa. Accessing nearby copies of replicated objects in a distributed en-
vironment.Theory of Computing Systen32:241-280, 1999. A preliminary version of this paper appeared
in Proceedings of the 9th Annual ACM Symposium on Parallel Algorithms and Architectures (PRé&9
311-320, June 1997.

[6] S.Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable network. Ir
SIGCOMM '01, 2001.

[7] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-tolerant wide-area location
and routing. INUCB Technical Report UCB/CSD-01-1142D01.

11

