
10 Locality-aware overlay networks

One of the main challenges of distributed systems is how to efficiently store and locate ever increasing
amounts of content. The solution suggested by Karger et al. [3] is to use consistent hashing. We
showed in the previous section how this consistent hashing method can be integrated into a decen-
tralized overlay network to result in a dynamic, distributed hash table (or DHT) with low dilation and
congestion. However, just minimizing the number of hops may not be a good idea in general since the
lookup request could go, for example, from Boston through New Zealand, Brazil, France and finally
to New York. Although the number of hops is small in this example, this clearly is not a desired out-
come. While bounding the number of hops by a logarithm is important, several works [2, 7, 4, 5, 6]
have argued that a far more important measure is the total cost of communication between peers.

The natural way to model costs is to assume a cost functionc that induces a metric space on the
universe of peers. Given such a cost function, our goal is to design an overlay network so that the ratio
between the direct cost of a source-destination pair and the cost of a route for it in the overlay network
is as close as possible. To measure this ratio, we use a parameter calledstretch. This is defined as
follows.

Let u be a lookup starting point andw be the target of the lookup (i.e., the closest node containing
the searched object). Letu = v1, v2, . . . , vk = w be the nodes traversed in the lookup route. Then the
stretchof that route is defined as[c(v1, v2) + . . . + c(vk−1, vk)]/c(u,w) and the stretch of the overlay
network is the maximum over all pairs(u,w) ∈ V 2 of the minimum achievable stretch for(u,w) in
that overlay network.

The seminal work of Plaxton, Rajaraman, and Richa [5] is one of the first works to provide a
distributed lookup protocol with analytical bounds on the stretch. They present a randomized scheme
for a class of metric spaces representing realistic networks, in which the expected stretch in finding
targets is a (rather large) constant. Several efforts were made to deploy this scheme, e.g., Tapestry
[7] and Pastry [2]. These systems construct a dynamic DHT based on the principles of [5], yielding
efficient, locality-aware overlay networks. The best result obtained so far in this line of research is
due to Abraham, Malkhi, and Dobzinski [1]. They present a1 + ε-stretch DHT calledLAND in which
for all routes the cost ratio between the distance and the route is guaranteed to be at most1 + ε. The
guarantee of constant stretch is achieved while not impairing on other parameters of the network such
as degree and memory requirements. We will present the LAND scheme in detail in this section.

10.1 Preliminaries

Let V denote the set of nodes in the system, where|V | = n, and letc : V 2 → IR+ be a function
expressing the cost of communicating directly between any pair of nodes inV . We assume thatc is
positive, reflexive, symmetric and satisfies the triangle inequality. Thus,(V, c) forms a metric space.
From here on, we refer to the cost as thedistancebetween nodes. The set of nodes within distancer
from nodev is denotedN(v, r).

We assume that the minimal distance between every pair of nodes is 1. Growth bounded metrics
are considered (e.g., [10]) as a realistic model for the Internet. Forgrowth bounded metrics, we assume
a parameter∆ such that for every nodev andr ≥ 1 we have

|N(v, 2r)| ≤ ∆|N(v, r)| .

1

Each nodeu hosts an assembly ofrouting entities(or routers). A routerr hosted by nodeu is denoted
u.r. Each router is identified by a stringr.id. When it is clear from the context, we sometimes refer to
u.r simply asr. Identifier strings are composed ofM digits in radixB = 2b. The radixB is chosen
such thatB ≥ ∆2. For a network withn nodes, the length of each identifier,M , is chosen such that
M = dxe for x satisfyingBx = n. A routeru.r has an additional level property, denotedu.r.level,
between 1 andM + 1.

Let s be ak-digit identifier. Denotes[j] as the prefix of thej most significant digits, and denotesj

as thejth digit of s. A concatenation of two stringss, s′ is denoted bys ◦ s′.
For convenience, all definitions used in the LAND construction (including those mentioned above

already) are summarized here.

• The radixB satisfiesB ≥ ∆2.

• The number of identifier-digits satisfiesM = dxe for x so thatBx = n.

• The constantα is chosen such thatBe−α < 1.

• Ai(v) denotes the smallest ball around nodev containingmin(αBi, n) nodes, andai(v) denotes
the radius ofAi(v).

• Let γ = Blog∆ 2, and note thatγ ≥ 4.

• For the desired stretchε, choosed so that

ε ≥ 1

γd

(
2γ

γ − 1
+ 2 +

1

γ
+

1

γ − 1

)
.

The main properties implied by the growth-bound assumption are summarized in the following
technical lemma. These properties suffice by themselves to uphold the LAND construction, and from
here on we refer to the network properties only through them.

Lemma 10.1 Letv andw be any two nodes. For anyi with w ∈ Ai(v):

(i) Ai(v) ⊆ Ai+1(w)

(ii) Ai(w) ⊆ Ai+1(v)

(iii) ai+1(v) ≥ γai(v), whereγ = Blog∆ 2

Proof. Let r = ai(v) denote the radius ofAi(v), soAi(v) = N(v, r) whereN(v, r) = {u ∈ V |
c(u, v) ≤ r}. Sincew ∈ N(v, r) we get

N(v, r) ⊆ N(w, 2r) ⊆ N(v, 3r)

and from the growth bounded assumption it follows that

|N(v, 3r)| ≤ ∆2|N(v, r)| = ∆2|Ai(v)| ≤ ∆2αBi ≤ αBi+1 .

For (i), N(v, 3r) ⊆ Ai+1(v), and soAi+1(w), the ball aroundw with αBi+1 nodes, must contain
N(w, 2r) and so must containAi(v). For (ii), Ai(w) ⊆ N(w, 2r) ⊆ N(v, 3r) ⊆ Ai+1(v). For
(iii), notice thatγ = Blog∆ 2 = 2log∆ B and, hence,|N(v, Blog∆ 2r)| ≤ ∆log∆ B|N(v, r)| ≤ αBi+1.
Therefore,Ai+1(v) ⊇ N(v, γr), which implies thatai+1(v) ≥ γai(v). ut

2

10.2 The LAND architecture

Our goal is to support a lookup operation that locates nearest copies of objects such that the nodes of
the network share the lookup load evenly. All nodes in the network take part in the lookup process
and pass queries to the nodes they have outgoing links to. (Copies of) objects may be stored at any
node, but references to objects are mapped to nodes with the help of the distributed hash table (DHT)
approach. More formally, letA be a set of objects. We make use of a pseudo-random hash function
h that maps object names to identifiers in[B]M uniformly at random. For any (copy of an) object
obj ∈ A being stored in some nodes, reference information aboutobj’s location is stored in nodes
whose identifiers match prefixes of various length ofh(obj). The objectobj may be replicated in
various locations in the network. As it will turn out, the LAND network is able to locate a nearby copy
of everyobj ∈ A from any node in the network.

The basic entity in the LAND network is the router entity (simply referred to as ’router’ in the
following). Each router has an identifier and a level. The routers are connected in a manner similar to
the butterfly graph, i.e., level` routers have outgoing links only to level` + 1 routers. In LAND, each
node in the system initially maintainsM + 1 routers, each with a different level from 1 toM + 1. In
addition, it is possible that some nodes will need to maintain additional shadow routers to ensure worst
case locality. When we mention a routerr, we interchangeably mean either the routing entity itself or
the node that hosts the router. The precise meaning will be evident from the context.

More formally, each nodev hosts an initial set ofM + 1 routers denotedR1, ..., RM+1. Router
v.Ri has identityv.Ri.id and leveli, i.e., Ri.level = i. The identifiers of routers are represented as
radixB = 2b numbers. The identifiers of the initial routers are chosen uniformly and independently at
random.

Let r be a router of levelr.level = ` hosted by nodev. The routerr could be either the initial
v.R`, or a shadow router hosted byv, as we shall see below. Routerr has outgoing links of two types,
neighbor and publish links, denotedr.L andr.P respectively. These outgoing links are defined as
follows:

Neighbor links

If ` ≤ M , then routerr hasB neighbor links, denotedL(0), . . . , L(B − 1). Theith neighborr.L(i) is
selected as the closest router withinCi(r) ∩ A`(v) where

Ci(r) = {u ∈ V | ∃s so thatu.s.id[`] = r.id[`− 1] ◦ i andu.s.level = ` + 1} .

The linkL(i) fixes the`th digit of r.id to i, namely, it connects to the closest nodeu that hosts a level
` + 1 routeru.s that matches the idr.id[` − 1] ◦ i within the ballA`(v) (i.e., among theαB` closest
nodes tov).

If Ci(r) ∩ A`(v) = ∅, then nodev hosts a shadow routers with identifierr.id[` − 1] ◦ i and level
` + 1. Nodev maintains all of the links of the shadow router (including the publish links described
below). Since a shadow router also requires its own neighbor links, it may be that thejth neighbor
link of a shadow routers does not exist inCj(s) ∩ As.level(v). In such a casev also hosts a shadow
router that acts as thes.L(j) endpoint. Shadow hosting continues recursively until all links of all the
shadow routers hosted byv are found (or until the limit ofM + 1 levels is reached).

3

Publish links

If ` ≤ M , the publish linksr.P are all the nodes hosting any level-(` + 1) router with the same first
`− 1 bits asr.id which are inside the ballA`+d+5(v). Formally,r.P = C(r) ∩ A`+d+5(v) where

C(r) = {u ∈ V | ∃s so thatu.s.id[`− 1] = r[`− 1] andu.s.level = ` + 1} .

Publish and lookup

The publishing of an objectobj residing on a nodet proceeds as follows. Starting with a level-1 router
w1.r (wherew1 = t), move from a nodewi using the neighbor links of the leveli routerwi.r by fixing
theith digit to that ofh(obj). This links towi+1, a node hosting a leveli + 1 routerwi+1.r (this might
be a shadow router in which casewi = wi+1) such thatwi+1.r.id[i] = h(obj)[i]. Thus, routerwi+1.r
has levelwi+1.r.level = i + 1, and idwi+1.r.id[i] = h(obj)[i]. Continue until theM th digit (i.e.,
until there are no more neighbor links to follow). Each nodewi along the publishing route stores a
reference toobj which points back towi−1. In addition,wi stores such a reference on every node of
wi.r.P = C(r) ∩ Ai+d+5(w).

A lookup operation of an objectobj ∈ A can be initiated by any node in the system, and its purpose
is to find the closest node storingobj. The lookup operation from a nodev proceeds in two stages.
The first stage fixes target digits one by one. The loop goes as follows: Starting with a level-1 router
atv denotedv1.r, and so long as the target was not found, then from the current routervi.r, first check
if there is a reference toobj with a link to a nodewi−1. If so, move towi−1 and continue with the
second stage. Otherwise, continue at a nodevi+1 with a routervi+1.r such thatvi+1.r.level = i + 1
andvi+1.r.id[i] = h(obj)[i] (this might be a shadow router). The second stage traverses fromwi−1

backward tot usingobj’s reference links.
The publish and lookup algorithms for a routeru are provided in pseudo-code in Figure 1.

A nodet that wants to store an objectobj initiatest.R1.publish(obj, t, 1).

publish (obj, w, `) at router u.r:
store “obj; w” on nodeu;
send “obj; u” to every node inu.r.P ;
if ` ≤ M thenu.r.L(h(obj)`).publish(obj, u, ` + 1);

A nodev that wants to lookup objectobj initiatesv.R1.lookup(obj, v, 1).

lookup (obj, v, `) at router u.r:
if u storesobj returnobj to v;
else ifu stores “obj; w” thenw.lookup(obj, v, `);
else if` ≤ M thenu.r.L(h(obj)`).lookup(obj, v, ` + 1);

Figure 1: The publish and lookup algorithms.

10.3 Analysis

We first bound the expected degree and then the stretch of the LAND construction.

4

Expected degree

Lemma 10.2 For every initial routerr hosted by a nodeu the expected number of shadow routers
hosted byu due tor is constant.

Proof. For any level1 ≤ ` ≤ M , the probability that linkL(i) will be found insideA`(u) is at least

1−
(
1− 1

Bk

)αBk

≥ 1− e−α .

For0 ≤ i ≤ M−`, let b`+i be a random variable that counts the number of level-(`+ i) shadow routers
thatu recursively emulates due to missing links. Such shadow routers are created ifu incurs emulation
of a level-(̀ + 1) shadow router; one of that shadow router’s links is also emulated by a level-(` + 2)
shadow router; and so on, up to level(` + i). Sob` = 1, and for1 ≤ i ≤ M − `, each of theb`+i−1

routers hasB neighbor links with a probability of emulating each one bounded bye−α. Therefore,

E[b`+i | b`+i−1] ≤ b`+i−1Be−α

and due to the independence of the identifiers,

E[b`+i] ≤ E[b`+i−1]Be−α .

Thus, by induction,E[b`+i] ≤ (Be−α)i. This implies that the expected total number of shadow routers
incurred by routerr is bounded by

E[
∑

0≤i≤M−`

b`+i] ≤
∞∑

i=0

(Be−α)i =
1

1−Be−α
.

ut
Lemma 10.3 For every routerr the expected number of publish links|r.P | is constant.

Proof. Consider any routerr of some nodeu and letr.level = `. The probability that a nodev hosts
an initial level-(` + 1) routerv.r′ that matches the first̀− 1 bits of r.id is at mostB−(`−1).

Further, we need to consider the probability that a nodev emulates a shadow router of level(`+1)
with identifier matchingr.id[`− 1], hencer also has a publish link to it. Using the same arguments as
in the proof of Lemma 10.2 above, for0 ≤ i ≤ `, the probability that a nodev has a level-(` + 1− i)
router with identifier-prefixr.id[` − 1 − i] and needs to emulate a level-(` + 1) shadow router with
prefix id[`− 1] (i.e., emulate recursively to depthi) is bounded byB−(`−i−1)e−iα.

Hence, the total probability that a node hosts a level-(` + 1) router (real or shadow) matching
r.id[`− 1] is bounded by

∞∑

i=0

1

B`−1
(Be−α)i =

1

B`−1

1

(1−Be−α)
.

Thus, the expected number of nodes among theαB`+d+5 nodes that satisfy this criterion is bounded
by

E[|u.P |] ≤ αB`+d+5 1

B`−1

1

(1−Be−α)
=

αBd+6

1−Be−α
.

ut

As an immediate consequence of the above two lemmas, we get the following theorem.

5

Theorem 10.4 The expected degree of all nodes isO(M) = O(log n).

Corollary 10.5 The expected number of reference pointers for each object isO(M) = O(log n).

Stretch

Next we show that the worst case stretch of the lookup operation is1 + ε. For the analysis of a
lookup path, we denote the first node performing a lookup of an objectobj by s, and the (closest)
target node containingobj by t. Denote the sequence of steps taken by the routing algorithm as
v1, v2, v3, . . . wherev1 = s. Denote the relevant routers asv1.r, v2.r, v3.r, . . . wherevi.r.level = i and
vi.r.id[i − 1] = h(obj)[i − 1]. Similarly, let the sequence of publishing nodes taken fromt be t =
w1, w2, w3, . . . and the sequence of relevant routers bet = w1.r, w2.r, w3.r, . . . Hence,wi.r.level = i
andwi.r.id[i − 1] = h(obj)[i − 1]. Note that some nodes may repeat within this sequence due to
shadow-router emulation. For ease of notation, we use belowv0 = v1 = s.

Lemma 10.6 For everyi ≥ 1, vi ∈ Ai(vi−1) ⊆ Ai+1(s) and similarly,wi ∈ Ai(wi−1) ⊆ Ai+1(t).

Proof. By induction oni. For i = 1 we haves = v1. Assume by induction thatvi−1 ∈ Ai(s). If vi.r
is emulated thenvi = vi−1 and we are done. Otherwise, by Lemma 10.1(ii),Ai+1(s) ⊇ Ai(vi−1). By
construction,vi ∈ Ai(vi−1), and hence,vi ∈ Ai+1(s). (The case ofwi andt is identical). ut
Lemma 10.7 For everyi ≥ 1, the total distance of the path froms = v1 throughvi is at most

γ

γ − 1
ai+1(s)

Proof. By Lemma 10.6, for every1 < j ≤ i, vj is in the ballAj(vj−1) that is fully contained in the
ball Aj+1(s). Hence, its radius is at mostaj+1(s), and thereforec(vj−1, vj) ≤ aj+1(s).

By Lemma 10.1(iii),aj+1(s) ≤ γ−(i−j)ai+1(s). Hence, the total distance of the path fromv1

throughvi is at most

i−1∑

j=1

c(vj, vj+1) ≤
i∑

j=1

aj+1(s)

≤
i−1∑

j=0

γ−jai+1(s) ≤ γ

γ − 1
ai+1(s) .

ut
Lemma 10.8 Letk be the first index such thats ∈ Ak+d+2(t). Thenvk contains a reference toobj.

Proof. From Lemma 10.6,vk ∈ Ak+1(s). Applying Lemma 10.1(ii) ons ∈ Ak+d+2(t) gives
Ak+d+2(s) ⊆ Ak+d+3(t). Now, from Lemma 10.6,wk−1 ∈ Ak(t). Applying Lemma 10.1(i) on
wk−1 ∈ Ak+d+3(t) givesAk+d+3(t) ⊆ Ak+d+4(wk−1). Combining the above yieldsvk ∈ Ak+d+2(s) ⊆
Ak+d+3(t) ⊆ Ak+d+4(wk−1). Routerwk−1.r has publish links such that it publishes a reference for
objectobj in all the nodes within the ballAk+d+4(wk−1) containing a level-k router whose identifier
matches the prefixwk−1.r.id[k − 1]. Thus,vk must contain a reference of the type “obj; wk−1”. ut

Using Lemma 10.8, we know that when the lookup path reachesvk, it proceeds towk−1, . . . , w1 =
t. It is left to see what is the total distance of the routes = v1, v2, v3, . . . , vk, wk−1, wk−2, . . . , w1 = t.

6

Theorem 10.9 The stretch of the path froms to t is 1 + ε.

Proof. The first phase of the route is the path froms = v1 to vk. Sinces 6∈ Ak+d+1(t), it holds
that c(s, t) > ak+d+1(t) and thereforeN(s, 2c(s, t)) ⊇ Ak+d+1(t). This implies thatAk+d+1(s) ⊆
N(s, 2c(s, t)) because of node count, and thusak+d+1(s) ≤ 2c(s, t). With Lemma 10.7,

k−1∑

j=1

c(vj, vj+1) ≤ γ

γ − 1
· ak+1(s) ≤ 2γ1−d

γ − 1
· c(s, t) .

The second phase is the hop fromvk to wk−1. Using the triangle inequality, it follows that

c(vk, wk−1) ≤ c(vk, s) + c(s, t) + c(t, wk−1)

≤ ak+1(s) + c(s, t) + ak(t) ≤ (2γ−d + 1 + γ−d−1)c(s, t) .

The third and last phase of the route is the traversal fromwk−1, wk−2, . . . back tow1 = t. Because of
ak+d+1(t) ≤ c(s, t) and from Lemma 10.7,

k−2∑

j=1

c(wj, wj+1) ≤ γ−d

γ − 1
c(s, t) .

The theorem is proven by choosingd = O(log(1/ε)) such that

ε ≥ 1

γd

(
2γ

γ − 1
+ 2 +

1

γ
+

1

γ − 1

)
.

ut

10.4 Dynamic node arrivals and departures

In this section we sketch how nodes may dynamically arrive and depart from the system. We assume
that once two nodesv andw connect (byv sending a message that arrives atw) they may exchange
messages and discover the real distancec(v, w) between them.

Node arrival

When a new node arrives to the system it needs to do several things: (1) acquire an id for each of its
routers, (2) establish network links for each of its routers, (3) acquire necessary object references.

Acquiring an identifier for each router. Each node chooses for each initial router,R1, . . . , RM+1,
an identifier of M radixB digits independently and uniformly at random. Note that due to a significant
change in the number of nodes, the parameterM may change. In such a case, routers may need to add
a new digit to each of their identifiers.

Finding the nearest neighbor. As part of the process of establishing router links, a node first
needs to identify the closest neighbor it has in the network. Using the LAND architecture, the nearest
neighbor is always found, and a load-balanced distributed nearest neighbor search will take an expected
logarithmic number of steps. Algorithm find-closest for a nodev is as follows. Letu be any node in
the network known tov, e.g., an initial contact point. We denotewM+1 = u, and its level-(M + 1)

7

initial router bywM+1.r = u.RM+1. For ` = M + 1 down to 2, take from among all incoming
links into w`.r the routerw`−1.r closest tov. By construction,w`−1.r is a level-(` − 1) router with
w`−1.r.id[` − 2] = wM+1.r.id[` − 2]. At the end, set the closest node known tov, denotedv.closest,
to w1.

The find-closest algorithm is depicted in pseudo-code in Figure 2

A nodev that wants to find its closest neighbor invokesv.closest = v.RM+1.find-closest(v, M + 1).

find-closest(v, `) at router u.r:
If ` = 1 then sendu to v and return;
Let Si denote the set of all incoming links intou.r;
Let w amongSi be the closest tov;
w.r.find-closest(v, `− 1);

Figure 2: The find-closest algorithm.

Establishing network links. Once the id and level of a router is set, and the closest node to the
node hosting it is known, the router is left with the task of establishing links as defined in Section
4. For a routerv.r with level `, the main difficulty is to find all the level̀ + 1 routers with prefix
v.r.id[` − 1] in the ballA`+d+5(v). Routerv.r also needs to inform all routersu.r of level ` − 1 with
prefix v.r.id[` − 2] such thatv ∈ A`+d+4(u). This can be done, again, by finding all routersu.r in
A`+d+5(v) with prefixv.r.id[`− 2]. The locate algorithm for a routerv.r of level ` is as follows.

Let s be the closest node tov. For every combination of digitsb1, b2 ∈ [0, B − 1], route froms to
a level-(` + 2) routeru.r such thatu.r.id[` + 1] = v.r.id[` − 1] ◦ b1 ◦ b2. This routing is done in an
identical manner to the routing phase of lookup in Figure 1, i.e., using theL(i) links. LetY denote the
set of routersu.r reached by this procedure. LetS(`+3) be the set of level-(`+3) routers that appear
as publish links of routers inY , i.e.,S(` + 3) =

⋃
y∈Y y.P . ObtainS(` + 2) by taking all incoming

publish links intoS(` + 3) from routers of level̀ + 2. Then, recursively, obtainS(` + 1) by taking all
publish links going intoS(`+2). And so on, until we haveS(`− 1). FromS(`+1), routerv.r selects
neighbor links whose distance fromv does not exceeda`(v), and keeps publish links whose distance
from v does not exceeda`+d+5(v). Thenv informs nodes inS(`− 1) about its arrival.

The locate algorithm is depicted in pseudo-code in Figure 3

Node departure

When a regular nodev of level ` leaves the network, the level` − 1 nodes whose neighbor link
contained a routerv.r need to be updated andv.r removed from their list. Ifv.r was a neighbor link
of a routeru.r, thenu.r’s next closest publish link becomes the neighbor link, unless this link is too
far away in which caseu emulates a shadow node. The links for this emulation are acquired using the
locate algorithm.

Analysis of dynamic algorithms

Lemma 10.10 For a nodev, Algorithm find-closest finds the closest neighbor ofv.

8

locate at router v.r of level `:
for every combination of digitsb1, b2 ∈ B

v.closest.R1.search(v.r.id[`− 1] ◦ b1 ◦ b2, `, v);
wait for replies, accumulate inS;
setv.r.L(i) = argminu.r∈S{c(u, v) | u.r.level = ` + 1 ∧ u.r.id[`] = v.id[`− 1] ◦ i ∧ c(v, u) ≤ a`(v)};
// emulatev.r.L(i) if empty
setv.r.P = {u.r ∈ S | u.r.level = ` + 1 ∧ u.r.id[`− 1] = v.r.id[`− 1] ∧ c(v, u) ≤ a`+d+5(v)};
inform all level-(`− 1) routers inS aboutv’s arrival;

search(prefix, `, v) at router u.r:
if u.r.level = ` + 2 then

for eachw ∈ r.P with w.r′.level = ` + 3: w.r′.inlinks(v, 4);
elseu.r.L(prefixu.level).search(prefix, `, v);

inlinks(v, j) at router u.r:
// recurse forj levels searching for in-links
let I denote the incoming publish links ofu.r;
if (j > 0) then

for eachw.r ∈ I: w.r.inlinks(v, j − 1);
else sendv the setI;

Figure 3: The locate algorithm.

Proof. Denote byu the node at which find-closest is initiated byv. DenotewM+1.r = u.RM+1, and
denote the sequence of routers traversed by the algorithm bywM+1.r, wM .r, . . . , w1.r. Lets denote the
closest node tov in the network. We show by induction backward fromM + 1 to 1 thatwi ∈ Ai+2(v)
andwi.r is the closest router tov which satisfieswi.r.id[i−1] = wM+1.r.id[i−1]. The base obviously
holds. We now prove the induction step.

Consider the routing path froms to wM+1.r.id using the regular digit-fixing routing method.
Denote the router reached in theith routing step byyi.r, i.e., yi.r.level = i and yi.r.id[i − 1] =
wM+1.r.id[i − 1]. By Lemma 10.6,yi ∈ Ai+1(s). Sinces ∈ A1(v), by Lemma 10.1(ii),Ai+1(s) ⊆
Ai+2(v), and soyi ∈ Ai+2(v). Hence, if there is any level-i router ci.r closer tov thanyi.r, then
ci ∈ Ai+2(v) as well. By the induction hypothesis,wi+1 ∈ Ai+3(v), and hence, by Lemma 10.1(i),
Ai+2(v) ⊆ Ai+3(v) ⊆ Ai+4(wi+1). From Lemma 10.1(i), this meansAi+4(wi+1) ⊆ Ai+5(ci), and
therefore,ci.r has a publish pointer towi+1.r. Therefore, Algorithm find-closest would findci.r in this
step, and in fact,wi.r = ci.r. This completes the proof. ut

Lemma 10.11 For a routerv.r with level`, Algorithm locate finds all the appropriate level-(` + 1)
routers inA`+d+5(v) and all appropriate routersw.r with level`− 1 such thatv ∈ A`+d+4(w).

Proof. Let s be the closest node. From Lemma 10.1 it follows thatA`+d+5(v) ⊆ A`+d+6(s). By
Lemma 10.6, each routery.r that is routed to in algorithm locate is inA`+3(s) ⊆ A`+d+6(s). In
addition, each such router has level` + 2 so its publish links cover all appropriate level` + 3 routers
in A`+2+d+5(y). Applying Lemma 10.1 again we getA`+d+5(v) ⊆ A`+d+6(s) ⊆ A`+d+7(y). Hence,
by following incoming links backwards down to level` − 1, all appropriate level-(` − 1) routers

9

within A`+d+5(v) are guaranteed to be found. For everyw such thatv ∈ A`+d+4(w), we have that
A`+d+4(w) ⊆ A`+d+5(v). By a similar reasoning to the above, we find all suchw’s. ut

Lemma 10.12 For a node arrival:

(i) The expected number of nodes that change their state is logarithmic.

(ii) The expected number of messages sent isO(M2)

Proof. For each̀ ∈ [1,M], routing to each of the level` + 2 routers takes̀+ 2 messages. Once such
a router is reached, a message is sent to each of its links. The expected number of links is constant
(see Theorem 5.1), and all choices are independent. Thus recursively finding all appropriate links for
all M routers will cause sending an expectedO(M) number of messages. The number of nodes that
change their state for each` ∈ [1,M] is the number of appropriate routers inA`+d+5(v), the expected
number of these routers is constant. ut

Maintaining the correct ball radius ai(v)

In order to maintain the ball radius, the peers cannot count the exact number of nodes within a radius
of r from them since this would not be scalable. Instead, a simple sampling trick works for anyi ≥ 1:

If αBi = O(log n), then nodev can keep track of the exact number of nodes. Otherwise,v chooses
a set of random prefixes of lengthi− log(c log n) for some constantc and maintains an exact number
of all nodes within a distancer whosei-router matches one of the prefixes. If there areαBi nodes
within a distance ofr from v, thenv should find, on expectation,

c log n

Bi
· αBi = αc log n

many such nodes. This also holds with high probability since the router labels are chosen indepen-
dently at random. Hence, if for a given radiusai(v) the number of nodes counter byv is less than
αc log n, v needs to increaseai(v), and if it is more thanαc log n, v needs to decreaseai(v).

References

[1] I. Abraham, D. Malkhi, and O. Dobzinski. LAND: Stretch(1 + ε) locality-aware networks for dhts. In
Proc. of the 23rd IEEE Symp. on Principles of Distributed Computing (PODC), pages 550–559, 2004.

[2] P. Druschel and A. Rowstron. Pastry: Scalable, distributed object location and routing for large-scale peer-
to-peer systems. InProc. of the 18th IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware 2001), 2001.

[3] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent hashing and random
trees: Distributed caching protocols for relieving hot spots on the World Wide Web. InProc. of the 29th
ACM Symp. on Theory of Computing (STOC), pages 654–663, 1997.

[4] X. Li and C. Plaxton. On name resolution in peer-to-peer networks. InProc. of the 2nd ACM Workshop on
Principles of Mobile Computing (POMC), pages 82–89, 2002.

10

[5] C. Plaxton, R. Rajaraman, and A. Richa. Accessing nearby copies of replicated objects in a distributed en-
vironment.Theory of Computing Systems, 32:241–280, 1999. A preliminary version of this paper appeared
in Proceedings of the 9th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages
311–320, June 1997.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable network. In
SIGCOMM ’01, 2001.

[7] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-tolerant wide-area location
and routing. InUCB Technical Report UCB/CSD-01-1141, 2001.

11

