
11 Group management

So far, we have only looked at how to design an overlay network for a single application, such as
broadcasting or a distributed hash table service. However, what would be a good way of handling mul-
tiple applications? Here, two basic approaches are possible: maintaining a separate overlay network
for each application, or maintaining a single overlay network used by all applications. If the peers
are sufficiently stable and do not run too many applications at the same time, then the first approach
might be preferable, because the performance of an application is certainly maximized when using
an overlay network that was specifically designed to meet the needs of that application. On the other
hand, if the join/leave rate of the peers is high and many applications have to be handled at the same
time, then the maintenance overhead can become too high for the peers to handle if an extra overlay
network is maintained for each of them. In this case, it is much better just to use a single overlay
network to interconnected the peers and to embed all applications on top of it. In this section, we will
review a variety of possible solutions to run multiple peer-to-peer applications. Peers belonging to a
specific application are called agroup in the following.

11.1 Shared space

The most straightforward solution to our problem is to provide a shared space on top of the overlay
network by implementing a distributed hash table. This, in principle, allows one to run arbitrary shared
memory programs on top of a peer-to-peer system that can be used to implement any distributed ap-
plication. Such an approach is pursued, for example, in I3 [8], OpenHash [4], KBR [2], and PeerWare
[1]. However, remember that accessing a location in the shared memory can takeΘ(log n) hops in an
overlay network of sizen, so that shared memory accesses have to be used with great care to make
sure that a distributed program is running efficiently. Therefore, it is usually much better to use other,
more direct ways of realizing distributed applications. A basic building block for all of the strategies
presented in this section is a distributed tree management strategy realizing so-calledtransparenttrees.

11.2 Transparent trees

As the basis for our construction, we assume that every peerp is mapped to a (pseudo-)random point
xp ∈ [0, 1) and that the peers are organized in an overlay network that consists of a doubly linked
cycle, in which the peers are ordered according to their points in[0, 1), and a dynamic deBruijn graph
as specified in the section about the continuous-discrete approach. Every peerp is associated with a
regionRp that ranges fromxp to the pointxq of its predecessorq on the cycle.

Our goal is to embed a tree into this network so that every edge in the tree is also an edge in the
overlay network and the functionality of the tree can be maintained as long as the functionality of the
overlay network can be maintained. We call such treestransparent trees.

Let T be an infinite binary tree in which every edge to a left child is labeled with 0 and every edge
to a right child is labeled with 1. Let the label of a nodev in T , `v, be the sequence of the labels of
all edges encountered when moving along the unique path fromv to the root ofT . For example, the
leftmost node in level 2 inT has label 00, and the rightmost node in level 3 ofT has label 111. Every
tree associated with a keyk ∈ U is denoted byTk in the following. We first show how to embed a tree
Tk into [0, 1).

1

Embedding ofTk into [0, 1)

Suppose that we are given a hash functionh : U → {0, 1}∗ that maps keys to (potentially) infinite bit
strings. For any two bit stringss1 ands2, let s1 ◦ s2 be the concatenation ofs1 ands2. For example,
if s1 = 0010 ands2 = 1110, thens1 ◦ s2 = 00101110. Recall the functionr : {0, 1}∗ → [0, 1) in the
section about supervised overlay networks. Every nodev in Tk is mapped to the pointxv = r(`v◦h(k)),
and a peerp is responsible for nodev if and only if xv ∈ Rp.

Storing information in Tk

We assume that information is subdivided into atomic entities calledentries. These entries have to be
stored inTk so that the following invariant is satisfied at any time.

Invariant 11.1 For every treeTk, every node inTk stores at most one entry, and for every nodev that
stores an entry, also the parent node ofv most store an entry.

The invariant makes sure that the storage load is evenly distributed among the peers and that infor-
mation is always stored in the tree in a compact form. It also specifies how to recover from faults. If
an entry gets lost, then the entries below it are moved upwards so that the invariant is satisfied again.

Routing a request toTk

In order to route a request toTk, we use the deBruijn routing strategy given in the section about the
continuous-discrete approach. Suppose that a request toTk starts at positionx ∈ [0, 1), and let`x be
the binary representation ofx. Then the request is forwarded tor(b1◦`x), r(b2b1◦`x), and so on, using
(pseudo-)random bitsbi, till a peer is reached that is responsible for some pointr(b ◦ h(k)) for some
bit sequenceb ∈ {0, 1}∗. Afterwards, the request is moved upwards the treeTk till a node is reached
that stores an entry or the root ofTk is reached. From that point on, the request is processed according
to its specifications that depend on the particular context in which the tree is used.

We demonstrate the transparent tree concept by applying it to various problems, starting with a
rendezvous service. In the following, given an finite bit sequence`, ¯̀denotes its reverse, and given an
infinite bit sequencè = `1`2 . . ., prefixi(`) = `1`2 . . . `i andP` denotes the unique path starting at the
root of some treeTk that follows the edges with labels`1, `2, and so on.

11.3 Rendezvous service

For certain applications, it is a much better idea to form a dedicated overlay network for each of the
applications. But for this a core overlay network and a rendezvous service has to be provided that
allows peers that want to join a specific application to find other peers that are already part of that
application. This idea is pursued, for example, by JXTA, a Java library created by SUN to provide
peer-to-peer services.

JXTA is organized in three layers. The Platform Layer (JXTA Core), the Services Layer, and the
Applications Layer. The platform layer encapsulates minimal and essential primitives that are common
to peer-to-peer networking, including discovery, transport (including firewall handling), the creation
of peers and peer groups, and associated security primitives. A peer group is a collection of peers that

2

have agreed upon a common set of services. Peers self-organize into peer groups, each identified by a
unique peer group ID.

All JXTA network resources – such as peers, peer groups, pipes, and services – are represented
by anadvertisement. Advertisements are language-neutral metadata structures represented as XML
documents. The JXTA protocols use advertisements to describe and publish the existence of peer
resources. Peers discover resources by searching for their corresponding advertisements.

The JXTA core network is an ad hoc, multi-hop, and adaptive network composed of connected
peers. Peers are separated into three classes: edge peers, rendezvous peers, and relay peers. Every
edge peer maintains a connection to a rendezvous peer. Each rendezvous peer maintains its own list
of known rendezvous peers. A rendezvous peer may retrieve rendezvous information from a pre-
defined set of bootstrapping, or seeding, rendezvous peers. Rendezvous peers periodically select a
random number of rendezvous peers and send them a random list of their known rendezvous peers.
Rendezvous peers also periodically purge non-responding rendezvous peers. Thus, they maintain a
loosely consistent, random network of known rendezvous peers. Relay peers are used for communica-
tion between peers that cannot communicate directly (because of NAT boxes or firewalls).

Rendezvous peers maintain an index of advertisements published by edge peers. Edge peers send
search and discovery requests to rendezvous peers, which in turn broadcast requests they cannot answer
to other known rendezvous peers. The discovery process continues until one peer has the answer or
the request dies. Messages have a default time-to-live (TTL) of seven hops. Loopbacks are prevented
by maintaining a list of already visited peers.

Hence, overlay maintenance, routing, and the management of advertisements is rather ad hoc in
JXTA whereas our goal will be to design an overlay network for the core that is based on formally
analyzed methods.

First, we specify the basic operations that are needed for a rendezvous service. For any keyk, let
Gk be the set of all peers that have registered for the group IDk. A distributed rendezvous service
must provide the following operations:

• REGISTER(k): this registers a peerp for the group keyk. Formally,Gk = Gk ∪ {p}.
• DEREGISTER(k): this deregisters a peerp for the group keyk. Formally,Gk = Gk \ {p}
• JOIN(k): this returns information about any peer that has registered fork, i.e. any peer inGk is

returned.

Notice that implementing a rendezvous service is more complex than implementing a shared space
because in a rendezvous service there can be multiple entries for a key. The easiest solution here would
certainly be to implement a distributed hash table functionality and to store all entries for a particular
key k at the node currently responsible fork. This, however, can cause a high load imbalance if
there are groups that have many registered peers. A better approach is to use transparent trees. In the
following, we explain how the operations above act on these trees. We assume that we are given a
(pseudo-)random hash functiong : V × U → {0, 1}∗ that takes as argument a peerp and a keyk and
outputs a random bit string of (potentially) infinite length.

Registering a peer

If a peerp executesREGISTER(k), then a registration request is routed toTk as explained in Sec-
tion 11.2, usingg(p, k) for the random bit stringb. This leads the request to a nodev in Tk that stores

3

an entry inTk or the root ofTk. The request is forwarded till it reaches the root ofTk. From that
point on, it is moved downwards alongPg(p,k) till a nodew in Tk is reached without an entry. For each
visited node, it is checked if it contains an entry forp. If so, then the request is done. Otherwise, a new
entry withp’s ID is stored inw.

Deregistering a peer

If a peerp executesDEREGISTER(k), then a deregistration request is routed toTk as explained in
Section 11.2, usingg(p, k) for the random bit stringb. This leads the request to a nodev in Tk that
stores an entry inTk or the root ofTk. The request is forwarded till it reaches the root ofTk. From that
point on, it is moved downwards alongPg(p,k) till a node inTk is reached without an entry. For each
visited node, it is checked whether it contains an entry forp. If there is no such node, we are done.
Otherwise, the entry is removed, and for each node visited afterwards, its entry is moved to its parent.
Once a node alongPg(p,k) in Tk without an entry is reached, it is checked whether its sibling still has
an entry. If so, we do downwards along a path from the sibling, using any child that has an entry, and
move its entry to the parent, until we reach a node whose children do not store any entry. Then the
deregistration operation terminates. In this way, Invariant 11.1 is preserved.

The deregistration protocol above always finds the entry withp’s ID if it exists because the reg-
istration protocol makes sure that an entry forp is only stored in a node along the pathPg(p,k) in Tk.
Hence, our registration and deregistration protocols are working correctly. It remains to bound their
work.

Work and load bounds

We start with the following result.

Theorem 11.2 A REGISTER(k) andDEREGISTER(k) operation needs at mostO(log n) time and com-
munication work to be processed.

Proof. The routing to the root of the treeTk takesO(log n) hops, according to the properties of the
deBruijn routing protocol. Suppose thatm ≤ n peers have registered forTk. Consider some fixed
nodev in level dlog me + i in Tk. Because there are at leastm · 2i nodes in that level, the probability
thatv has an entry is at most1/2i. But if v has an entry, then also its parent must have an entry due to
Invariant 11.1. The probability for this is at most1/2i−1. Continuing this argument with the ancestors
still level dlog me + 1, we get that the probability that a nodev at leveldlog me + i has an entry is at
most

i∏

j=1

1

2j
= 2−

∑i

j=1
j ≤ 2−i2/2 .

Because there are at mostm · 2i+1 nodes in leveldme+ i in the tree, the probability that there exists a
nodev in level dlog me+ i that has an entry is at most

m · 2i+1 · 2−i2/2

which is polynomially small inn if i = Θ(
√

log n) is sufficiently large. There, the largest level at
which an entry may be stored inTk is log m+O(

√
log n). Thus, also the insert or removal parts of the

protocols only takeO(log n) time and work, completing the proof. ut

4

The next result is much more complicated to prove. See [6] for details.

Theorem 11.3 No matter how the registrations are distributed among the groups, if the total number
of registrations ism and the total number of peers in the system isn, then every peer responsible for
an interval of sizes/n only has to storeO(s ·m/n + log n) entries, with high probability.

Thus, the storage load is (almost) indeed evenly distributed among the peers. Because every peer
is only responsible for an interval of sizeO((log n)/n), with high probability, the maximum load at a
peer isO((m/n) log n), with high probability. Having a low maximum load is important to make sure
that join and leave operations of peers can be executed with a low overhead.

Joining a group

Finally, we describe how to execute aJOIN(k) operation. This is simply done by routing join request
to Tk as explained in Section 11.2, using a random bit stringb. It leads the request to a nodev in Tk

that stores an entry inTk or the root ofTk. If v stores an entry, then the ID of the peer in that entry is
returned, otherwise NULL is returned.

Claim 11.4 TheJOIN(k) operation needs at mostO(log n) time and communication work to be pro-
cessed.

When join requests for the same keyk that meet at a peerq are combined byq, one can also
guarantee a congestion ofO(log2 n), with high probability, of routing an arbitrary set ofn concurrent
join requests, one per peer.

11.4 Implicit overlay networks

Sometimes, it is too expensive to create an overlay network for each application. In this case, the idea
is to use a single overlay network and to embed all the other overlay networks into this single overlay
network. One solution to this problem has recently been suggested by Karger and Ruhl [3]. They
use the Chord network as the overlay network and describe a method that allows to implicitly embed
Chord networks of subgroups of peers running specific applications into that overlay network. We
describe an alternative method here.

Consider again the dynamic deBruijn network. Every group of peers running a particular appli-
cation is again associated with a keyk. For each keyk, we again embed a treeTk into the deBruijn
network as described above. However, the management ofTk and the operations differ significantly
from the previous approach. Now, the following operations have to be provided:

• JOIN(k): this allows a peerp to join the group with keyk.

• LEAVE(k): this allows a peerp to leave the group with keyk.

• ROUTE(k, x): this allows to route a request to the peer in groupk responsible for the point
x ∈ [0, 1).

TheJOIN andLEAVE operations modifyTk so that the following invariant is maintained at any time:

5

Invariant 11.5 For every treeTk, every node stores at most one entry. This entry stores either a
special marker or information about a peer. If there is at least one entry inTk storing a peer ID, it
must hold

• for every nodev storing a peer ID that all ancestors ofv store a marker, and

• for every nodev storing a marker that it has at least one child storing a marker or a peer ID.

As for the rendezvous service, we assume that we are given a hash functiong : V × U → {0, 1}∗
and information about a peerp can only be stored in a node along the pathPg(p,k) in Tk. Next we show
how to maintain all of these requirements.

Joining a group

If a peerp executesJOIN(k), then a join request is routed toTk as described in Section 11.2. This leads
the request to a nodev in Tk that stores an entry inTk or that is the root ofTk. In the second case,p’s ID
is stored in the root. Otherwise, it is checked ifv contains a marker or a peer ID. If it contains a marker,
then the pathPg(p,k) is followed downwards till the last nodew is reached that stores a marker or an ID
of some peerq. If w stores a marker, thenp’s ID is stored in the child ofw in Pg(p,k). Otherwise, we
take the peerq stored inw and go downwards alongPg(p,k) and place a marker on each visited node
till a node is reached at whichPg(p,k) andPg(q,k) differ at its children. Thenp’s ID is stored in the child
in Pg(p,k) andq’s ID is stored in the child inPg(q,k).

Leaving a group

If a peerp executesLEAVE(k), then a leave request is routed toTk as described in Section 11.2. This
again leads the request to a nodev in Tk that stores an entry inTk or that is the root ofTk. In the
latter case, we are done. Otherwise, it is checked ifv contains a marker or information about a peer.
If it contains a marker, then the pathPg(p,k) is followed downwards till the last nodew is reached that
stores a marker or information about some peerq. If w just stores a marker, of the peer ID stored in
w is not equal top’s ID, we are done (p was not part of the group). Otherwise,w storesp’s ID. In this
case, the entry is removed fromw. The request is send upwards and markers are removed till a node
w′ is reached whose other child stores a marker or a peer. We traverseTk downwards on the side of the
other child till we reach a node that has two children with entries or a node with a peer entry. In the
first case, we are done. Otherwise, let the entry store the ID of peerq. We removeq’s entry from the
node, move upwards the tree and remove the markers along the way till a nodew′′ is reached whose
other child stores a marker or a peer. At that point the entry ofq is placed at the child ofw′′ we came
from.

Routing in a group

If a peerp executesROUTE(k, x), then a request is routed toTk as specified in Section 11.2, using the
binary representationb(x) of x as the bit sequenceb. This leads the request to a nodev in Tk that stores
an entry inTk or that is the root ofTk and the root is empty. In the latter case, we are done. Otherwise,
we follow the pathPb(x) downwards till we reach the last node,w, that stores a marker or a peer ID. If
it stores the ID of some peerp, thenp is currently responsible forx. Otherwise, we follow the unique

6

path downwards fromw by always using the 0-edge if possible until we end in a node storing the ID
of some peerq. Thenq is currently responsible for handlingx.

Because of Invariant 11.5, every pointx ∈ [0, 1) has a peer responsible for it, so the routing always
terminates. Also, there is always a unique peer responsible forx, namely the peerp with the maximum
i so thatprefixi(g(p, k)) = prefixi(b(x)) and remaining bit sequence that is smaller than the remaining
bit sequences of all other peersq with prefixi(g(q, k)) = prefixi(b(x)). Thus, our routing operation
can be used to implement a distributed hash table for the group.

Our protocols have the following performance.

Theorem 11.6 The join, leave, and route operations need at mostO(log n) time and work to be pro-
cessed, with high probability.

11.5 Transparent data structures

Instead of implementing an entire overlay network, suppose that we just want to provide a shared
data structure, identified by some keyk, that can be accessed by any peer in the system. Then one
approach would be to implement this data structure on top of a shared space, but this approach may
slow down accesses to the data structure significantly. Another approach could be to implement the
data structure as an extra overlay network, but then we have to make sure that the overlay network
has a high expansion to avoid partitioning problems. This would certainly complicate the design of
the data structure. We present a third alternative, which we calltransparent data structureshere. The
idea behind these data structures is toembedthe data structure into the overlay network just as we did
with the transparent tree. In this way, maintaining the overlay network also helps to maintain the data
structure. For the embedding to work, we need to formulate invariants that allow the data structure
to adapt to changes in the overlay network. We do this for several simple data structures including
parallel stacks, FIFO queues, heaps, and search trees.

Pools

A pool [5] is a concurrent data-type which supports the following abstract operations

• ENQUEUE(k, e): adds elemente to the pool identified byk

• DEQUEUE(k): deletes and returns some elemente from the pool identified byk

A stack, for example, is a pool with a last-in-first-out (LIFO) ordering on enqueue and dequeue opera-
tions, and a queue is a pool with a first-in-first-out (FIFO) ordering on enqueue and dequeue operations.
Since its first introduction by Manber [5], the literature has offered us a variety of possible pool imple-
mentations. See [7], for example, for a survey. We will use our transparent tree approach to implement
a pool. It works as follows:

If a peerp executes theENQUEUE(k, e) operation, then an enqueue request is routed toTk as
described in Section 11.2, using a random bit sequenceb. This leads the request to a nodev in Tk that
stores an entry inTk or that is the root ofTk. If it is the root and it is empty,e is stored in the root.
Otherwise, the request moves down a random path inTk until it reaches a nodew without an entry.
Thene is stored inw.

7

If a peerp executes aDEQUEUE(k) operation, then a dequeue request is routed toTk as described
in Section 11.2, using a random bit sequenceb. This leads the request to a nodev in Tk that stores an
entry inTk or that is the root ofTk. If it is the root and it is empty, NULL is returned. Otherwise, the
request moves down a path inTk (where a random decision is made if both children of a node store
entries) until it reaches a nodew that has no children with an entry. Then the entry inw is removed
from T and returned top.

If an ENQUEUE(k, e) request meets aDEQUEUE(k) request, the the enqueue request is deleted and
e is returned as the answer to the dequeue request.

Theorem 11.7 The ENQUEUE(k, e) and DEQUEUE(k) operations need at mostO(log max[n,mk])
time and work to be executed wheremk is the number of entries in the pool for keyk.

It turns out that many enqueue and dequeue requests can be also handled concurrently with a low
congestion (at mostO(log2 n) in the dynamic deBruijn graph). So transparent trees allow very efficient
implementations of pools.

Call Stacks

A call stack is a special form of pool that is necessary in a distributed environment if a distributed
program is executed that spawns a hierarchy of subroutines that provide return values, because then
a subroutine can only finish if all of the subroutines spawned by it have returned their values. To
distribute the subroutines efficiently among peers interested in executing them, we need a distributed
call stack. In order to guarantee that the subroutines are executed in the right order, we assume that
each subroutine has a name representing the history of calls creating it. Consider the binary encoding
of these names. Let the order “<” be defined so that for any two bit sequencesb andb′, b < b′ if and
only if prefixi(b) = prefixi(b

′) andbi+1 < b′i+1 for somei ≥ 0 or b = prefix|b|(b
′) and |b| < |b′|.

If we can use the bit sequences and the< operator so that subroutines are stored in the nodes of the
transparent tree so that every subroutiner with parentr′ is stored at a nodev that is a descendent of
the node storingr′, then it suffices for dequeue operations to pick any entry of some nodev whose
children do not have any entries. Thus, the enqueue and dequeue operations can be implemented as
follows:

If a peerp executes theENQUEUE(k, e) operation, then a request is routed toTk as described in
Section 11.2, using the bit sequenceb(e) whereb(e) represents the name ofe. This leads the request
to a nodev in Tk that stores an entry inTk or that is the root ofTk. If it is the root and it is empty,e
is stored in the root. Otherwise, the request moves down along the pathPb(e) in Tk until it reaches a
nodew without an entry. Thene is stored inw. Afterwards,e is replaced with the entrye′ at its father
if and only if b(e) < b(e′), and we continue this upwards until this property is not satisfied any more.
The routing stage makes sure thate is stored along the same path as its ancestors in the call hierarchy,
and the exchange stage makes sure that the entries are monotonically ordered according to their level
in the call history. This satisfies our conditions on the placement of subroutines above.

If a peerp executes aDEQUEUE(k) operation, then a request is routed toTk as described in Sec-
tion 11.2, using a random bit sequenceb. This leads the request to a nodev in Tk that stores an entry
in Tk or that is the root ofTk. If it is the root and it is empty, NULL is returned. Otherwise, the request
moves down a path inTk (where a random decision is made if both children of a node store entries)
until it reaches a nodew that has no children with an entry. Then the entry inw is removed fromT
and returned top.

8

The performance ofENQUEUE andDEQUEUE depends on the structure of the call hierarchy and
is therefore more difficult to quantify.

Queues

In order to implement a (relaxed version of a) FIFO queue identified by some keyk, we also use a
transparent treeTk. The following operations need to be implemented for this:

• ENQUEUE(k, x): adds an elementx to the FIFO queue

• DEQUEUE(k): removes an element from the FIFO queue

If a peerp executes theENQUEUE(k, x) operation, then an enqueue request is routed toTk as
described in Section 11.2, using a random bit sequenceb. This leads the request to a nodev in Tk that
stores an entry inTk or that is the root ofTk. If it is the root and it is empty,x is stored in the root.
Otherwise, the request moves down a random path inTk until it reaches a nodew without an entry.
The request moves upwards from here till it reaches the root. In each upwards hop, it moves the entry
of the current node to the child the request came from. Finally, the request placesx at the root ofTk.

If a peerp executesDEQUEUE(k), then this is handled as theDEQUEUErequest above.

Theorem 11.8 The ENQUEUE(k, x) and DEQUEUE(k) operations need at mostO(log max[n,mk])
time and work to be executed wheremk is the number of entries in the queue for keyk.

Heaps

In order to implement a parallel heap, we can also use the transparent tree concept. The following
operations need to be implemented for this:

• INSERT(k, x): inserts elementx into the heap identified byk

• REMOVE(): removes the top entry in the heap

It is quite easy to imagine how to handle these operations so that also a time and work bound of
O(log max[n,mk]) can be achieved for heapk.

Search trees

Finally, also search trees can be implemented with transparent trees. We leave this as an exercise to
the reader.

11.6 Fault tolerance and recovery

Finally, after presenting various applications for transparent trees, we summarize why transparent
trees are so useful. First of all, they allow the storage load to be evenly distributed among the peers,
so that a high join/leave rate can be supported and only a small number of entries is lost if peers fail.
Furthermore, as long as the deBruijn network can recover, transparent trees can also recover. But most
importantly, transparent trees can be easily turned into self-repairable structures. All that is needed is
that the peers continuously check whether Invariant 11.1 is still satisfied for the tree. If not, then they
move entries upwards and in addition may execute some application-specific operations for the tree so
that it always fully recovers with whatever entries are left.

9

References

[1] G. Cugola and G. Picco. PeerWare: Core middleware support for peer-to-peer and mobile systems. Techni-
cal report, Politecnico di Milano, May 2001.

[2] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a common API for structured
peer-to-peer overlays. InProc. of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[3] D. Karger and M. Ruhl. Diminished Chord: A protocol for heterogeneous subgroup formation in peer-to-
peer networks. InProc. of the 3rd International Workshop on Peer-to-Peer Systems (IPTPS), 2004.

[4] B. Karp, S. Ratnasamy, S. Rhea, and S. Shenker. Spurring adoption of DHTs with OpenHash, a public DHT
service. InProc. of the 3rd, 2004.

[5] U. Manber. On maintaining dynamic information in a concurrent environment.SIAM Journal on Computing,
15(4):1130–1142, 1986.

[6] C. Scheideler and W. Wang. A load-balanced peer-to-peer registration service and its applications to any-
casting and multicasting. Manuscript. Johns Hopkins University, September 2004.

[7] N. Shavit and D. Touitou. Elimination trees and the construction of pools and stacks.Theory of Computing
Systems, Special Issue, 30:645–670, 1997.

[8] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet Indirection Infrastructure. InProc. of
the ACM SIGCOMM ’02, 2002.

10

