
13 Wireless Overlay Networks I

Radio networks are widely used today. People access voice and data services via mobile phones, Blue-
tooth technology replaces unhandy cables by wireless links, and wireless networking is possible via
IEEE 802.11 compatible network equipment. Nodes in such networks exchange their data packets
usually with fixed base stations that connect them with a wired backbone. However, in applications
such as search and rescue missions or environmental monitoring, no explicit communication infras-
tructure may be available. In this case, the wireless hosts have to organize in a so-called wireless ad
hoc network. As long as all of the hosts are within transmission range of each other, the problem of
exchanging information in such a network basically boils down to designing suitable medium access
control protocols, but if not all hosts can directly communicate with each other, we also need suitable
routing algorithms. Designing routing algorithms for wireless ad hoc networks is an extremely chal-
lenging task and still research in progress. We mostly focus on the simpler question of how to maintain
an overlay network of wireless links between the hosts so that, as long as this is in principle possible,

1. every node is reachable from every other node, i.e. the graph formed by the links is connected,
and

2. for every pair of nodes(v, w) there is a route fromv to w with a close to minimum possible hop
distance or energy consumption.

The graph formed by the wireless links should also have a low degree to ensure a low maintenance
cost, it should allow to find routes for the messages that have a low congestion, and it should be easy to
update in case of arrivals or departures of nodes or changes in their positions. We will present various
local-control algorithms for reaching these goals.

13.1 First approaches

The problem of designing overlay networks for wireless ad hoc networks has recently attracted a lot
of attention. A basic requirement for these overlay network designs is that they maintain connectivity
among the hosts, as long as this is possible. The most straightforward approach to achieve connectiv-
ity is to maintain a link between every pair of wireless hosts that are within their transmission range.
However, this may require a high maintenance and update cost since the corresponding overlay net-
work may have a high degree. Also, some links may have a high energy cost, and so a natural question
would be whether these can be dropped without endangering connectivity.

An alternative approach would be to maintain connections only to thek nearest neighbors. How-
ever, Figure 1 demonstrates that it is easy to come up with examples in which the graph formed by
the links would not be connected. So this approach does not work in general. As was shown by Xue
and Kumar [11], it only works in specific cases. For example, ifn hosts are distributed uniformly at
random in a unit square and every host connects to more than5.1774 log n of its nearest neighbors,
then the network formed by these links is connected with a probability that tends to 1 asn increases.
But connecting to less than0.074 log n nearest neighbors results in almost sure disconnectivity.

Another possible approach is that every host maintains connections tok hosts chosen uniformly
at random among all hosts within its transmission range. This also does not guarantee connectivity in
general but works well in certain cases. For example, Dubhashi et al. [4] recently showed that if every

1



Figure 1: A counterexample for the naive approach withk = 2.

node has at leastΘ(log n) nodes within its transmission range, then choosing just 2 random nodes to
connect to will establish connectivity almost surely.

We will only focus on approaches here thatguaranteeconnectivity, no matter how the hosts are
distributed, as long as this is in principle possible. Most of these approaches are based on so-called
spanners, which are properly selected subgraphs of the graph of all possible connections between the
wireless hosts so that the hosts are not only connected but their (hop or Euclidean) distance in that
graph is closely related to their minimum (hop or Euclidean) distance when considering all possible
connections. Spanners first appeared in computational geometry [5, 12], were then discovered as an
interesting tool for approximating NP-hard problems [9], and have recently attracted a lot of attention
in the context of routing and topology control in wireless ad hoc networks [1, 6, 7, 2, 8].

13.2 Notation

In the following, the wireless hosts are simply callednodes. To simplify our presentation, we assume
that the nodes are distributed in a perfect 2-dimensional Euclidean space, or formally, the nodes rep-
resent a set of pointsV ⊂ IR2, but all of the approaches presented here can also be extended to higher
dimensions. Given any pair of nodesu = (ux, uy), v = (vx, vy) ∈ IR2,

||uv|| =
√

(ux − vx)2 + (uy − vy)2

denotes theEuclidean distancebetweenu andv, and given any sequence of nodess = (u1, u2, . . . , uk)
and anyδ ≥ 0,

||s||δ =
k−1∑

i=1

||uiui+1||δ

denotes theδ-costof s. For any graphG = (V,E), a node sequences = (u1, u2, . . . , uk) is called a
path in G if (ui, ui+1) ∈ E for all 1 ≤ i < k.

Given any directed graphG = (V,E) and any two nodesu, v ∈ V , theδ-distancedδ
G(u, v) of u

andv in G is the minimumδ-cost||p||δ over all pathsp from u to v in G. If δ = 0, thendδ
G(u, v) gives

the topological (or hop) distanceof u andv in G, and ifδ = 1, dδ
G(u, v) gives theEuclidean distance

of u andv in G. Also cases withδ > 1 are interesting for us because the transmission of a packet over
a distance ofr usually has an energy consumption that scales withrδ for someδ > 1. In reality,δ is
usually in the range[2, 5], where it is closer to 2 outdoors and closer to 5 indoors.
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We assume that every node has a maximum transmission range of 1, i.e., every nodeu ∈ V can
send messages only to nodesv ∈ V with ||uv|| ≤ 1. From this assumption it follows that every overlay
network connecting these nodes can only be a subgraph of the following graph.

Definition 13.1 For any point setV ⊂ IR2, theunit disk graphof V , calledUDG(V ), is a directed
graph that contains all edges(u, v) with ||uv|| ≤ 1.

Figure 2: A connected unit disk graph.

In the following, we will always assume thatV is chosen so that its UDG is connected and non-
degenerate, i.e., there is a path inUDG(V ) between every pair of nodes and no two pairs of nodes have
exactly the same Euclidean distance (see also Figure 2). The connectivity assumption is a prerequisite
for our strategies below to establish a connected network among the nodes and the non-degenerateness
property will simplify the proofs. WhenG is the UDG ofV , we simply usedδ(u, v) instead ofdδ

G(u, v).
Next, we introduce graph spanners. First, we define spanners in which arbitrary pairs of nodes can,

in principle, be connected by an edge (i.e., we do not limit the transmission range of nodes).

Definition 13.2 Consider any finite set of nodesV ⊂ IR2, and letc ≥ 1 be any constant.

• A graphG = (V, E) is called ageometricc-spannerof V if for all u, v ∈ V there exists a path
p fromu to v in G with

||p|| ≤ c · ||uv|| .
If G is a geometricc-spanner,c is called itsstretch factor.

• G is a (c, δ)-power spannerof V if for all u, v ∈ V there is a pathp fromu to v in G with

||p||δ ≤ c · ||uv||δ .

If for all δ ≥ 2 there exists a constantc so thatG is a (c, δ)-power spanner, then we simply call
G a power spanner.
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• G is a weakc-spannerof V if for all u, v ∈ V there is a pathp fromu to v in G that is within a
disk of diameter at most

c · ||uv||
• A graphG = (V,E) is called aconstrained(geometric, power, or weak) spanner ofV if for

every pair of nodesu, v ∈ V there is a pathp that, in addition to the specific requirement for the
spanner type, also satisfies the condition that for every edgee in p,

||e|| ≤ ||uv||

u v u vu v

Figure 3: Examples of a spanner, weak spanner, and power spanner.

Since wireless nodes have a limited transmission range, the following spanner definitions are more
relevant for ad hoc networks.

Definition 13.3 LetV ⊂ IR2 be any finite set of nodes with a connected UDG.

• A graphG = (V, E) is called ageometricc-spannerof UDG(V ) if for all u, v ∈ V there exists
a pathp fromu to v in G with

||p|| ≤ c · d(u, v) .

• G is a (c, δ)-power spannerof UDG(V ) if for all u, v ∈ V there is a pathp from u to v in G
with

||p||δ ≤ c · dδ(u, v) .

• G is a weakc-spannerof UDG(V ) if for all u, v ∈ V there is a pathp from u to v in G that is
within a disk of diameter at most

c · d(u, v)

Interestingly, any constrained spanner ofV in which all edges of length more than 1 are removed
is also a spanner of the UDG ofV , as shown in the next theorem.

Theorem 13.4 Any constrained geometricc-spanner /(c, δ)-power spanner / weakc-spannerG of V
restricted to edges of length at most 1 is also a geometricc-spanner /(c, δ)-power spanner / weak
c-spanner of the UDG ofV .
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Proof. Let U be the UDG ofV . Suppose thatG is a (c, δ)-power spanner ofV for someδ ≥ 0.
Then it holds for every pair of nodesu, v ∈ V with ||uv|| ≤ 1 that there is a pathp in G ∩ U with
||p||δ ≤ c||uv||δ. Now, consider an arbitrary pairu, w ∈ V , and letp = (v0, v1, v2, . . . , vk) be any path
in U with v0 = u andvk = w that has aδ-cost ofdδ(u,w). Since||vivi+1|| ≤ 1 for all i, there is a path
pi from vi to vi+1 in G ∩ U with ||pi||δ ≤ c||vivi+1||δ. Concatenating these paths, we end up with a
pathp′ with

||p′||δ =
k−1∑

i=0

||pi||δ ≤
k−1∑

i=0

c||vivi+1||δ = c · dδ(u,w) .

Hence,G ∩ U is also a(c, δ)-power spanner ofU . Since a geometricc-spanner is just a(c, 1)-power
spanner, this also proves the theorem for constrained geometric spanners.

Finally, consider the case thatG is a constrained weakc-spanner. Then it holds for every pair of
nodesu, v ∈ V with ||uv|| ≤ 1 that there is a pathp in G ∩ U that is within a disk of diameter at most
c||uv||. Consider now an arbitrary pairu, w ∈ V , and letp = (v0, v1, v2, . . . , vk) be any path inU with
v0 = u andvk = w that has a Euclidean length ofd(u,w). Since||vivi+1|| ≤ 1 for all i, there is a path
pi from vi to vi+1 in G ∩ U that is within a disk of diameter at mostc · ||vivi+1||. Concatenating these
paths, we end up with a pathp′ that is within a disk of diameter at mostc · d(u,w). To prove this, we
need the following straightforward fact.

Fact 13.5 Any two disks of diameterd1 andd2 with a non-empty intersection are contained in a disk
of diameter at mostd1 + d2.

Using this fact in an inductive manner on the length ofp, it follows that when replacing the paths
pi in p′ by their disks,p′ is contained in a disk of radius at most

k−1∑

i=0

c · ||vivi+1|| ≤ c · d(u,w)

ut

Hence, it suffices to present and analyze algorithms for constrained spanners in order to obtain
overlay networks that are also spanners of UDGs.

13.3 Geometric spanners, power spanners, and weak spanners

Next, we study general relationships between the different kinds of spanners. All of these relationships
hold for general spanners as well as constrained spanners. However, to simplify the presentation,
we only prove the statements for general spanners. The reader may verify that they also hold for
constrained spanners.

Theorem 13.6 Every graphG = (V,E) that is a (constrained) geometricc-spanner is also a (con-
strained) weakc-spanner.

Proof. Consider any pair of nodesu, w ∈ V . SinceG is a geometricc-spanner, there is a path
p = (v0, v1, v2, . . . , vk) with v0 = u andvk = w that has a length of at mostc · ||uw||. Replacing
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each edge(vi, vi+1) by the disk of diameter||vivi+1|| containingvi andvi+1 and using Fact 13.5 in an
inductive manner implies thatp is contained in a disk of diameter at most

k−1∑

i=0

||vivi+1|| ≤ c · ||uw||

ut

However, the theorem does not hold any more when considering power spanners [10].

Theorem 13.7 For anyδ > 1 there is a family of (constrained)(c, δ)-power spanners which are not a
(constrained) weakC-spanner for any constantC.

Proof. Let V = {v1, v2, . . . , vn} be a set ofn nodes placed on a circle scaled so that||v1vn|| = 1 and
||vivi+1|| = 1/i for all 1 ≤ i < n. Now, consider the graphG = (V,E) with edges(vi, vi+1) for all
1 ≤ i < n (see also Figure 4). First, we show thatG is not a weakC-spanner for any constantC, and
then we show thatG is a(c, δ)-power spanner for allδ > 1.

v1 vn

.
. .

Figure 4: Example graph for Theorem 13.7.

It is easy to see that for everyn ≥ 2, the circumference of the circle through then nodes is at least

n−1∑

i=1

1

i
≥

∫ n

x=1

1

x
dx = ln n

which implies that its diameter is at least(ln n)/π. Since the distance betweenv1 andvn is just 1 but
any path fromv1 to vn would have to traverse all nodesvi along the circle, there cannot be a constant
C so thatG is a weakC-spanner.

On the other hand, if we look at theδ-cost of the unique pathp from v1 to vn in G, we see that for
δ = 1 + ε > 1,

||p||δ =
n−1∑

i=1

(
1

i

)δ

≤ 2
∫ n

x=1
−1

ε

(
1

x

)ε

dx ≤ 2

ε
=

2

δ − 1
.

Sincep uses all edges ofG, this is an upper bound for theδ-cost of any path connecting any other
pair of nodes(vi, vj) in G. Hence, for all pairs of nodes(vi, vj) with ||vivj|| ≥ 1, theδ-cost is at most
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2/(δ − 1). Moreover, it is not hard to check that every pair of nodes(vi, vj) with ||vivj|| < 1 has a
pathp from vi to vj of length at most1 + O(1/ ln n) and therefore ofδ-cost at most(1 + O(1/ ln n))δ.
Hence,G is a(c, δ)-power spanner for some constantc (depending onδ) for any constantδ > 1. ut

Also, the reverse direction of Theorem 13.6 is not true, i.e., the fact that a graph is a weak spanner
does not imply in general that it is also a geometric spanner (see also [10]).

Theorem 13.8 There exists a family of graphsG = (V,E) withV ⊂ IR2 all of which are (constrained)
weak2(

√
2 + 1)-spanners but not a (constrained) geometricc-spanner for any constantc.

Proof. Consider the snowflake structure in Figure 5. As can be seen from the picture (see the nodesv
andw), the stretch factor of the snowflake structure is equal to

4

2 +
√

2
≥ 1.17

1

1

1

v w1

Figure 5: The basic snowflake structure.

Recursively replacing each edge by a snowflake structure overd levels increases the stretch factor
to at least1.17d. Suppose now that we haven nodes, wheren is a multiple of 4. Then we can use them
to construct a snowflake structure withd = log4 n levels. This results in a stretch factor of at least

1.17log4 n = n(log2 1.17)/(log2 4) > n0.11 .

Next we show that the recursive snowflake structure is a weak spanner. Consider the dashed trian-
gle throughv andw in Figure 5. This triangle certainly contains all the other triangles in the picture.
Using this observation inductively, starting with the lowest level, it follows that for any recursion depth,
the recursive snowflake structure with endpointsv andw is completely inside the triangle throughv
andw.

Now, let G = (V,E) be any recursive snowflake structure of depthd. Consider any two nodes
v′, w′ ∈ V . Let G′ be the snowflake structure of largest depth withinG that containsv′ andw′, and let
S be the basic snowflake structure (i.e., we ignore further recursions) associated withG′ andv andw
be its endpoints (like in Figure 5). At this point we distinguish between two cases.

If v′ andw′ are associated with two non-adjacent edges inS, then it follows from the fact that any
two points in non-adjacent triangles in Figure 5 have a distance of at least 1 thatv′ andw′ must have
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a distance of at least 1. On the other hand,G′ is completely contained in the disk of diameter||vw||
throughv andw. Hence,G is a weak2 +

√
2-spanner for these(v′, w′) pairs.

If v′ andw′ are associated with two adjacent edges inS, then we recurse further on the snowflake
structures ofv′ andw′ until, for the first time,v′ andw′ are not associated with adjacent edges of
adjacent snowflake structures, or we reached the lowest level. In this case,v′ andw′ are contained in
triangles that are at least two edges away from each other. Going through all cases for these triangles,
one can easily check that they must have a distance of at least

√
2 (relative to an edge length of 1 in the

snowflake structures ofv′ andw′) while the snowflake structures ofv′ andw′ are contained in a disk
of diameter2(2 +

√
2). Hence,G is a weak2(

√
2 + 1)-spanner for these(v′, w′)-pairs.

Combining the two cases proves the theorem. ut

The next theorem studies the relationship between geometric spanners and power spanners.

Theorem 13.9 Every (constrained) geometricc-spanner is a (constrained)(cδ, δ)-power spanner for
everyδ ≥ 1.

Proof. Let G = (V, E) be a geometricc-spanner. Then it holds that for every pair of nodesu,w ∈ V
there is a pathp = (v0, v1, . . . , v`) in G with v0 = u andv` = w and||p|| = ∑`−1

i=0 ||vivi+1|| ≤ c · ||uw||.
Hence, for everyδ ≥ 1,

||p||δ =
`−1∑

i=0

||vivi+1||δ ≤
(

`−1∑

i=0

||vivi+1||
)δ

≤ cδ · ||uw||δ .

Therefore,G is also a power spanner for allδ ≥ 1, which proves the theorem. ut

Hence, in order to prove that a graph is a power spanner, it suffices to prove that it is a geometric
spanner. Interestingly, forδ ≥ 2, it even suffices to show that a graph is a weak spanner in order to
prove that it is a power spanner. We only prove this fact forδ > 2. The proof forδ = 2 is involved and
can be found (as well as the proof forδ > 2) in [10].

Theorem 13.10Let G = (V,E) be a (constrained) weakc-spanner. ThenG is also a (constrained)
(C, δ)-power spanner forδ > 2 whereC = (4c + 1)2 · cδ

1−22−δ .

Proof. Consider any pair of nodesv, w ∈ V and letp be any path fromv to w that is in a diskD(v, w)
of diameter at mostc||vw||. Suppose first there is no pair of nodes inp with a distance of at most
||vw||/2. In this case, the disks of radius||vw||/4 around each of these nodes are disjoint. Since a disk
of diameterd has a surface ofπ(d/2)2, it follows that there can be at most

π((c + 1/4)||vw||/2)2

π(||vw||/4)2
≤ (4c + 1)2

nodes inD(v, w) that are used byp. Since theδ-cost of any edge inD(v, w) is at most(c||vw||)δ, it
follows that theδ-cost ofp is at most(4c + 1)2cδ||vw||δ.

Suppose now that there is a (not necessarily adjacent) pair of nodes inp with a distance of at most
||vw||/2 (see Figure 6). Letv′ be the first node reached when walking alongp from v to w that has
a nodew′ on p with ||v′w′|| ≤ ||vw||/2. Then we replace the part ofp from v′ to w′ by the pathp′
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w’

w’v’

v

w

v’

Figure 6: A possible path for the nodesv, w with two pairsv′, w′ that are too close.

from v′ to w′ that stays within a diskD(v′, w′) of diameter at mostc||v′w′|| ≤ c||vw||/2. We continue
walking alongp at w′ until we find the next nodev′ on p that has a nodew′ on p (ignoring the nodes
in p′) of distance at most||vw||/2. We do the same transformation for this pair and continue until the
entire pathp has been traversed.

After this transformation, all pairs of nodes(v′, w′) in p of distance at most||vw||/2 have been
replaced by paths using edges of length at mostc||vw||/2. Suppose that the nodes of these paths have
a pairwise distance of more than||vw||/4. SinceD(v, w) can have at most4(4c + 1)2 such nodes and
theδ-cost of any edge connecting these nodes is at most(c||vw||/2)δ, it follows that theδ-cost of all
replaced parts ofp is at most4(4c + 1)2(c/2)δ||vw||δ.

However, there may still be nodes in the new parts ofp that have a pairwise distance of at most
||vw||/4. Then we continue to reorganize the new parts ofp as we did with the pathp above. Each
level i of reorganization creates an additionalδ-cost of at most

22i(4c + 1)2(c/2i)δ||vw||δ .

SinceV is finite, and therefore the minimum distance between any two nodes is finite, this reorgani-
zation eventually terminates. At the end, the totalδ-cost withδ > 2 is at most

∑

i≥0

(
22

2δ

)i

(4c + 1)2cδ||vw||δ = (4c + 1)2cδ||vw||δ ∑

i≥0

1

2δ−2
= (4c + 1)2cδ||vw||δ 1

1− 22−δ

ut

However, a weakc-spanner may not be a(C, δ)-power spanner for any constantC if δ < 2 [10].

Theorem 13.11For any δ < 2 there exists a family of graphsG = (V,E) with V ⊂ IR2 which are
(constrained) weakc-spanners for a constantc but not a (constrained)(C, δ)-power spanner for any
constantC.
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Summing up Theorems 13.6, 13.7, 13.8, 13.9, and 13.10, we obtain the following interesting
relationship between the class of all geometric spanners, weak spanners, and power spanners with
δ ≥ 2:

Geometric spanners ⊂ Weak spanners ⊂ Power spanners

13.4 Proximity graphs

From our insights on spanners above it follows that it would often be sufficient to design protocols
that guarantee a constrained weakc-spanner as long as this is possible because weak spanners are
guaranteed to have energy-efficient paths. But how can such protocols be designed in a distributed
way? Let us first focus on the weak spanner property. Consider the following definition:

Definition 13.12 For any node setV ⊂ IR2, the graphG = (V, E) is called aproximity graphof V if
and only if for allu,w ∈ V it holds that

• (u,w) ∈ E or

• there is av ∈ V with (u, v) ∈ E and||vw|| < ||uw||.

For an example of a nodev satisfying the proximity conditions, see Figure 7. It is known that there
are proximity graphs with a stretch factor as bad as|V | − 1 [3] but proximity graphs are always good
weak spanners.

Theorem 13.13For any finiteV ⊂ IR2, every proximity graph ofV is a weak 2-spanner.

Proof. Let G = (V, E) be any proximity graph ofV . First we prove thatG is connected. Certainly,
a graphG is connected if and only if for every pair of nodes inG there is a path connecting these two
nodes. So consider any pair of nodesu,w ∈ V . We distinguish between two cases:

1. (u,w) ∈ E: Thenu andw are connected, and we are done.

2. There is av ∈ V with (u, v) ∈ E and ||vw|| < ||uw||: Then we use the edge(u, v) and get
closer tow then we were before.

SinceV is finite, we only have to apply case 2 a finite number of times until case 1 holds. Hence,G is
connected.

BesidesG being connected, it follows from the observation above that for any pair of nodesu,w ∈
V there is a pathp that monotonically converges againstw. Hence,p is contained in a disk of diameter
at most2||uw||, which proves the theorem. ut

Hence, every proximity graph is also a power spanner ofV for everyδ ≥ 2. To make proximity
graphs useful for ad hoc networks, we consider a constrained form of proximity graphs which are also
known as relative neighborhood graphs [3].

Definition 13.14 For any node setV ⊂ IR2, the graphG = (V, E) is called arelative neighborhood
graph(RNG) ofV if and only if for allu,w ∈ V it holds that

• (u,w) ∈ E or
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v

Figure 7: Connections satisfying the RNG condition forv. (Removing the dashed connections gives a
minimum set of connections satisfying the RNG condition.)

• there is av ∈ V with (u, v) ∈ E, ||uv|| < ||uw||, and||vw|| < ||uw||.

It is easy to verify that relative neighborhood graphs satisfy the condition on constrained graphs
we formulated for spanners in Definition 13.3. Hence, Theorems 13.4, 13.10, and 13.13 imply that
relative neighborhood graphs are weak and power spanners of the UDG ofV for everyδ ≥ 2.

Figure 8 shows a simple distributed protocol for minimal relative neighborhood graphs. In this
protocol we assume that every nodeu ∈ V knows its neighborhood

N(u) = {v ∈ V | ||uv|| ≤ 1}

and the current positions of the nodes inN(u). Nodeu also keeps track of three sets:

• E(u): set of edges thatu currently has to nodes inN(u).

• B(u): set of nodesw ∈ N(u) \ E(u) that have a nodev ∈ E(u) with ||uv|| < ||uw|| and
||vw|| < ||uw||.

• U(u): nodes inN(u) that are not inE(u) orB(u) (for example, nodes that newly enteredN(u)).

Theorem 13.15The RNG protocol self-stabilizes in at most 5 rounds. In the stable state, the outdegree
of every node is at most 5.

Proof. First we prove that the protocol self-stabilizes in at most 5 rounds. Suppose that nodeu is in
an arbitrary state at the beginning of the first round. OnlyN(u) and the positions of the nodes inN(u)
are assumed to be correct. Then it holds:

• After step 1) of round 1,E(u) is minimal, and the nodes taken out ofE(u) were moved toB(u).

• After step 2) of round 1,B(u) is minimal, and the nodes taken out ofB(u) were moved toU(u).

• After step 3) of round 1,U(u) is empty andE(u) andB(u) satisfy the definitions of a RNG.
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Protocol RNG:

For every nodeu ∈ V repeatedly do:
1) for every nodew ∈ E(u):

if there is a nodev ∈ E(u) with ||uv|| < ||uw|| and||vw|| < ||uw|| then
movew to B(u) (i.e., remove edge(u,w))

2) for every nodew ∈ B(u):
if there is nov ∈ E(u) with ||uv|| < ||uw|| and||vw|| < ||uw|| then

movew to U(u)
3) for every nodew ∈ U(u):

if there is a nodev ∈ E(u) with ||uv|| < ||uw|| and||vw|| < ||uw|| then
movew to B(u)

else movew to E(u)

Figure 8: A self-stabilizing protocol for relative neighborhood graphs.

If E(u) is minimal after step 3,E(u) andB(u) will not be changed in later rounds as long asN(u)
and the positions of the nodes do not change. Hence, in this case, the protocol has stabilized.

E(u) may not be minimal after step 3 of the first round, butE(u) is guaranteed to contain the node
v1 ∈ N(u) of minimum distance tou, no matter whether initiallyv1 ∈ E(u) or v1 6= E(u). Let

B1(u) = {w ∈ N(u) | ||uv1|| < ||uw|| and||v1w|| < ||uw||}

and letv2 ∈ N(u) \ ({v1}∪B1(u)) be the remaining node of closest distance tou (if it exists). Notice
thatv2 can only be prevented to joinE(u) if a node inB1(u) is in E(u). Hence, it holds:

• After step 1) of round 2,v1 ∈ E(u) andB1(u) ⊆ B(u) andv2 ∈ E(u) ∪B(u).

• After step 2) of round 2,v1 ∈ E(u) andB1(u) ⊆ B(u) andv2 ∈ E(u) ∪ U(u).

• After step 3) of round 2,v1, v2 ∈ E(u) andB1(u) ⊆ B(u).

Now, let
B2(u) = {w ∈ N(u) \B1(u) | ||uv1|| < ||uw|| and||v1w|| < ||uw||}

andv3 = N(u)\({v1, v2}∪B1(u)∪B2(u)) be the remaining node of closest distance tou (if it exists).
Following the arguments forv2, it is guaranteed thatv3 ∈ E(u) andB2(u) ⊆ B(u) after round 3. This
is continued until there is no nodevi. At this point,E(u) andB(u) are stable.

It remains to bound the number of rounds the protocol needs to stabilize. For this we need the
following lemma, which implies that in the finalE(u) there can be at most 5 nodes, and therefore the
protocol needs at most 5 rounds to stabilize. In the following,6 (v, u, w) denotes the angle between
the linesuv anduw.

Lemma 13.16 In a minimal setE(u) there cannot be two nodesv, w ∈ E(u) with 6 (v, u, w) ≤ π/3.

Proof. Suppose that there are two nodesv, w ∈ E(u) with 6 (v, u, w) ≤ π/3. Letv be the closer of the
two nodes (which is unique because we only consider non-degenerate setsV ). Then||uv|| < ||uw||
and also||vw|| < ||uw||. ut
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If |E(u)| ≥ 6, then there must be at least two nodesv andw in E(u) with 6 (v, u, w) ≤ π/3. But
in this case, the lemma above implies thatE(u) cannot be minimal, which completes the proof of the
theorem. ut

Though relative neighborhood graphs may be good weak spanners, they may not be geometric
spanners or power spanners with a low cost. Here, two basic approaches have been pursued in the
literature to obtain geometric spanners and/or power spanners with low cost:

• The nodes cut the space around them into sectors of equal angleθ, whereθ is sufficiently small.
Such graphs are also known asθ-graphs or Yao graphs.

• The nodes triangulate the space to form Delaunay-like graphs.

In the next section, we first consider Yao graphs and their variants, which we also callsector-based
spanners, and afterwards we study Delaunay graphs and their variants, which we also callplanar
spanners.
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