13 Wireless Overlay Networks |

Radio networks are widely used today. People access voice and data services via mobile phones, Blue
tooth technology replaces unhandy cables by wireless links, and wireless networking is possible via
IEEE 802.11 compatible network equipment. Nodes in such networks exchange their data packets
usually with fixed base stations that connect them with a wired backbone. However, in applications
such as search and rescue missions or environmental monitoring, no explicit communication infras-
tructure may be available. In this case, the wireless hosts have to organize in a so-called wireless ac
hoc network. As long as all of the hosts are within transmission range of each other, the problem of
exchanging information in such a network basically boils down to designing suitable medium access
control protocols, but if not all hosts can directly communicate with each other, we also need suitable
routing algorithms. Designing routing algorithms for wireless ad hoc networks is an extremely chal-
lenging task and still research in progress. We mostly focus on the simpler question of how to maintain
an overlay network of wireless links between the hosts so that, as long as this is in principle possible,

1. every node is reachable from every other node, i.e. the graph formed by the links is connected,
and

2. for every pair of node$v, w) there is a route from to w with a close to minimum possible hop
distance or energy consumption.

The graph formed by the wireless links should also have a low degree to ensure a low maintenance
cost, it should allow to find routes for the messages that have a low congestion, and it should be easy tc
update in case of arrivals or departures of nodes or changes in their positions. We will present various
local-control algorithms for reaching these goals.

13.1 First approaches

The problem of designing overlay networks for wireless ad hoc networks has recently attracted a lot
of attention. A basic requirement for these overlay network designs is that they maintain connectivity
among the hosts, as long as this is possible. The most straightforward approach to achieve connectiv
ity is to maintain a link between every pair of wireless hosts that are within their transmission range.
However, this may require a high maintenance and update cost since the corresponding overlay net-
work may have a high degree. Also, some links may have a high energy cost, and so a natural questior
would be whether these can be dropped without endangering connectivity.

An alternative approach would be to maintain connections only t& thearest neighbors. How-
ever, Figure 1 demonstrates that it is easy to come up with examples in which the graph formed by
the links would not be connected. So this approach does not work in general. As was shown by Xue
and Kumar [11], it only works in specific cases. For example, lifosts are distributed uniformly at
random in a unit square and every host connects to moreithaii4 log n of its nearest neighbors,
then the network formed by these links is connected with a probability that tends to ihazases.
But connecting to less than074 log n nearest neighbors results in almost sure disconnectivity.

Another possible approach is that every host maintains connectignbdsts chosen uniformly
at random among all hosts within its transmission range. This also does not guarantee connectivity in
general but works well in certain cases. For example, Dubhashi et al. [4] recently showed that if every



A 4
/'\1. SN

Figure 1: A counterexample for the naive approach with 2.

node has at lea$d(log n) nodes within its transmission range, then choosing just 2 random nodes to
connect to will establish connectivity almost surely.

We will only focus on approaches here tlgataranteeconnectivity, no matter how the hosts are
distributed, as long as this is in principle possible. Most of these approaches are based on so-callec
spannerswhich are properly selected subgraphs of the graph of all possible connections between the
wireless hosts so that the hosts are not only connected but their (hop or Euclidean) distance in that
graph is closely related to their minimum (hop or Euclidean) distance when considering all possible
connections. Spanners first appeared in computational geometry [5, 12], were then discovered as ar
interesting tool for approximating NP-hard problems [9], and have recently attracted a lot of attention
in the context of routing and topology control in wireless ad hoc networks [1, 6, 7, 2, 8].

13.2 Notation

In the following, the wireless hosts are simply callestles To simplify our presentation, we assume
that the nodes are distributed in a perfect 2-dimensional Euclidean space, or formally, the nodes rep-
resent a set of poinfg C IR?, but all of the approaches presented here can also be extended to higher
dimensions. Given any pair of nodes= (u., u,),v = (v, v,) € IR?,

Juv]] = /(e — v:)2 + (u, — v,)?

denotes th&uclidean distanceetween: andv, and given any sequence of nodes (uy, us, .. ., u)
and anyy > 0,
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denotes thé-costof s. For any graptG = (V, ), a node sequence= (uy, us,...,u) iS called a
pathin G if (u;,u;.1) € Eforall1l <i < k.

Given any directed grapfi = (V, F) and any two nodes, v € V, the §-distanced’, (u, v) of u
andv in G is the minimumj-cost||p||° over all pathg from u to v in G. If § = 0, thend?, (u, v) gives
thetopological (or hop) distancef v andv in G, and if§ = 1, d%(u, v) gives theEuclidean distance
of w andv in G. Also cases witld > 1 are interesting for us because the transmission of a packet over
a distance of usually has an energy consumption that scales wiflor somes > 1. In reality, § is
usually in the rang€, 5], where it is closer to 2 outdoors and closer to 5 indoors.



We assume that every node has a maximum transmission range of 1, i.e., every @addecan
send messages only to nodes V" with ||uv|| < 1. From this assumption it follows that every overlay

network connecting these nodes can only be a subgraph of the following graph.
Definition 13.1 For any point sef/ c IR?, theunit disk graphof V, calledUDG(V), is a directed

graph that contains all edggs:, v) with ||uv|| < 1.

Figure 2: A connected unit disk graph.

In the following, we will always assume thé&t is chosen so that its UDG is connected and non-

degenerate, i.e., there is a patilvG (V') between every pair of nodes and no two pairs of nodes have
exactly the same Euclidean distance (see also Figure 2). The connectivity assumption is a prerequisite
for our strategies below to establish a connected network among the nodes and the non-degeneratene:

property will simplify the proofs. Whet is the UDG ofl/, we simply usel’ (u, v) instead ofiZ, (u, v).
Next, we introduce graph spanners. First, we define spanners in which arbitrary pairs of nodes can,
in principle, be connected by an edge (i.e., we do not limit the transmission range of nodes).

Definition 13.2 Consider any finite set of nod&sc IR?, and letc > 1 be any constant.

e AgraphG = (V, E) is called ageometricc-spannenf V' if for all w,v € V' there exists a path

p fromwu to v in G with
lIpll < ¢ [luv]] .

If G is a geometria-spannerg is called itsstretch factor
e Gisa(c,d)-power spanneof V if for all w,v € V there is a pathp from« to v in G with
1plI° < e [Juv]|” .
If for all 6 > 2 there exists a constantso thatG is a (¢, §)-power spanner, then we simply call

G a power spanner



e (G is aweakc-spanneof V if for all u,v € V there is a patlp from« to v in G that is within a
disk of diameter at most
¢ ||uvl]

e AgraphG = (V, E) is called aconstrainedgeometric, power, or weak) spanner Wfif for
every pair of nodes, v € V there is a pathp that, in addition to the specific requirement for the
spanner type, also satisfies the condition that for every edge,

llell < |uol|

Figure 3: Examples of a spanner, weak spanner, and power spanner.

Since wireless nodes have a limited transmission range, the following spanner definitions are more
relevant for ad hoc networks.

Definition 13.3 LetV c IR? be any finite set of nodes with a connected UDG.

e AgraphG = (V, E) is called ageometricc-spannenf U DG(V) if for all u,v € V there exists
a pathp fromw to v in G with
[Ipll < c-d(u,v).

e (Gis a(c,0)-power spanneof UDG (V) if for all u,v € V there is a pattp fromu tov in G
with
Ipll° < c-d’(u,v).

e (G is aweakc-spannef UDG (V) if for all u,v € V there is a pathp fromu to v in G that is
within a disk of diameter at most
¢+ d(u,v)

Interestingly, any constrained spannenofn which all edges of length more than 1 are removed
is also a spanner of the UDG bf, as shown in the next theorem.

Theorem 13.4 Any constrained geometricspanner /¢, §)-power spanner / weadkspannerG of I/
restricted to edges of length at most 1 is also a geometgpanner /(c, d)-power spanner / weak
c-spanner of the UDG of'.



Proof. Let U be the UDG ofV. Suppose thatr is a(c, d)-power spanner of for somed > 0.
Then it holds for every pair of nodesv € V with ||uv|| < 1 that there is a path in G N U with
I[p|]° < c||uv]|°. Now, consider an arbitrary pair w € V, and letp = (vg, v, va, . .., vx) be any path

in U with vy = u andv;, = w that has &-cost ofd’ (u, w). Since||v;v;,1|| < 1 for all 4, there is a path

p; from v; to v in G N U with ||p;]|° < ¢|Jvviga|]°. Concatenating these paths, we end up with a
pathp’ with

k—1 k—1
111 =D Mlpall® < Y- ellvivisal” = ¢ - d*(u, w) .
i=0 i=0

Hence,G N U is also a(c, d)-power spanner af/. Since a geometrie-spanner is just &:, 1)-power
spanner, this also proves the theorem for constrained geometric spanners.

Finally, consider the case thatis a constrained weadkspanner. Then it holds for every pair of
nodesu, v € V with ||uv|| < 1 that there is a pathin G N U that is within a disk of diameter at most
c|luv||. Consider now an arbitrary pairw € V, and letp = (vg, vy, va, ..., v) be any path i/ with
vo = u andv, = w that has a Euclidean length @fu, w). Since||v;v;41|| < 1 for all 4, there is a path
p; fromv; tov;,; in G N U that is within a disk of diameter at most ||v;v;,1||. Concatenating these
paths, we end up with a paththat is within a disk of diameter at most d(u, w). To prove this, we
need the following straightforward fact.

Fact 13.5 Any two disks of diametel; and d, with a hon-empty intersection are contained in a disk
of diameter at most; + ds.

Using this fact in an inductive manner on the lengthpoit follows that when replacing the paths
p; in p’ by their disksp’ is contained in a disk of radius at most

k1
> e lvwigl| < ¢ d(u,w)

1=0

O

Hence, it suffices to present and analyze algorithms for constrained spanners in order to obtain
overlay networks that are also spanners of UDGs.

13.3 Geometric spanners, power spanners, and weak spanners

Next, we study general relationships between the different kinds of spanners. All of these relationships
hold for general spanners as well as constrained spanners. However, to simplify the presentation,
we only prove the statements for general spanners. The reader may verify that they also hold for
constrained spanners.

Theorem 13.6 Every graphG = (V, F) that is a (constrained) geometricspanner is also a (con-
strained) wealc-spanner.

Proof. Consider any pair of nodes w € V. SinceG is a geometria-spanner, there is a path
p = (vo,v1,02,...,v) With vy = u andv, = w that has a length of at most ||uw||. Replacing



each edgév;, v;.1) by the disk of diameteljv;v;,1|| containingy; andv;,; and using Fact 13.5 in an
inductive manner implies thatis contained in a disk of diameter at most

k-1
> viviga|] < ¢ ||uwl|

=0
However, the theorem does not hold any more when considering power spanners [10].

Theorem 13.7 For any¢ > 1 there is a family of (constrained, ¢)-power spanners which are not a
(constrained) weak'-spanner for any constaudt.

Proof. LetV = {v;,vs,...,v,} be a set oh nodes placed on a circle scaled so thatv,, || = 1 and
llvivisa|| = 1/i forall 1 < i < n. Now, consider the grap = (V, E) with edges(v;, v;41) for all

1 <i < n (see also Figure 4). First, we show tldats not a wealk”-spanner for any constaat, and
then we show thatr is a(c, )-power spanner for all > 1.

Vl Vn

Figure 4: Example graph for Theorem 13.7.

It is easy to see that for every> 2, the circumference of the circle through th@odes is at least

n—1

1 n 1
Z,_z —dzr=Inn
i—1 2 =1 T

which implies that its diameter is at led$t n) /7. Since the distance betweenpandu, is just 1 but
any path fromw; to v,, would have to traverse all nodesalong the circle, there cannot be a constant
C' so thatG is a weak(C'-spanner.

On the other hand, if we look at tldecost of the unique pathfrom v, to v, in GG, we see that for

0=1+4+¢>1,
nml1N? no 1 /1\¢ 2 2
= - <2/ —()d <Z_-_Z
||p|| 122(2) — Jz=1 € \zx x_e 6 —1

Sincep uses all edges af, this is an upper bound for thecost of any path connecting any other
pair of nodegv;, v;) in G. Hence, for all pairs of nod€s;, v;) with ||v;v,|| > 1, thed-cost is at most
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2/(6 — 1). Moreover, it is not hard to check that every pair of no@iesv;) with ||v,0;|| < 1 has a
pathp from v; to v; of length at most + O(1/ Inn) and therefore of-cost at most1 + O(1/1Inn))°.
HenceG is a(c, §)-power spanner for some constar{lepending om) for any constant > 1. O

Also, the reverse direction of Theorem 13.6 is not true, i.e., the fact that a graph is a weak spanner
does not imply in general that it is also a geometric spanner (see also [10]).

Theorem 13.8 There exists a family of graplis = (V, E) with V' c IR? all of which are (constrained)
weak2(1v/2 + 1)-spanners but not a (constrained) geometrigpanner for any constant

Proof. Consider the snowflake structure in Figure 5. As can be seen from the picture (see the nodes
andw), the stretch factor of the snowflake structure is equal to

> 1.17

4
+2

Figure 5: The basic snowflake structure.

Recursively replacing each edge by a snowflake structuredolesels increases the stretch factor
to at leastl.17¢. Suppose now that we hawenodes, where is a multiple of 4. Then we can use them
to construct a snowflake structure with= log, n levels. This results in a stretch factor of at least

1'1710g4n _ n(logz 1.17)/(logy 4) > nO.ll ]

Next we show that the recursive snowflake structure is a weak spanner. Consider the dashed trian-
gle throughv andw in Figure 5. This triangle certainly contains all the other triangles in the picture.
Using this observation inductively, starting with the lowest level, it follows that for any recursion depth,
the recursive snowflake structure with endpoimasndw is completely inside the triangle through
andw.

Now, letG = (V, E) be any recursive snowflake structure of degthConsider any two nodes
v, w' € V. LetG' be the snowflake structure of largest depth withithat containg’ andw’, and let
S be the basic snowflake structure (i.e., we ignore further recursions) associated aittlv andw
be its endpoints (like in Figure 5). At this point we distinguish between two cases.

If v" andw’ are associated with two non-adjacent edges,ithen it follows from the fact that any
two points in non-adjacent triangles in Figure 5 have a distance of at least«® #ratw’ must have
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a distance of at least 1. On the other hafitlis completely contained in the disk of diametenu||
throughv andw. Hence G is a weak? + v/2-spanner for these’, w') pairs.

If " andw’ are associated with two adjacent edges jthen we recurse further on the snowflake
structures of” andw’ until, for the first time,»’ andw’ are not associated with adjacent edges of
adjacent snowflake structures, or we reached the lowest level. In thisutase,w’ are contained in
triangles that are at least two edges away from each other. Going through all cases for these triangles
one can easily check that they must have a distance of atJ@aselative to an edge length of 1 in the
snowflake structures af andw’) while the snowflake structures of andw’ are contained in a disk
of diameter2(2 + /2). Hence G is a weak2(v/2 + 1)-spanner for thes@’, w')-pairs.

Combining the two cases proves the theorem. O

The next theorem studies the relationship between geometric spanners and power spanners.

Theorem 13.9 Every (constrained) geometriespanner is a (constrained)’, §)-power spanner for
everys > 1.

Proof. LetG = (V, E) be a geometrie-spanner. Then it holds that for every pair of nodes €
there is a path = (vo, vy, . .., v¢) in G with vy = u andv, = w and||p|| = 224 |vivig|| < ¢ [|uw).
Hence, for every > 1,

-1 -1 s
Il = 3 ol < (S loall) < ol
i=0 i=0
Therefore is also a power spanner for all> 1, which proves the theorem. O

Hence, in order to prove that a graph is a power spanner, it suffices to prove that it is a geometric
spanner. Interestingly, far > 2, it even suffices to show that a graph is a weak spanner in order to
prove that it is a power spanner. We only prove this factfor 2. The proof fory = 2 is involved and
can be found (as well as the proof for> 2) in [10].

Theorem 13.10Let G = (V, E) be a (constrained) weakspanner. Ther is also a (constrained)
(C,d)-power spanner fos > 2 whereC' = (4c + 1) - 173762_5

Proof. Consider any pair of nodesw € V' and letp be any path from to w that is in a diskD (v, w)

of diameter at most||vw||. Suppose first there is no pair of nodespinvith a distance of at most
||lvwl]/2. In this case, the disks of radilisw|| /4 around each of these nodes are disjoint. Since a disk
of diameterd has a surface of(d/2)?, it follows that there can be at most

m((c + 1/4)[ow]]/2)*

owljae = et

nodes inD(v, w) that are used by. Since thej-cost of any edge iD (v, w) is at most(c||vw||)?, it
follows that thes-cost ofp is at most(4c + 1)2¢°|[vw||°.

Suppose now that there is a (not necessarily adjacent) pair of nogesgtima distance of at most
|lvwl|/2 (see Figure 6). Let’ be the first node reached when walking algnfyjom v to w that has
a nodew’ on p with |[v'w'|| < |Jlvw||/2. Then we replace the part pffrom v’ to w’ by the pathy’
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Figure 6: A possible path for the nodesw with two pairsy’, w’ that are too close.

from ¢’ to v’ that stays within a dislo(v’, w’) of diameter at most||v'w'|| < ¢||vw||/2. We continue
walking alongp at w’ until we find the next node’ on p that has a node’ on p (ignoring the nodes

in p) of distance at mogtvw||/2. We do the same transformation for this pair and continue until the
entire pathp has been traversed.

After this transformation, all pairs of nodés’, w’) in p of distance at mosjvw||/2 have been
replaced by paths using edges of length at mfstv|| /2. Suppose that the nodes of these paths have
a pairwise distance of more th@nw||/4. SinceD (v, w) can have at most(4c + 1)? such nodes and
the 5-cost of any edge connecting these nodes is at ffagistw||/2)°, it follows that thed-cost of all
replaced parts gf is at mostd(4c + 1)%(c/2)°||vw]|°.

However, there may still be nodes in the new partp tifiat have a pairwise distance of at most
|lvwl||/4. Then we continue to reorganize the new partp @ we did with the pathp above. Each
leveli of reorganization creates an additionatost of at most

2% (4 + 1)%(e/2')°|[vw]° .
SinceV is finite, and therefore the minimum distance between any two nodes is finite, this reorgani-
zation eventually terminates. At the end, the totabst withé > 2 is at most

22\ 1 1
> (5) e+ 1Pl = et 1P ol S gy = Gae k1P ol

i>0 i>0
O

However, a weak-spanner may not be (@', §)-power spanner for any constatitif § < 2 [10].

Theorem 13.11For any§ < 2 there exists a family of graphs = (V, E) with V' C IR* which are
(constrained) weak-spanners for a constamtbut not a (constrained)C', ¢)-power spanner for any
constantC'.



Summing up Theorems 13.6, 13.7, 13.8, 13.9, and 13.10, we obtain the following interesting
relationship between the class of all geometric spanners, weak spanners, and power spanners witl
0> 2

Geometric spanners C  Weak spanners C  Power spanners

13.4 Proximity graphs

From our insights on spanners above it follows that it would often be sufficient to design protocols
that guarantee a constrained weagpanner as long as this is possible because weak spanners are
guaranteed to have energy-efficient paths. But how can such protocols be designed in a distributed
way? Let us first focus on the weak spanner property. Consider the following definition:

Definition 13.12 For any node seV’ C IR?, the graphG = (V, E) is called aproximity graphof V" if
and only if for allu, w € V' it holds that

o (u,w) € Eor
e thereis av € V with (u,v) € E and||vw|| < ||uwl]].

For an example of a nodesatisfying the proximity conditions, see Figure 7. It is known that there
are proximity graphs with a stretch factor as badias— 1 [3] but proximity graphs are always good
weak spanners.

Theorem 13.13 For any finitelV’ C IR?, every proximity graph of is a weak 2-spanner.

Proof. LetG = (V, E) be any proximity graph o¥’. First we prove thatr is connected. Certainly,
a graphG is connected if and only if for every pair of nodesGthere is a path connecting these two
nodes. So consider any pair of nodess € V. We distinguish between two cases:

1. (u,w) € E: Thenu andw are connected, and we are done.

2. There is aw € V with (u,v) € E and||vw|| < ||luwl||: Then we use the edde:, v) and get
closer tow then we were before.

SinceV is finite, we only have to apply case 2 a finite number of times until case 1 holds. Here,
connected.

Besided~ being connected, it follows from the observation above that for any pair of nodes
V there is a patlp that monotonically converges againstHence p is contained in a disk of diameter
at most2||uw||, which proves the theorem. 0

Hence, every proximity graph is also a power spanndr ébr every§ > 2. To make proximity
graphs useful for ad hoc networks, we consider a constrained form of proximity graphs which are also
known as relative neighborhood graphs [3].

Definition 13.14 For any node set’ C IR?, the graphG' = (V, E) is called arelative neighborhood
graph(RNG) ofV if and only if for allu, w € V' it holds that

o (u,w) € Eor
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Figure 7. Connections satisfying the RNG conditiondo(Removing the dashed connections gives a
minimum set of connections satisfying the RNG condition.)

e thereisav € V with (u,v) € E, ||uv|| < |Juw]|, and|jvw]|| < ||uw]].

It is easy to verify that relative neighborhood graphs satisfy the condition on constrained graphs
we formulated for spanners in Definition 13.3. Hence, Theorems 13.4, 13.10, and 13.13 imply that
relative neighborhood graphs are weak and power spanners of the UD@okveryj > 2.

Figure 8 shows a simple distributed protocol for minimal relative neighborhood graphs. In this
protocol we assume that every nade V' knows its neighborhood

N(u) ={veV||lu]l <1}
and the current positions of the nodes\itu). Nodeu also keeps track of three sets:
e [(u): set of edges that currently has to nodes i (u).

e B(u): set of nodesv € N(u) \ E(u) that have a node € E(u) with |Juv|| < |luw]|| and
[lvwl] < [luwl].

e U(u): nodesinV(u) that are notin®(u) or B(u) (for example, nodes that newly enter®du)).

Theorem 13.15 The RNG protocol self-stabilizes in at most 5 rounds. In the stable state, the outdegree
of every node is at most 5.

Proof. First we prove that the protocol self-stabilizes in at most 5 rounds. Suppose thai i®ihe
an arbitrary state at the beginning of the first round. Q¥ily:) and the positions of the nodesN(«)
are assumed to be correct. Then it holds:

e After step 1) of round 1E(u) is minimal, and the nodes taken out®fu) were moved td3(u).
e After step 2) of round 13(u) is minimal, and the nodes taken out®fu) were moved td/ (u).

e After step 3) of round 1{/(u) is empty andt'(u) and B(u) satisfy the definitions of a RNG.
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Protocol RNG:

For every node: € V repeatedly do:
1) for every nodev € E(u):
if there is a node € E(u) with ||uv|| < |Juw|| and||vw|| < ||uw|| then
movew to B(u) (i.e., remove edgéu, w))
2) for every nodev € B(u):
if there is nov € E(u) with ||uv|| < [Juw|| and|vw]|| < ||uw]|| then
movew to U (u)
3) for every nodev € U (u):
if there is a node € E(u) with ||uv|| < |Juw|| and|jvw|| < ||uw|| then
movew to B(u)
else movew to E(u)

Figure 8: A self-stabilizing protocol for relative neighborhood graphs.

If E(u) is minimal after step 3£ (u) and B(u) will not be changed in later rounds as long/&éu)
and the positions of the nodes do not change. Hence, in this case, the protocol has stabilized.

E(u) may not be minimal after step 3 of the first round, Bift:) is guaranteed to contain the node
v; € N(u) of minimum distance ta, no matter whether initially; € E(u) orv, # E(u). Let

Bi(u) = {w € N(u) [ [Juor|| < [Juwl| and|[orw]| < [[uw][}

and letv, € N(u) \ ({v1} U Bi(u)) be the remaining node of closest distance {d it exists). Notice
thatv, can only be prevented to joifi(v) if a node inB; (u) is in E(u). Hence, it holds:

e After step 1) of round 2y, € E(u) andB;(u) C B(u) andvy € E(u) U B(u).
e After step 2) of round 2y, € E(u) andB,(u) C B(u) andvy € E(u) U U(u).
e After step 3) of round 2y,, v, € E(u) andBy(u) C B(u).

Now, let
By(u) ={w € N(u) \ Bi(u) | [[uv:| < [[uw|] and||vyw|| < [Juw][}

andvs = N(u)\ ({v1,v2} UB;(u)UBs(u)) be the remaining node of closest distance (d it exists).
Following the arguments far, it is guaranteed that, € F(u) andBs(u) C B(u) after round 3. This
is continued until there is no node At this point, E(u) and B(u) are stable.

It remains to bound the number of rounds the protocol needs to stabilize. For this we need the
following lemma, which implies that in the findl(«) there can be at most 5 nodes, and therefore the
protocol needs at most 5 rounds to stabilize. In the followif{@, u, w) denotes the angle between
the linesuw anduw.

Lemma 13.16 In a minimal setZ(«) there cannot be two nodesw € E(u) with /(v, u, w) < 7/3.

Proof. Suppose that there are two nodes € E(u) with /(v, u,w) < 7/3. Letv be the closer of the
two nodes (which is unique because we only consider non-degeneraié)séthen||uv|| < ||uwl]
and alsd|vw|| < |Juw]|. 0
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If |E(u)| > 6, then there must be at least two nodeandw in £(u) with /(v, u,w) < 7/3. But
in this case, the lemma above implies ti&4t:) cannot be minimal, which completes the proof of the
theorem. O

Though relative neighborhood graphs may be good weak spanners, they may not be geometric
spanners or power spanners with a low cost. Here, two basic approaches have been pursued in th
literature to obtain geometric spanners and/or power spanners with low cost:

e The nodes cut the space around them into sectors of equalgvghered is sufficiently small.
Such graphs are also knownegraphs or Yao graphs.

e The nodes triangulate the space to form Delaunay-like graphs.

In the next section, we first consider Yao graphs and their variants, which we alsectlt-based
spanners and afterwards we study Delaunay graphs and their variants, which we alguacadt
spanners

References

[1] K. Alzoubi, X.-Y. Li, Y. Wang, P. Wan, and O. Frieder. Geometric spanners for wireless ad hoc networks.
14(4):408-421, 2003.

[2] F. M. auf der Heide, C. Schindelhauer, K. Volbert, and Mu@wald. Energy, congestion and dilation in
radio networks. IrProc. of the 14th ACM Symp. on Parallel Algorithms and Architectures (SRsfEs
230-237, 2002.

[3] P. Bose, L. Devroye, W. Evans, and D. Kirkpatrick. On the spanning ratio of Gabriel graphs and beta-
skeletons. IrProc. of Latin American Theoretical Informatics Conference (LATROD2.

[4] D. Dubhashi, O. ggstbm, A. Panconesi, and M. Sozio. Irrigating ad hoc networks in constant time. In
Proc. of the 17th ACM Symp. on Parallel Algorithms and Architectures (SRfsges 106115, 2005.

[5] D. EppsteinHandbook of Computational Geometohapter Spanning trees and spanners, pages 425-461.
Elsevier, 2000.

[6] M. Grunewald, T. Lukovszki, C. Schindelhauer, and K. Volbert. Distributed maintenance of resource
efficient wireless network topologies. European Conference on Parallel Computing (EURORARYyes
935-946, 2002.

[7] L. Jia, R. Rajaraman, and C. Scheideler. On local algorithms for topology control and routing in ad hoc
networks. InProc. of the 15th ACM Symp. on Parallel Algorithms and Architectures (SRrsyes 220—
229, 2003.

[8] R. Rajaraman. Topology control and routing in ad hoc networks: a suUBKYACT New;s33(2):60-73,
2002.

[9] S. Rao and W. Smith. Approiximating geometrical graphs via spanners and bany&mnsc.lof the 30th
ACM Symp. on Theory of Computing (STO@3ges 540-550, 1998.

13



[10] C. Schindelhauer, K. Volbert, and M. Ziegler. Spanners, weak spanners, and power spanners for wireless
networks. InProc. of 15th Annual International Symposium on Algorithms and Computation (ISAAC '04)
pages 805-821, 2004.

[11] F. Xue and P. Kumar. The number of neighbors needed for connectivity of wireless netWdrk¢ess
Networks 10(2):169-181, 2004.

[12] A. C.-C. Yao. On constructing minimum spanning trees:idimensional space and related problems.
SIAM Journal on Computing.1:721-736, 1982.

14



