2 Network Theory

In this section we will first give a basic introduction to graph theory and will then introduce some
popular families of networks and investigate their structural properties.

2.1 Graph theory

A graph G = (V, E) consists of a set afiodes(or verticeg V' and a set oedges(or arcs) E. The

nodes represent the processing units and the edges represent the communication links between th
units. Often, we will set, = |V/| (the size oft”) andm = |E|. Thesizeof G is defined as the number

of nodes it contains. For all, w € V, (v, w) denotes alirectededge fromw to w, and{v, w} denotes
anundirectededge fromw to w. G is calledundirectedif £ C {{v,w} | v,w € V} anddirectedif

E C{(v,w) | v,w € V}. Unless explicitly mentioned, we assume for the rest of this lecturethst
undirected.

A sequence of contiguous edgesGhis called apath Thelengthof the path is defined as the
number of edges it contains. A path is calleode-simpléf it visits every node inG at most once.
Similarly, it is callededge-simplgor simplg if it contains every edge it at most once( is called
connectedf, for any pair of nodes, w € V, there is a path i from v to w. We call a simple
path acycleif it starts and ends at the same node. Hmh of a graphG is defined as the length
of the shortest cyclé: contains.G is called atreeif it is connected and contains no cycle. A graph
T = (V', E') is called aspanning treef G if V' =V, E' C E, andT is a tree.G is calledbipartite if
its node set can be partitioned into two node $&tandV; such thatt? C {{v,w} | v € V;, w € V,}.

For any pair of nodes, w € V, let§(v, w) denote thelistanceof v andw in G, that is, the length
of a shortest path from to w. ThediameterD of G is defined asnax{d(v,w) | v,w € V}. If
{v,w} € FE thenw is called aneighborof w. For any subset’ C V/, theneighborhoof U is defined
as

F'U)={veV\U|JuelU: {uv}eFE}.

The number of neighbors afis called thedegreeof v and denoted by,,. The degree of- is defined
asd = max{d, | v € V'}. If all nodes inG have the same degree, théris calledregular.

Vv

Figure 1: An example of an undirected graph with diameter 4.

A family of graphsG = {G,, | n € IN} has degreé(n) if for all n € IN the degree of,, is d(n).
If it is clear to which family a graph belongs, we say that this graph has constant (or bounded) degree
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if and only if its family has constant degree.
A networkis specified by a grapts’ = (V, E) with edge capacities given by a function £ —
IR™. Given a graplt; with capacities:, let the capacity of a node< V be defined as

c(v) = > clv,w)
weV
and the capacity of any node set or edge(sdte defined ag(U) = X,y c(u). Given a subset
U C V, (U,U) denotes the set of all edgés, v) € E (or {u,v} € E if G is undirected) with: € U
andv € U. Soc(U,U) is the sum of the capacities of all edges(in U). The expansion of a
networkG with capacities: is defined as

o = min AU, U)
~ vev min{c(U),c(U)}

2.2 Basic network topologies

The most basic network topologies used in practice are trees, cycles, grids and tori. Many other
suggested networks are simply combinations or derivatives of these. The advantage of trees is thal
the path selection problem is very easy: for every source-destination pair there is only one possible
simple path. However, since the root of a tree is usually a severe bottleneck, sofaattedshave

been used. These trees have the property that higher-level edges have a (much) larger capacity tha
lower-level edges. See Figure 2 for an example.

Figure 2: The structure of a fat tree.

Fat trees belong to a family of networks that require edges of non-uniform capacity to be efficient.
Easier to build are networks with edges of uniform capacity. This is usually the case for grids and
tori. Unless explicitly mentioned, we will treat all edges in the following to be of capacity 1. In the
following, [x] means the s€i0, 1,..., 2 — 1}.

Definition 2.1 (Torus, Mesh) Let m,d € IN. The(m,d)-meshM (m,d) is a graph with node set
V = [m]¢ and edge set

E— {{(adl...ao),(bdl...bo)} | as,b; € [ml, 20 la; — by = 1} .
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The (m, d)-torusT'(m, d) is a graph that consists of afm, d)-mesh and additionally wrap-around
edges fromag_1 ...a;4.1(m — 1) a;—1...a0) t0 (ag—1...a;41 0 a;_1...qp) for all ¢ € [d] and all
a; € [m] with j # i. M(m,1) is also called aline, T'(m,1) a cycle and M (2,d) = T(2,d) a
d-dimensional hypercube

Figure 3 presents a linear array, a torus, and a hypercube.
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Figure 3: The structure a¥/(m, 1), T'(4,2), andM (2, 3).

The hypercube is a very important class of networks, and many derivatives, the sohyaiézd
cubic networkshave been suggested for it. Among these are the butterfly, cube-connected-cycles,
shuffle-exchange, and de Bruijn graph. We start with the butterfly, which is basically a rolled out
version of a hypercube.

Definition 2.2 (Butterfly) Letd € IN. Thed-dimensional butterfly3 F'(d) is a graph with node set
V =[d+ 1] x [2]? and an edge s&f = £, U F, with

B ={{(i,a), (i + La)} |i€d, ae 2}
and
B, = {{(i,a),(i+1,8)}]i€[d], a,3 € [2]% aandg differ
only at theith positior} .

The node sef(i,a) | a € [2]?} representdevel i of the butterfly. Thel-dimensional wrap-around
butterflyW-BH«d) is defined by taking th&8 F'(d) and identifying levefl with level 0.

Figure 4 shows the 3-dimensional butterfyy”(3). The BF(d) has(d + 1)2¢ nodes2d - 2¢ edges
and degree 4. It is not difficult to check that combining the node {&éts) | i € [d]} into a single
node results in the hypercube.

Next we define the cube-connected-cycles network. It only has a degree of 3 and it results from
the hypercube by replacing the corners by cycles.

Definition 2.3 (Cube-Connected-Cycles) etd € IN. Thecube-connected-cycleetwork CCC{) is
a graph with node set’ = {(a,p) | a € [2]%,p € [d]} and edge set

E = {{(a.p).(a.(p+ 1) modd)} | a € [2,p € [d]}
U{{(a,p), (b,p)} | a,b € [2*,p € [d], a = b except fora, |
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Figure 4: The structure of BB).
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Figure 5: The structure of CGQ).

Two possible representations of a CCC can be found in Figure 5.
The shuffle-exchange is yet another way of transforming the hypercubic interconnection structure
into a constant degree network.

Definition 2.4 (Shuffle-Exchange)Letd € IN. Thed-dimensional shuffle-exchangd”(d) is defined
as an undirected graph with node dét= [2]¢ and an edge sef = £, U E, with

B = {{(ag_1 ... a0), (@1 ...a0)} | (@ai...a0) € [2]% @ =1 — ag}

and
By = {{(ag_1...a0), (agag_1...a1)} | (ag_1...a0) € [2]%} .

Figure 6 shows the 3- and 4-dimensional shuffle-exchange graph.

Definition 2.5 (de Bruijn) Theb-ary de Bruijn graph of dimensiahD B(b, d) is an undirected graph
G = (V,E) with node sel = {v € [b]¢} and edge sel that contains all edge$v, w} with the
property thatw € {(z,v4_1,...,v1) : « € [b]}, wherev = (vg_1, ..., v0).

Two examples of a de Bruijn graph can be found in Figure 7.
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Figure 6: The structure of SB) and SE4).
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Figure 7: The structure dPB(2,2) andDB(2, 3).

2.3 Direct and indirect networks

Networks are usually separated irdect andindirect networks. Direct networks are networks in
which every node represents a processing unit that can inject and absorb packets, whereas in indirec
networks only certain nodes (the so-callagut node} can inject packets and certain nodes (the so-
calledoutput nodescan absorb packets. An important subclass of indirect networks are the so-called
leveled graphs.

Definition 2.6 (Leveled Graph) A graphG = (V, E) is calledleveled with depthD if the nodes
of G can be partitioned intaD + 1 levels Ly, ..., Lp such that every edge iff connects nodes of
consecutive levels. Nodes in level 0 are callgouts and nodes in leveD are calledoutputs If, in
addition, |Ly| = |Lp| and L, is identified withLp, thenG is called awrapped leveled graph with
depthD.

Examples of leveled graphs are the fat tree and the butterfly, and an example of a wrapped leveled
graph is the wrap-around butterfly. In a butterfly it is usually assumed that the noflgsepresent
the input nodes and the nodes in levg) represent the output nodes. In a fat tree the nodes in level
Lp are usually both input and output nodes.



2.4 The diameter

Recall the definition of the diameter in Section 2.1. One important goal in choosing a topology for a
network is that it has a small diameter. The following theorem presents a lower bound for this.

Theorem 2.7 Every graph of maximum degreke> 3 and sizen must have a diameter of at least
[(logn)/(log(d —1))] — 1.

Proof. Suppose we have a gragh= (V, E') of maximum degred and sizen. Start from any node
v € V. In afirst step at most other nodes can be reached. In two steps at mo&t — 1) additional
nodes can be reached. Thus, in general, in at me&tps at most

(d=1F—1 _d-(d— 1}
d—1)—1" d—2

k—1
14> d-(d=1)=1+4d-
1=0

nodes (including) can be reached. This has to be at leai ensure that can reach all other nodes
in V" within k& steps. Hence,

d—2)- d—2)- d—2
(d — ].)k Z (d)n = k Z logd_l <<d)n> p== k 2 logd_l n -+ logd_l (d) .
Sincelog, ((d —2)/d) > —2for all d > 3, this is true only ifk > |log,_,n| — 1. 0

Theorem 2.7 uses as a construction for the lower bound a confpletel )-ary tree with a root
of degreed. However, it is easy to see that in this tree there are two nodes (see thedeawds in
Figure 8) with a distance of approximatelyog, , n, which is by a factor of 2 larger than the lower
bound. Can networks with a better diameter be constructed? The next theorem gives an answer to this

root

n nodes

Figure 8: Nodes with highest distance in a tree.

Theorem 2.8 For every everl > 2 there is an infinite family of graphs,, of maximum degreé and
sizen with a diameter of at mostogn)/(logd — 1).

Proof. The proof is part of the assignment. O



2.5 The expansion

Recall the definition of the expansion in Section 2.1. We start with an upper bound on the expansion
that must hold for all networks.

Theorem 2.9 For every networky = (V, E) with non-negative edge capacities, the expansion can be
at most 1.

Proof. For every sel/ C V let By = {{v,w} € E | v € U}, where an edge appears twice
in Ey if both v andw are inU. Certainly, (U,U) C Eyp. Sincec(U) = c¢(Ey) it must therefore
hold thatc(U, U) < ¢(U). Equivalently, it must also hold thatU, U) = ¢(U,U) < ¢(U). Hence,
c(U,U) < min{c(U), ¢(U)} and therefore

= min ol [_]) _
() = Bl e, (O =

O

Interestingly, for anyl > 3 there are graphs that can achieve a constant expansion. These are the
so-called expanders. One explicit construction is known as the Gabber-Galil graph [4]:

Definition 2.10 Letn € IN. TheGabber-Galil grapltG(n) is a graph with node sét’ = [n|* and
edge sef consisting of all edge§z, y), (z/, ) with

(@ y) e {(z,2+y), (v, o +y+1),(x +y,y),(xr+y+1,y)} (modn)

Other explicit constructions of expanders can be found in [8, 9, 10]. Also random regular graphs
are known to be expanders, with high probability. For the classes of graphs we presented above the
expansion is quite complicated to compute. Therefore, we just list some results here.

Theorem 2.11 Thed-dimensional hypercube, cube-connected-cycles, butterfly, shuffle-exchange, and
de Bruijn graph with uniform edge capacities all have an expansidgi(of d).

Using the fact that for these networks= ©(log n), wheren is the number of nodes in the network,
it follows that all of these networks have an expansio®0f/ logn).

2.6 The flow number

In order to define the flow number, we first have to introduce the concept of multicommodity flows.
Consider any networ& with non-negative edge capacities giverrbyA multicommodity flounstance

on G is a set of ordered pairs of verticés,, t1), (sq2,t2), ..., (s, tx). Each pair(s;,t;) represents a
commoditywith sources; and target;. The objective is to maximize the amount of flow traveling from

the sources to the corresponding destinations, subject to the capacity constraints. The problem come
in two flavors. In the first, called th@aximum multicommodity floproblem, the total flow, summed

over all commodities, is to be maximized. The second is calleddneurrent multicommodity flow
problem. Here, for each commodity;, ¢;) a non-negative demand is specified. The objective

is to maximize thdraction of the demand that can be shipped simultaneously for all commodities.

7



In other words, we want to find the maximuynso that a flow off - d; can be shipped for every
commodity: without exceeding the capacities of the edgegsis called concurrent max-flow A
balanced multicommodity flow proble(MFP) is a concurrent multicommodity flow problem in
which the sum of the demands of the commaodities originating and the commaodities terminating in a
nodev is equal toc(v) for everyv € V. Both the maximum throughput problem and the maximum
concurrent flow problem can be solved in polynomial time using linear programming.

1 1 1 1 1/2 1/2 1
S, ® otz S, otz S, ® t2
S, e . : : otl S, e ” - t1 S, - ” ° t1
d,=d,=1
(a) (b) (c)

Figure 9: Solution to a 2-commodity flow problem (a). The routing of the first commodity is shown in
(b) and the second commodity is shown in (c).

Given a concurrent multicommodity flow problem with feasible solutioret thedilation D(.S)
of S be defined as the length of the longest flow path i@nd thecongestiorC'(S) of S be defined as
the inverse of its concurrent flow value (i.e., the congestion says how many times the edge capacities
would have to be increased in order to satisfy the demands of all commodities when using the same
set of flow paths). LeB be the special BMFP in which each pair of nodesw) has a commodity of
demand:(v) - ¢(w)/c(V). Theflow numberF'(G) of a networkG is defined as the minimum over all
feasible solutionss' of B of max{C(S), D(S)} [6]. In the case that there is no risk of confusion, we
will simply write F' instead ofF'(G). Note that the flow number of a network is invariant to a scaling
of the capacities.

The flow number of a networ& can be computed in polynomial time. Another advantage of the
flow number is that, as shown by the next theorem, it can be applied to much more general multicom-
modity flow problems than just the one that defines it.

Theorem 2.12 For any networkG with flow numberF” and any instancé of the BMFP forG, there
is a feasible solution fof with congestion and dilation at mo3F'.

Proof. The idea is to decompodeinto two multicommodity flow problems: for every commodity
with sources; and destination;, the first problem/; has commodities, from s; to « for all u € V'
with demandsl;, = d, - ¢(u)/c(V'), and the second problefs has commodities, from « to ¢; for all
u € V with demandsl; = d; - c(u)/c(V). For every commodity from the original problem, the total
demand of corresponding commaodities/inis d; and isd; in I, as well. Moreover, for every node
u € V the amount of commodity shipped tou in [, is equal to the amount of commodityshipped
fromw in Is.

Interestingly, both of the flow problem’s and /, are equal to the special flow problenbecause
for any pairv, w € V, the total demand of the commodities with sourcand destinationw in I; is



equal to

and in/; it is also equal to

di-c(v)  c(v)-c(w)
) )

Thus, according to the definition of the flow number, botland/; have a feasible solution with con-
gestion and dilation at mo$t. Hence, the original problemhhas a feasible solution with congestion
and dilation at most F’, which proves the claim. ad

With techniques similar to those used in the proof of Theorem 5.0.3 in [11] one can also prove the
following result.

Theorem 2.13 On average over all BMFP$, the minimummax{C(S), D(S)} over all feasible so-
lutionsS of I is Q(F).

Hence, the flow number truthfully captures the problem of routing BMFPs in networks. Using
Theorem 2.12, we prove another powerful result, caBadrtening Lemmahat shows that the flow
number allows one to convert arbitrary multicommodity flow solutions into solutions with short flow
paths.

Theorem 2.14 (Shortening Lemma [6]) Suppose we are given a network with flow numbemhen,
for anye € (0, 1] and any feasible multicommodity flofythere exists a feasible multicommodity flow
f" with flow valueg f/| of at least| f;| /(1 + ¢) for every commodity that uses paths of length at most
2-F(1+1/e).

Proof. Given a flow solutionS, letS” C S consist of all paths frond that are longer thai, for
L = 2. F/e. We are going to shorten the pathsShat the cost of slightly decreasing the satisfied
demand of each commodity.

For a pathp € S’ betweens, andt,, leta,, = s,,a,2,---,a, denote its first, nodes and
bp1, -, bp—1,b, 1, = t, its last L nodes and leff, be the flow value along. Then the sel/ =
Upes U1 {api. by, fo} is (@ subset of) an instance of the BMFP. By Theorem 2.12, there exists a
feasible solutiorP to ¢/ with flow value at least /(2F") consisting of paths of length at mast'. We
are going to combine the initial and final parts of the long pathS'iwith these “shortcuts” irP to
obtain the desired short solution.

First, decrease the flows along all pathg S by a factor of1 /(1 + ¢) so that we have room to
accommodate new, short paths for the pathS’inThese short paths are constructed in the following
way:

For every pattp € &', we replacep by L flow systemsS,,;, ¢ = 1,---, L. Each flow systens,, ;
consists of two parts:

1. the flow paths betwees, ; andb, ; in P corresponding to the request, ;, b, ;, f,} fromi/, now
with a flow of f,,/(L(1 + ¢)), and

2. fp/(L(14¢)) units of flow betweemn,, ; anda, ; alongp, andf,/(L(1+¢)) units of flow between
b,.; andb,, 1, alongp.



For eachi, the length of each path in the subsystémis at mostL + 2 - F', andfp/(L(1 + €)) units
of flow are shipped along each path systém. Summed over all = 1...L, we havef,/(1 + ¢)
units of flow between, = a,, andt, = b, 1, which is as high as the original flow throughreduced
by 1/(1 + ¢). Hence, we can replageby the systems, ; without changing the amount of flow from
sp 1O t,.

Now, it holds for every edgethat the flow traversing due to the paths i§ is at most:(e) /(1 +¢),
and due to the shortcuts 1 is at most

fp 2F e c(e)
< . pu—
pepz::eep 0+ SIare =15
since s
> 2R <c(e).
pEP: eEp 2F

Thus, the flows irS andP sum up to at most(e) for an edge:. Therefore, the modification yields a
feasible solution satisfying the desired properties. O

Next, we explore the relationship of the flow number with the diameter and the expansion of a
network. The first result immediately follows from the definitionfof

Fact 2.15 For every network with diametdp and flow numbef’, it holds thatF" > D.

The next result reveals a very close relationship between the expansion and the flow number of a
network.

Theorem 2.16 For any networkG with expansiory and flow numbe¥ it holds that
al<F< c-a_llogn
for some constant

Proof. We only prove here that’ > o~!. (The entire proof can be found in [6].) For this we need
some notation. Given a concurrent multicommodity flow problem,cieratio of a cut(U,U) is
defined as _
c(U,U)

R = ~
YT AU, 0)

where d(U,U) = > d; .

(84,t:) €E(UxT)U(UXU)
Now, let f be the concurrent max-flow of the problesrused for the definition of". Consider any cut
(U,U) and letiy, is, . . ., i, denote the commodities whose source and target are separated by this cut.
Since all flows for these commodities must cré&sU ), we know that

Xr:fdlj SC(U,U) .

=1

Sincey>!_, d;, = d(U, U), this means that

]

c(U,
d(U,

)
;-

<

]
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For 13 it holds that

We distinguish between two casesc(t/) > ¢(V)/2, thenc(U) - ¢(U)/c(V) > ¢(U)/2. Thus,

) U D)
f= 2-c(U)/2  min{c(U),c(U)} "

If c(U) > c(V)/2, thenc(U) - ¢(U)/c(V) > ¢(U)/2 and therefore

) . dUU)
2. c(U)/2  min{c(U), ()}

S

Hence, in both cases, -
c(U,U)

< _
~ min{c(U), ¢(U)}
and thereforef < aor1/f > a~!. Since according to the definition &f, F > 1/f, it follows that
F>a % O

Since the flow number of a network is an upper bound on its diameter, it follows from Theo-
rem 2.16:

Corollary 2.17 For every network with expansienthe diameter is at mogb (o' logn).

From Theorem 2.7 it follows that this bound is exact for constant degree expanders. Do there exist
networks where the flow number is @ max{D, a~1})? The next theorem lists some.

Theorem 2.18 Thed-dimensional hypercube, cube-connected-cycles, butterfly, shuffle-exchange, and
de Bruijn graph with uniform edge capacities all have a flow numbé& (@f).

For proofs see, for example, [7] or [11]. Thus, for these networks it actually holdsFthat
O(a™1), i.e. the expansion describes very well the routing ability of the network. It also follows from
the bound that all networks must have a diametep@bgn).

2.7 The span

We end this section with the definition of one more parametersplamof a graphG = (V, E'). The

spano measures how well a graph can sustain random node faults. In the past, researchers have mostl
studied the problem up to which fault probability a network can sustain random faults so that the size
of its largest connected component is still a constant fraction of its original size. However, for network
theory, such a question is not too useful as it only gives a qualitative statement about the state of the
graphs after faults and not a quantitative statement. Hence, a better question would be:

Up to which fault probability does a network still contain a network of at least a constant fraction
of its original size that still has approximately the same expansion?
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Knowing an answer to this question would have many useful consequences for distributed data
management, routing, and distributed computing. Research on load balancing has shown that if the
expansion basically stays the same, the ability of a network to balance single-commodity or multi-
commodity load basically stays the same, and this ability can be exploited through simple local algo-
rithms [5, 2, 1]. Also, the ability of a network to route information is preserved because it is closely
related to its expansion (see the relationship between flow number and expansion).

Interestingly, the expansion of a network cannot be used to answer our question above because
networks with expansion/\/n (e.g., 2-dimensional meshes) are known that can sustain a constant
fault probability whereas other networks with expansigy/n (e.g.,n-node expanders in which every
edge is replaced by a path of lengthare known that can only sustain a fault probabilityxft //n).

Hence, a new parameter is needed. A very promising parameter appears to be the span of a grapf
which is defined as follows [3]:

Consider a grapliy = (V, E). LetU C V be any subset of node#!. is defined to be&eompactf
and only ifU andV \ U are connected ir. Leti/ be the set of all compact sets@f Let P(U) be
the smallest tree it¥ which connects every node i{U) (i.e., it essentially spans the boundary 9t
Note that the set of nodes iA(U) need not be frond/ alone or fromV" \ U alone. Then thepanof a

graph is defined as:
_ . [1PW)
veu | |I(U)|

Using this parameter, the following theorem was recently shown [3]:

Theorem 2.19 Consider any grapks: with maximum degre& spanc, and expansion > (vd 1n® n) /n
for some sufficiently large constamtand [I'(U)| > logs |U| for every node sel/ in G. Then, with
high probability, provided the fault probability < 1/(16e - §%7) ande < 1/4, there is a non-faulty
subgraphH C G of size|H| > n/2 with expansion at leagt/J) - a.

Since it is not difficult to see that al-dimensional meshes with constahhave a constant span,
this means that all of these can sustain a constant fault probability and still have a large connected
component of essentially the same expansion. We believe that also the hypercubic networks have &
constant span and that Theorem 2.19 is far from being tight, so investigating the span further is an
ongoing, interesting research issue.
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