
2 Network Theory

In this section we will first give a basic introduction to graph theory and will then introduce some
popular families of networks and investigate their structural properties.

2.1 Graph theory

A graphG = (V,E) consists of a set ofnodes(or vertices) V and a set ofedges(or arcs) E. The
nodes represent the processing units and the edges represent the communication links between the
units. Often, we will setn = |V | (the size ofV ) andm = |E|. Thesizeof G is defined as the number
of nodes it contains. For allv, w ∈ V , (v, w) denotes adirectededge fromv to w, and{v, w} denotes
anundirectededge fromv to w. G is calledundirectedif E ⊆ {{v, w} | v, w ∈ V } anddirectedif
E ⊆ {(v, w) | v, w ∈ V }. Unless explicitly mentioned, we assume for the rest of this lecture thatG is
undirected.

A sequence of contiguous edges inG is called apath. The lengthof the path is defined as the
number of edges it contains. A path is callednode-simpleif it visits every node inG at most once.
Similarly, it is callededge-simple(or simple) if it contains every edge inG at most once.G is called
connectedif, for any pair of nodesv, w ∈ V , there is a path inG from v to w. We call a simple
path acycle if it starts and ends at the same node. Thegirth of a graphG is defined as the length
of the shortest cycleG contains.G is called atree if it is connected and contains no cycle. A graph
T = (V ′, E ′) is called aspanning treeof G if V ′ = V , E ′ ⊆ E, andT is a tree.G is calledbipartite if
its node set can be partitioned into two node setsV1 andV2 such thatE ⊆ {{v, w} | v ∈ V1, w ∈ V2}.

For any pair of nodesv, w ∈ V , let δ(v, w) denote thedistanceof v andw in G, that is, the length
of a shortest path fromv to w. The diameterD of G is defined asmax{δ(v, w) | v, w ∈ V }. If
{v, w} ∈ E thenv is called aneighborof w. For any subsetU ⊆ V , theneighborhoodof U is defined
as

Γ(U) = {v ∈ V \ U | ∃u ∈ U : {u, v} ∈ E} .

The number of neighbors ofv is called thedegreeof v and denoted bydv. The degree ofG is defined
asd = max{dv | v ∈ V }. If all nodes inG have the same degree, thenG is calledregular.
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Figure 1: An example of an undirected graph with diameter 4.

A family of graphsG = {Gn | n ∈ IN} has degreed(n) if for all n ∈ IN the degree ofGn is d(n).
If it is clear to which family a graph belongs, we say that this graph has constant (or bounded) degree
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if and only if its family has constant degree.
A networkis specified by a graphG = (V,E) with edge capacities given by a functionc : E →

IR+. Given a graphG with capacitiesc, let the capacity of a nodev ∈ V be defined as

c(v) =
∑

w∈V

c(v, w)

and the capacity of any node set or edge setU be defined asc(U) =
∑

u∈U c(u). Given a subset
U ⊆ V , (U, Ū) denotes the set of all edges(u, v) ∈ E (or {u, v} ∈ E if G is undirected) withu ∈ U
andv ∈ Ū . So c(U, Ū) is the sum of the capacities of all edges in(U, Ū). The expansionα of a
networkG with capacitiesc is defined as

α = min
U⊆V

c(U, Ū)

min{c(U), c(Ū)} .

2.2 Basic network topologies

The most basic network topologies used in practice are trees, cycles, grids and tori. Many other
suggested networks are simply combinations or derivatives of these. The advantage of trees is that
the path selection problem is very easy: for every source-destination pair there is only one possible
simple path. However, since the root of a tree is usually a severe bottleneck, so-calledfat treeshave
been used. These trees have the property that higher-level edges have a (much) larger capacity than
lower-level edges. See Figure 2 for an example.

4

2

1

Figure 2: The structure of a fat tree.

Fat trees belong to a family of networks that require edges of non-uniform capacity to be efficient.
Easier to build are networks with edges of uniform capacity. This is usually the case for grids and
tori. Unless explicitly mentioned, we will treat all edges in the following to be of capacity 1. In the
following, [x] means the set{0, 1, . . . , x− 1}.

Definition 2.1 (Torus, Mesh) Let m, d ∈ IN. The(m, d)-meshM(m, d) is a graph with node set
V = [m]d and edge set

E =

{
{(ad−1 . . . a0), (bd−1 . . . b0)} | ai, bi ∈ [m],

d−1∑

i=0

|ai − bi| = 1

}
.
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The (m, d)-torusT (m, d) is a graph that consists of an(m, d)-mesh and additionally wrap-around
edges from(ad−1 . . . ai+1(m − 1) ai−1 . . . a0) to (ad−1 . . . ai+1 0 ai−1 . . . a0) for all i ∈ [d] and all
aj ∈ [m] with j 6= i. M(m, 1) is also called aline, T (m, 1) a cycle, and M(2, d) = T (2, d) a
d-dimensional hypercube.

Figure 3 presents a linear array, a torus, and a hypercube.

011010

110

100

000 001

101

111

M(2,3)

0 1 2

M( ,1)m

−1m

01

02

00 10

11

12

03

20

21

22

13

30

31

32

23 33

(4,2)T

Figure 3: The structure ofM(m, 1), T (4, 2), andM(2, 3).

The hypercube is a very important class of networks, and many derivatives, the so-calledhyper-
cubic networks, have been suggested for it. Among these are the butterfly, cube-connected-cycles,
shuffle-exchange, and de Bruijn graph. We start with the butterfly, which is basically a rolled out
version of a hypercube.

Definition 2.2 (Butterfly) Let d ∈ IN. Thed-dimensional butterflyBF (d) is a graph with node set
V = [d + 1]× [2]d and an edge setE = E1 ∪ E2 with

E1 = {{(i, α), (i + 1, α)} | i ∈ [d], α ∈ [2]d}
and

E2 = {{(i, α), (i + 1, β)} | i ∈ [d], α, β ∈ [2]d, α andβ differ

only at theith position} .

The node set{(i, α) | α ∈ [2]d} representslevel i of the butterfly. Thed-dimensional wrap-around
butterflyW-BF(d) is defined by taking theBF (d) and identifying leveld with level 0.

Figure 4 shows the 3-dimensional butterflyBF (3). TheBF (d) has(d + 1)2d nodes,2d · 2d edges
and degree 4. It is not difficult to check that combining the node sets{(i, α) | i ∈ [d]} into a single
node results in the hypercube.

Next we define the cube-connected-cycles network. It only has a degree of 3 and it results from
the hypercube by replacing the corners by cycles.

Definition 2.3 (Cube-Connected-Cycles)Letd ∈ IN. Thecube-connected-cyclesnetwork CCC(d) is
a graph with node setV = {(a, p) | a ∈ [2]d, p ∈ [d]} and edge set

E =
{
{(a, p), (a, (p + 1) modd)} | a ∈ [2]d, p ∈ [d]

}

∪
{
{(a, p), (b, p)} | a, b ∈ [2]d, p ∈ [d], a = b except forap

}
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Figure 4: The structure of BF(3).
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Figure 5: The structure of CCC(3).

Two possible representations of a CCC can be found in Figure 5.
The shuffle-exchange is yet another way of transforming the hypercubic interconnection structure

into a constant degree network.

Definition 2.4 (Shuffle-Exchange)Letd ∈ IN. Thed-dimensional shuffle-exchangeSE(d) is defined
as an undirected graph with node setV = [2]d and an edge setE = E1 ∪ E2 with

E1 = {{(ad−1 . . . a0), (ad−1 . . . ā0)} | (ad−1 . . . a0) ∈ [2]d, ā0 = 1− a0}
and

E2 = {{(ad−1 . . . a0), (a0ad−1 . . . a1)} | (ad−1 . . . a0) ∈ [2]d} .

Figure 6 shows the 3- and 4-dimensional shuffle-exchange graph.

Definition 2.5 (de Bruijn) Theb-ary de Bruijn graph of dimensiond DB(b, d) is an undirected graph
G = (V, E) with node setV = {v ∈ [b]d} and edge setE that contains all edges{v, w} with the
property thatw ∈ {(x, vd−1, . . . , v1) : x ∈ [b]}, wherev = (vd−1, . . . , v0).

Two examples of a de Bruijn graph can be found in Figure 7.
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Figure 6: The structure of SE(3) and SE(4).
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Figure 7: The structure ofDB(2, 2) andDB(2, 3).

2.3 Direct and indirect networks

Networks are usually separated intodirect and indirect networks. Direct networks are networks in
which every node represents a processing unit that can inject and absorb packets, whereas in indirect
networks only certain nodes (the so-calledinput nodes) can inject packets and certain nodes (the so-
calledoutput nodes) can absorb packets. An important subclass of indirect networks are the so-called
leveled graphs.

Definition 2.6 (Leveled Graph) A graphG = (V, E) is called leveled with depthD if the nodes
of G can be partitioned intoD + 1 levelsL0, . . . , LD such that every edge inE connects nodes of
consecutive levels. Nodes in level 0 are calledinputs, and nodes in levelD are calledoutputs. If, in
addition, |L0| = |LD| and L0 is identified withLD, thenG is called awrapped leveled graph with
depthD.

Examples of leveled graphs are the fat tree and the butterfly, and an example of a wrapped leveled
graph is the wrap-around butterfly. In a butterfly it is usually assumed that the nodes inL0 represent
the input nodes and the nodes in levelLD represent the output nodes. In a fat tree the nodes in level
LD are usually both input and output nodes.
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2.4 The diameter

Recall the definition of the diameter in Section 2.1. One important goal in choosing a topology for a
network is that it has a small diameter. The following theorem presents a lower bound for this.

Theorem 2.7 Every graph of maximum degreed ≥ 3 and sizen must have a diameter of at least
b(log n)/(log(d− 1))c − 1.

Proof. Suppose we have a graphG = (V,E) of maximum degreed and sizen. Start from any node
v ∈ V . In a first step at mostd other nodes can be reached. In two steps at mostd · (d− 1) additional
nodes can be reached. Thus, in general, in at mostk steps at most

1 +
k−1∑

i=0

d · (d− 1)i = 1 + d · (d− 1)k − 1

(d− 1)− 1
≤ d · (d− 1)k

d− 2

nodes (includingv) can be reached. This has to be at leastn to ensure thatv can reach all other nodes
in V within k steps. Hence,

(d− 1)k ≥ (d− 2) · n
d

⇔ k ≥ logd−1

(
(d− 2) · n

d

)
⇔ k ≥ logd−1 n + logd−1

(
d− 2

d

)
.

Sincelogd−1((d− 2)/d) > −2 for all d ≥ 3, this is true only ifk ≥ blogd−1 nc − 1. ut

Theorem 2.7 uses as a construction for the lower bound a complete(d − 1)-ary tree with a root
of degreed. However, it is easy to see that in this tree there are two nodes (see the leavesv andw in
Figure 8) with a distance of approximately2 logd−1 n, which is by a factor of 2 larger than the lower
bound. Can networks with a better diameter be constructed? The next theorem gives an answer to this.

root

v w

n nodes

Figure 8: Nodes with highest distance in a tree.

Theorem 2.8 For every evend > 2 there is an infinite family of graphsGn of maximum degreed and
sizen with a diameter of at most(log n)/(log d− 1).

Proof. The proof is part of the assignment. ut
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2.5 The expansion

Recall the definition of the expansion in Section 2.1. We start with an upper bound on the expansion
that must hold for all networks.

Theorem 2.9 For every networkG = (V, E) with non-negative edge capacities, the expansion can be
at most 1.

Proof. For every setU ⊆ V let EU = {{v, w} ∈ E | v ∈ U}, where an edge appears twice
in EU if both v andw are inU . Certainly,(U, Ū) ⊆ EU . Sincec(U) = c(EU) it must therefore
hold thatc(U, Ū) ≤ c(U). Equivalently, it must also hold thatc(U, Ū) = c(Ū , U) ≤ c(Ū). Hence,
c(U, Ū) ≤ min{c(U), c(Ū)} and therefore

α(G) = min
U⊆V

c(U, Ū)

min{c(U), c(Ū)} ≤ 1 .

ut

Interestingly, for anyd ≥ 3 there are graphs that can achieve a constant expansion. These are the
so-called expanders. One explicit construction is known as the Gabber-Galil graph [4]:

Definition 2.10 Let n ∈ IN. TheGabber-Galil graphGG(n) is a graph with node setV = [n]2 and
edge setE consisting of all edges((x, y), (x′, y′)) with

(x′, y′) ∈ {(x, x + y), (x, x + y + 1), (x + y, y), (x + y + 1, y)} ( modn)

Other explicit constructions of expanders can be found in [8, 9, 10]. Also random regular graphs
are known to be expanders, with high probability. For the classes of graphs we presented above the
expansion is quite complicated to compute. Therefore, we just list some results here.

Theorem 2.11 Thed-dimensional hypercube, cube-connected-cycles, butterfly, shuffle-exchange, and
de Bruijn graph with uniform edge capacities all have an expansion ofΘ(1/d).

Using the fact that for these networksd = Θ(log n), wheren is the number of nodes in the network,
it follows that all of these networks have an expansion ofΘ(1/ log n).

2.6 The flow number

In order to define the flow number, we first have to introduce the concept of multicommodity flows.
Consider any networkG with non-negative edge capacities given byc. A multicommodity flowinstance
on G is a set of ordered pairs of vertices(s1, t1), (s2, t2), . . . , (sk, tk). Each pair(si, ti) represents a
commoditywith sourcesi and targetti. The objective is to maximize the amount of flow traveling from
the sources to the corresponding destinations, subject to the capacity constraints. The problem comes
in two flavors. In the first, called themaximum multicommodity flowproblem, the total flow, summed
over all commodities, is to be maximized. The second is called theconcurrent multicommodity flow
problem. Here, for each commodity(si, ti) a non-negative demanddi is specified. The objective
is to maximize thefraction of the demand that can be shipped simultaneously for all commodities.
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In other words, we want to find the maximumf so that a flow off · di can be shipped for every
commodity i without exceeding the capacities of the edges.f is calledconcurrent max-flow. A
balanced multicommodity flow problem(BMFP) is a concurrent multicommodity flow problem in
which the sum of the demands of the commodities originating and the commodities terminating in a
nodev is equal toc(v) for everyv ∈ V . Both the maximum throughput problem and the maximum
concurrent flow problem can be solved in polynomial time using linear programming.
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Figure 9: Solution to a 2-commodity flow problem (a). The routing of the first commodity is shown in
(b) and the second commodity is shown in (c).

Given a concurrent multicommodity flow problem with feasible solutionS, let thedilation D(S)
of S be defined as the length of the longest flow path inS and thecongestionC(S) of S be defined as
the inverse of its concurrent flow value (i.e., the congestion says how many times the edge capacities
would have to be increased in order to satisfy the demands of all commodities when using the same
set of flow paths). LetB be the special BMFP in which each pair of nodes(v, w) has a commodity of
demandc(v) · c(w)/c(V ). Theflow numberF (G) of a networkG is defined as the minimum over all
feasible solutionsS of B of max{C(S), D(S)} [6]. In the case that there is no risk of confusion, we
will simply write F instead ofF (G). Note that the flow number of a network is invariant to a scaling
of the capacities.

The flow number of a networkG can be computed in polynomial time. Another advantage of the
flow number is that, as shown by the next theorem, it can be applied to much more general multicom-
modity flow problems than just the one that defines it.

Theorem 2.12 For any networkG with flow numberF and any instanceI of the BMFP forG, there
is a feasible solution forI with congestion and dilation at most2F .

Proof. The idea is to decomposeI into two multicommodity flow problems: for every commodityi
with sourcesi and destinationti, the first problemI1 has commoditiesiu from si to u for all u ∈ V
with demandsdiu = di · c(u)/c(V ), and the second problemI2 has commoditiesi′u from u to ti for all
u ∈ V with demandsdi′u = di · c(u)/c(V ). For every commodityi from the original problem, the total
demand of corresponding commodities inI1 is di and isdi in I2 as well. Moreover, for every node
u ∈ V the amount of commodityi shipped tou in I1 is equal to the amount of commodityi shipped
from u in I2.

Interestingly, both of the flow problemsI1 andI2 are equal to the special flow problemB because
for any pairv, w ∈ V , the total demand of the commodities with sourcev and destinationw in I1 is
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equal to
∑

i: si=v

di · c(w)

c(V )
=

c(v) · c(w)

c(V )
,

and inI2 it is also equal to
∑

i: ti=w

di · c(v)

c(V )
=

c(v) · c(w)

c(V )
.

Thus, according to the definition of the flow number, bothI1 andI2 have a feasible solution with con-
gestion and dilation at mostF . Hence, the original problemI has a feasible solution with congestion
and dilation at most2F , which proves the claim. ut

With techniques similar to those used in the proof of Theorem 5.0.3 in [11] one can also prove the
following result.

Theorem 2.13 On average over all BMFPsI, the minimummax{C(S), D(S)} over all feasible so-
lutionsS of I is Ω(F ).

Hence, the flow number truthfully captures the problem of routing BMFPs in networks. Using
Theorem 2.12, we prove another powerful result, calledShortening Lemma, that shows that the flow
number allows one to convert arbitrary multicommodity flow solutions into solutions with short flow
paths.

Theorem 2.14 (Shortening Lemma [6])Suppose we are given a network with flow numberF . Then,
for anyε ∈ (0, 1] and any feasible multicommodity flowf , there exists a feasible multicommodity flow
f ′ with flow values|f ′i | of at least|fi|/(1 + ε) for every commodityi that uses paths of length at most
2 · F (1 + 1/ε).

Proof. Given a flow solutionS, let S ′ ⊆ S consist of all paths fromS that are longer thanL, for
L = 2 · F/ε. We are going to shorten the paths inS ′ at the cost of slightly decreasing the satisfied
demand of each commodity.

For a pathp ∈ S ′ betweensp and tp, let ap,1 = sp, ap,2, · · · , ap,L denote its firstL nodes and
bp,1, · · · , bp,L−1, bp,L = tp its lastL nodes and letfp be the flow value alongp. Then the setU =⋃

p∈S′
⋃L

i=1{ap,i, bp,i, fp} is (a subset of) an instance of the BMFP. By Theorem 2.12, there exists a
feasible solutionP to U with flow value at least1/(2F ) consisting of paths of length at most2F . We
are going to combine the initial and final parts of the long paths inS ′ with these “shortcuts” inP to
obtain the desired short solution.

First, decrease the flows along all pathsp ∈ S by a factor of1/(1 + ε) so that we have room to
accommodate new, short paths for the paths inS ′. These short paths are constructed in the following
way:

For every pathp ∈ S ′, we replacep by L flow systemsSp,i, i = 1, · · · , L. Each flow systemSp,i

consists of two parts:

1. the flow paths betweenap,i andbp,i in P corresponding to the request{ap,i, bp,i, fp} fromU , now
with a flow offp/(L(1 + ε)), and

2. fp/(L(1+ε)) units of flow betweenap,1 andap,i alongp, andfp/(L(1+ε)) units of flow between
bp,i andbp,L alongp.
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For eachi, the length of each path in the subsystemSp,i is at mostL + 2 · F , andfP /(L(1 + ε)) units
of flow are shipped along each path systemSp,i. Summed over alli = 1 . . . L, we havefp/(1 + ε)
units of flow betweensp = ap,1 andtp = bp,L, which is as high as the original flow throughp reduced
by 1/(1 + ε). Hence, we can replacep by the systemsSp,i without changing the amount of flow from
sp to tp.

Now, it holds for every edgee that the flow traversinge due to the paths inS is at mostc(e)/(1+ε),
and due to the shortcuts inP is at most

∑

p∈P: e∈p

fp

L(1 + ε)
≤ 2F

L(1 + ε)
· c(e) =

ε · c(e)
1 + ε

,

since ∑

p∈P: e∈p

fp

2F
≤ c(e) .

Thus, the flows inS andP sum up to at mostc(e) for an edgee. Therefore, the modification yields a
feasible solution satisfying the desired properties. ut

Next, we explore the relationship of the flow number with the diameter and the expansion of a
network. The first result immediately follows from the definition ofF .

Fact 2.15 For every network with diameterD and flow numberF , it holds thatF ≥ D.

The next result reveals a very close relationship between the expansion and the flow number of a
network.

Theorem 2.16 For any networkG with expansionα and flow numberF it holds that

α−1 ≤ F ≤ c · α−1 log n

for some constantc.

Proof. We only prove here thatF ≥ α−1. (The entire proof can be found in [6].) For this we need
some notation. Given a concurrent multicommodity flow problem, thecut ratio of a cut (U, Ū) is
defined as

RU =
c(U, Ū)

d(U, Ū)
where d(U, Ū) =

∑

(si,ti)∈(U×Ū)∪(Ū×U)

di .

Now, letf be the concurrent max-flow of the problemB used for the definition ofF . Consider any cut
(U, Ū) and leti1, i2, . . . , ir denote the commodities whose source and target are separated by this cut.
Since all flows for these commodities must cross(U, Ū), we know that

r∑

j=1

f · dij ≤ c(U, Ū) .

Since
∑r

j=1 dij = d(U, Ū), this means that

f ≤ c(U, Ū)

d(U, Ū)
.
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ForB it holds that

d(U, Ū) =
∑

(u,v)∈(U×Ū)∪(Ū×U)

c(u) · c(v)

c(V )
=

2c(U) · c(Ū)

c(V )
.

We distinguish between two cases. Ifc(U) ≥ c(V )/2, thenc(U) · c(Ū)/c(V ) ≥ c(Ū)/2. Thus,

f ≤ c(U, Ū)

2 · c(Ū)/2
=

c(U, Ū)

min{c(U), c(Ū)} .

If c(Ū) ≥ c(V )/2, thenc(U) · c(Ū)/c(V ) ≥ c(U)/2 and therefore

f ≤ c(U, Ū)

2 · c(U)/2
=

c(U, Ū)

min{c(U), c(Ū)} .

Hence, in both cases,

f ≤ c(U, Ū)

min{c(U), c(Ū)}
and thereforef ≤ α or 1/f ≥ α−1. Since according to the definition ofF , F ≥ 1/f , it follows that
F ≥ α−1. ut

Since the flow number of a network is an upper bound on its diameter, it follows from Theo-
rem 2.16:

Corollary 2.17 For every network with expansionα the diameter is at mostO(α−1 log n).

From Theorem 2.7 it follows that this bound is exact for constant degree expanders. Do there exist
networks where the flow number is inO(max{D, α−1})? The next theorem lists some.

Theorem 2.18 Thed-dimensional hypercube, cube-connected-cycles, butterfly, shuffle-exchange, and
de Bruijn graph with uniform edge capacities all have a flow number ofΘ(d).

For proofs see, for example, [7] or [11]. Thus, for these networks it actually holds thatF =
Θ(α−1), i.e. the expansion describes very well the routing ability of the network. It also follows from
the bound that all networks must have a diameter ofO(log n).

2.7 The span

We end this section with the definition of one more parameter: thespanof a graphG = (V,E). The
spanσ measures how well a graph can sustain random node faults. In the past, researchers have mostly
studied the problem up to which fault probability a network can sustain random faults so that the size
of its largest connected component is still a constant fraction of its original size. However, for network
theory, such a question is not too useful as it only gives a qualitative statement about the state of the
graphs after faults and not a quantitative statement. Hence, a better question would be:

Up to which fault probability does a network still contain a network of at least a constant fraction
of its original size that still has approximately the same expansion?
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Knowing an answer to this question would have many useful consequences for distributed data
management, routing, and distributed computing. Research on load balancing has shown that if the
expansion basically stays the same, the ability of a network to balance single-commodity or multi-
commodity load basically stays the same, and this ability can be exploited through simple local algo-
rithms [5, 2, 1]. Also, the ability of a network to route information is preserved because it is closely
related to its expansion (see the relationship between flow number and expansion).

Interestingly, the expansion of a network cannot be used to answer our question above because
networks with expansion1/

√
n (e.g., 2-dimensional meshes) are known that can sustain a constant

fault probability whereas other networks with expansion1/
√

n (e.g.,n-node expanders in which every
edge is replaced by a path of lengthn) are known that can only sustain a fault probability ofO(1/

√
n).

Hence, a new parameter is needed. A very promising parameter appears to be the span of a graph,
which is defined as follows [3]:

Consider a graphG = (V, E). Let U ⊆ V be any subset of nodes.U is defined to becompactif
and only ifU andV \ U are connected inG. Let U be the set of all compact sets ofG. Let P (U) be
the smallest tree inG which connects every node inΓ(U) (i.e., it essentially spans the boundary ofU ).
Note that the set of nodes inP (U) need not be fromU alone or fromV \ U alone. Then thespanof a
graph is defined as:

σ = max
U∈U

{ |P (U)|
|Γ(U)|

}

Using this parameter, the following theorem was recently shown [3]:

Theorem 2.19 Consider any graphG with maximum degreeδ, spanσ, and expansionα ≥ (γδ ln3 n)/n
for some sufficiently large constantγ and |Γ(U)| ≥ logδ |U | for every node setU in G. Then, with
high probability, provided the fault probabilityp ≤ 1/(16e · δ8σ) and ε ≤ 1/4, there is a non-faulty
subgraphH ⊆ G of size|H| ≥ n/2 with expansion at least(ε/δ) · α.

Since it is not difficult to see that alld-dimensional meshes with constantd have a constant span,
this means that all of these can sustain a constant fault probability and still have a large connected
component of essentially the same expansion. We believe that also the hypercubic networks have a
constant span and that Theorem 2.19 is far from being tight, so investigating the span further is an
ongoing, interesting research issue.
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