
7 Supervised Overlay Networks I

Every application run on multiple machines needs a mechanism that allows the machines to exchange
information. An easy way of solving this problem is that every machine knows the domain name or IP
address of every other machine. While this may work well for a small number of machines, large-scale
distributed applications such as file sharing or grid computing systems need a different, more scalable
approach: instead of forming a clique (where everybody knows everybody else), each machine should
only be required to know some small subset of other machines. This graph of knowledge can be seen
as a logical network interconnecting the machines, which is also known as anoverlay network. A
prerequisite for an overlay network to be useful is that it has good topological properties. Among the
most important are:

• Degree: Ideally, the degree should be kept small to avoid a high update cost if a node enters or
leaves the system.

• Diameter: The diameter should be small to allow the fast exchange of information between any
pair of nodes in the network.

• Node expansion: The node expansion of a graphG = (V, E) is defined as

β(G) = min
U⊆V : |U |≤|V |/2

|N(U)|
|U |

whereN(U) is the set of neighbors ofU . To ensure a high fault tolerance, the node expansion
should be as large as possible.

The question is how to realize such an overlay network in a distributed environment where peers may
continuously enter and leave the system. This will be the topic of our investigations for the coming
weeks.

We start in this section with the study ofsupervisedoverlay networks. These networks were
investigated, e.g., in [1, 2, 3]. In a supervised overlay network, the topology is under the control of
a special machine (or node) called thesupervisor. All nodes that want to join or leave the network
have to declare this to the supervisor, and the supervisor will then take care of integrating them into or
removing them from the network. All other operations, however, may be executed without involving
the supervisor. In order for a supervised network to be highly scalable, two central requirements have
to be fulfilled:

1. The supervisor needs to store at most a polylogarithmic amount of information about the network
at any time (i.e., if there aren nodes in the network, storing contact information aboutO(log2 n)
of these nodes would be fine, for example), and

2. it takes at most a constant number of communication rounds to include a new node into or
exclude an old node from the network.

A communication roundis over once all the packets that existed at the beginning of the communica-
tion round have been delivered. The packets generated by these packets will participate in the next
communication round.

1

We show in the following how these requirements can be achieved, using a general approach called
the recursive approach. To simplify the presentation, we assume that all departures aregraceful, i.e.,
every node leaving the system informs the supervisor about this and may provide some additional
information simplifying the task of the supervisor to repair the network.

7.1 The recursive approach

In the resursive approach, the supervisor assigns alabel to every node that wants to join the system.
The labels are represented as binary strings and are generated in the following order:

0, 1, 01, 11, 001, 011, 101, 111, 0001, 0011, 0101, 0111, 1001, 1011, . . .

Basically, when stripping off the least significant bit, then the supervisor is first creating all binary
numbers of length 0, then length 1, then length 2, and so on. More formally, consider the mapping
` : IN0 → {0, 1}∗ with the property that for everyx ∈ IN0 with binary representation(xd . . . x0)2

(whered is minimum possible),
`(x) = (xd−1 . . . x0xd) .

Then` generates the sequence of labels displayed above. In the following, it will also be helpful to
view labels as real numbers in[0, 1). Let the functionr : {0, 1}∗ → [0, 1) be defined so that for every
label` = (`1`2 . . . `d) ∈ {0, 1}∗,

r(`) =
d∑

i=1

`i

2i
.

Then the sequence of labels above translates into

0, 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16, 7/16, 9/16, . . .

Thus, the more labels are used, the more densely the[0, 1) interval will be populated. Furthermore, we
will use the functionb : [0, 1) → {0, 1}∗ that translates a real number back into a label.

When using the recursive approach, the supervisor aims to maintain the following invariant at every
step:

Invariant 7.1 The set of labels used by the nodes is{`(0), `(1), . . . , `(n− 1)}, wheren is the current
number of nodes in the system.

This invariant is preserved when using the following simple strategy:

• Whenever a new nodev joins the system and the current number of nodes isn, the supervisor
assigns the label̀(n) to v and increasesn by 1.

• Whenever a nodew with label ` wants to leave the system, the supervisor asks the node with
currently highest label̀(n− 1) to change its label tòand reducesn by 1.

How does this strategy help us with maintaining dynamic overlay networks? We will see how this
works in the following subsections. To keep things simple, we start with a cycle.

2

7.2 Recursively maintaining a cycle

We start with some notation. In the following, the label assigned to some nodev will be denoted as
`v. Givenn nodes with unique labels, we define thepredecessorpred(v) of nodev as the nodew for
whichr(`w) is closest from below tor(`v), and we define thesuccessorsucc(v) of nodev as the node
w for which r(`w) is closest from above to noder(`v) (viewing [0, 1) as a ring in both cases). Given
two nodesv andw, we define theirdistanceas

δ(v, w) = min{(1 + r(`v)− r(`w)) mod1, (1 + r(`w)− r(`v)) mod1} .

In order to maintain a cycle among the nodes, we simply have to maintain the following invariant:

Invariant 7.2 Every nodev in the system is connected topred(v) andsucc(v).

Now, suppose that the labels of the nodes are generated via the recursive strategy above. Then we
have the following properties:

Lemma 7.3 Let n be the current number of nodes in the system, and letn̄ = 2blog nc. Then for every
nodev ∈ V :

• |`v| ≤ dlog ne and

• δ(v, pred(v)) ∈ [1/(2n̄), 1/n̄] andδ(v, succ(v)) ∈ [1/(2n̄), 1/n̄].

So the nodes are approximately evenly distributed in[0, 1) and the number of bits for storing a
label is almost as low as it can be without violating the uniqueness requirement. But how does the
supervisor maintain the cycle? This is implied by the following demand, wheren is again the current
number of nodes in the system.

Invariant 7.4 At any time, the supervisor stores the contact information ofpred(v), v, succ(v), and
succ(succ(v)) wherev is the node with label̀(n− 1).

In order to satisfy Invariants 7.2 and 7.4, the supervisor performs the following actions.
If a new nodew joins, then the supervisor

• informsw that`(n) is its label,succ(v) is its predecessor, andsucc(succ(v)) is its successor,

• informssucc(v) thatw is its new successor,

• informssucc(succ(v)) thatw is its new predecessor,

• askssucc(succ(v)) to send its successor information to the supervisor, and

• setsn = n + 1.

If an old nodew leaves and reports̀w, pred(w), andsucc(w) to the supervisor (recall that we are
assuming graceful departures), then the supervisor

• informsv (the node with label̀(n− 1)) that`w is its new label,pred(w) is its new predecessor,
andsucc(w) is its new successor,

3

• informspred(w) that its new successor isv,

• informssucc(w) that its new predecessor isv,

• informspred(v) thatsucc(v) is its new successor,

• informssucc(v) thatpred(v) is its new predecessor,

• askspred(v) to send its predecessor information to the supervisor and to askpred(pred(v)) to
send its predecessor information to the supervisor, and

• setsn = n− 1.

A detailed implementation of the leave and join operations can be found in Figures 1 and 2. In this
implementation, we assume for simplicity that references to relay points can be freely exchanged, i.e.,
identities are not needed. It will be an assignment to implement the join and leave operations with the
identity concept. The following lemma is not difficult to check and will also be an assignment.

Lemma 7.5 The join and leave operations preserve Invariants 7.2 and 7.4.

Hence, we arrive at the following theorem, which implies that our central requirements on a super-
visor are kept.

Theorem 7.6 At any time, the supervisor only needs to store the current value ofn and a constant
amount of contact information, and the join and leave operations only need a constant amount of
messages and three communication rounds to complete.

7.3 Concurrency

The above scheme only allows the supervisor to execute join and leave operations in a strictly sequen-
tial manner because it only has sufficient information to integrate or remove one peer at a time. In order
to be able to handled join or leave requests in parallel, we extend Invariant 7.2 with the following rule:

Invariant 7.7 In addition to Invariant 7.2, every nodev in the system is connected to itsdth predeces-
sorpredd(v) and itsdth successorsuccd(v).

Furthermore, given thatv is the node with label̀(n− 1), Invariant 7.4 needs to be extended to:

Invariant 7.8 At any time, the supervisor stores the contact information ofv, the2d successors ofv,
and the3d predecessors ofv.

These invariants are preserved in the following way.

Concurrent Join Operation. In the following, letv be the node with label̀(n − 1). Let succi(v)
denote theith successor ofv on the cycle andpredi(v) denote theith predecessor ofv on the cycle.

Let thed new peers bew1, w2, . . . wd. Then the supervisor integrateswi betweensucci(v) and
succi+1(v) for every i ∈ {1, . . . , d}. As is easy to check, this will violate Invariant 7.7 for the2d
closest successors ofv and thed − 2 closest predecessors ofv. But since the supervisor knows all
of these nodes, it can directly inform them about the change. In order to repair Invariant 7.8, the
supervisor will request information about thedth successor from thed furthest successors ofv and
will set v to wd.

4

Supervisor{

Supervisor(){
n := 0 # counter
v := NULL # node with label̀ (n− 1)
pv := NULL # pred(v)
sv := NULL # succ(v)
ssv := NULL # succ(succ(v))

}

Join(w: Relay){
if (n = 0) {

w ← setup(0, w, w)
pv := w
v := w
sv := w
ssv := w

} else{
w ← setup(̀(n), sv, ssv)
sv ← setSucc(w)
ssv ← setPred(w)
pv := sv
v := w
sv := ssv
ssv := ssv ← getSucc()

}
n := n + 1

}

Leave(̀ : Int, pw: Relay,sw: Relay){
if (n > 0) {

if (n = 1) {
pv := NULL, v := NULL
sv := NULL, ssv := NULL

} else{
removev from the system
pv ← setSucc(sv)
sv ← setPred(pv)
if (pw = v) pw := pv
if (sw = v) sw := sv
movev into position ofw
if (v 6= w) {

v ← setup(̀, pw, sw)
pw ← setSucc(v)
sw ← setPred(v)

}
update pointers
if (pv = w) pv := v
if (sv = w) sv := v
ssv := sv
sv := pv
v := pv ← getPred()
pv := pv ← getPredPred()

}
n := n− 1

}
}
}

Figure 1: Operations needed by the supervisor to maintain a cycle.

Concurrent Leave Operation. Let thed peers that want to leave the system bew1, w2, . . . , wd. For
simplicity, we assume that they are outside of the peers known to the supervisor and that they are not
in the neighborhood of each other, but our strategy below can also be extended to these cases. The
strategy of the supervisor is to replacewi by pred2(i−1)(v) for everyi. As is easy to check, this will
violate Invariant 7.7 for thed closest successors ofv and the3d closest predecessors ofv. But since the
supervisor knows all of these nodes, it can directly inform them about the change. In order to repair
Invariant 7.7, the supervisor will request information about thedth predecessor from thed furthest
predecessors ofv and theirdth predecessors and will setv to pred2d(v).

The operations have the following performance.

Theorem 7.9 The supervisor needs at mostO(d) work andO(1) time (given that the work can be
done in parallel) to processd join or leave requests.

5

Peer{

Peer(){
label := 0 # label of peerv
succ := NULL # succ(v)
pred := NULL # pred(v)
sr := new Relay() #relay point ofv

}

Join(s: Relay){ # relay of supervisor
if (s 6= NULL) {

s ← Join(sr)
super := s # current supervisor

}
}

Leave(){
if (super 6= NULL)

super ← Leave(label, pred, succ)
super := NULL

}

setup(̀ : Int, p : Relay,s : Relay){
label := `
pred := p
succ := s

}

setSucc(w: Relay){
succ := w

}

setPred(w: Relay){
pred := w

}

getSucc(): Relay{
returnsucc

}

getPred(): Relay{
returnpred

}

getPredPred(): Relay{
returnpred ← getPred()

}

Figure 2: Operations needed by a peer to maintain a cycle.

7.4 Multiple Supervisors

If a supervised network becomes so large that a single supervisor cannot manage all of the join and
leave requests, one can easily extend the supervised cycle to multiple supervisors. Suppose that we
havek supervisorsS0, S1, · · ·Sk−1. Then the[0, 1)-ring is split into thek regionsRi = [(i−1)/k, i/k),
1 ≤ i ≤ k, and supervisorSi is responsible for regionRi. Every supervisor manages its region as
described for a single supervisor above, and the borders are maintained by communicating with the
neighboring supervisors on the ring. The supervisors themselves form a completely interconnected
network.

Each time a new nodev wants to join the system via some supervisorSi, Si forwards it to a random
supervisor to integratev into the system. Each time a nodev under some supervisorSi wants to leave
the system,Si contacts a random supervisor (which may also be itself) to provide a replacement node.
Using standard Chernoff bounds, we get:

Theorem 7.10 Letn be the total number of nodes in the system. Then it holds for everyi ∈ {1, . . . , k}
that the number nodes currently placed inRi is in the rangen/k±O(

√
(n/k) log k+log k), with high

probability.

6

Hence, ifn is sufficiently large compared tok, then the multi-supervised cycle has basically the
same properties as the single-supervised cycle above.

7.5 Recursively maintaining a tree

The cycle has a low degree but its diameter and expansion are very bad. The simplest way of achieving
a low diameter is to use a tree. Thus, next we discuss how to recursively maintain a tree. As for the
cycle, our basic approach will be to preserve Invariant 7.1. We will also preserve Inviarant 7.2, though
the edges implied by this Invariant will not be part of the tree. But they will tremendously simplify the
task of maintaining a tree, as we will see. Altogether, the following connectivity information has to be
preserved.

Invariant 7.11 Every nodev in the system with label̀v = (`1 . . . `d) is connected to

1. pred(v) andsucc(v) (to form a cycle) and

2. the nodes with labels(`1 . . . `d−21), (`1 . . . `d−101), and(`1 . . . `d−111), if they exist (to form a
tree).

Suppose that this invariant is kept at any time. Then the following lemma follows.

Lemma 7.12 At any time, then nodes (apart from node 0) form a binary tree of depthdlog ne − 1.

Proof. Consider a binary tree withn nodes, and label the edge to the left child of any node “0” and
to the right child of any node “1”. Let the labeltv of every nodev in this tree be the sequence of edge
labels when moving along the unique path from the root tov. Then every nodev with label(`1 . . . `d)
is connected to the node with label(`1 . . . `d−1) (its parent), if it exists, and is also connected to the
nodes with labels(`1 . . . `d0) and(`1 . . . `d1) (its children), if they exist. Definingtv as`v (the label of
v in our network) without the least significant bit, we see that Invariant 7.11(2) fulfills the connectivity
requirements of a tree. Since it follows from Lemma 7.3 that every node has a label of size at most
dlog ne, the depth of the tree can be at mostdlog ne − 1 (when ignoring node 0). ut

Next we specify the connectivity information the supervisor needs in order to maintain the tree.

Invariant 7.13 At any time, the supervisor stores the contact information ofpred(v), v, succ(v), and
succ(succ(v)) wherev is the node with label̀(n).

Hence, the supervisor does not need any further connectivity information beyond what it needs for
the cycle. In order to satisfy Invariants 7.11 and 7.13, the supervisor performs the following actions.
If a new nodew joins, then the supervisor

• informsw that`(n+1) is its label,succ(v) is its predecessor, andsucc(succ(v)) is its successor,
andsucc(v) resp.succ(succ(v)) is its parent (depending oǹ(n + 1)),

• informssucc(v) thatw is its new successor,

• informssucc(succ(v)) thatw is its new predecessor,

7

• askssucc(succ(v)) to send its successor information to the supervisor, and

• setsn = n + 1.

Hence, from the point of view of the supervisor, the inclusion of a new node is almost identical to the
cycle.

If an old nodew leaves and reports̀w, pred(w), succ(w), parent(w), lchild(w), and rchild(w) to
the supervisor, then the supervisor again executes almost the same steps as for the cycle.

When using the code for the supervisor given in Figure 3 and the code for the peers given in
Figure 4, it is not difficult to prove the following lemma. Notice that for simplicity, we assume again
that relay points can be freely exchanged.

Supervisor{

Supervisor(){
n := 0 # counter
v := NULL # node with label̀ (n)
pv := NULL # pred(v)
sv := NULL # succ(v)
ssv := NULL # succ(succ(v))

}

Join(w: Relay){
if (n = 0) {

w ← setup(0, w, w, NULL, NULL, NULL)
pv := w
v := w
sv := w
ssv := w

} else{
if (`(n)&2 = 0) {

w ← setup(̀(n), sv, ssv, ssv, NULL, NULL)
ssv ← setRightChild(w)

} else{
w ← setup(̀(n), sv, ssv, sv, NULL, NULL)
sv ← setLeftChild(w)

}
sv ← setSucc(w)
ssv ← setPred(w)
pv := sv
v := w
sv := ssv
ssv := ssv ← getSucc()

}
n := n + 1

}

Leave(̀ : Int, pw: Relay,sw: Relay,
fw, lcw, rcw: Relay){

if (n > 0) {
if (n = 1) {

pv := NULL, v := NULL
sv := NULL, ssv := NULL

} else{
removev from tree
if (`(n− 1)&2 = 0) sv ← setRightChild(NULL)

elsepv ← setLeftChild(NULL)
pv ← setSucc(sv)
sv ← setPred(pv)
if (pw = v) pw := pv
if (sw = v) sw := sv
if (lcw = v) lcw := NULL
if (rcw = v) rcw := NULL
movev into position ofw
if (v 6= w) {

v ← setup(̀ , pw, sw, fw, lcw, rcw)
pw ← setSucc(v)
sw ← setPred(v)
if (`&2 = 0)

fw ← setRightChild(v)
else

fw ← setLeftChild(v)
if (lcw 6= NULL) lcw ← setParent(v)
if (rcw 6= NULL) rcw ← setParent(v)

}
update pointers
if (pv = w) pv := v
if (sv = w) sv := v
ssv := sv
sv := pv
v := pv ← getPred()
pv := pv ← getPredPred()

}
n := n− 1

}
}
}

Figure 3: Operations needed by the supervisor to maintain a tree.

Lemma 7.14 The join and leave operations preserve Invariants 7.11 and 7.13.

Hence, we arrive at the following theorem.

8

Peer{
Peer(){

label := 0 # label of peerv
succ := NULL # succ(v)
pred := NULL # pred(v)
parent := NULL
lchild := NULL
rchild := NULL
sr := new Relay() #relay point ofv

}

Join(s: Relay){
if (s 6= NULL) {

s → Join(sr)
super := s # current supervisor

}
}

Leave(){
if (super 6= NULL)

super ← Leave(label, pred, succ, parent, lchild, rchild)
super := NULL

}

setup(̀ : Int, p : Relay,s : Relay,f : Relay,
lc: Relay,rc: Relay){

label := `
pred := p
succ := s
parent := f
lchild := lc
rchild := rc

}

setSucc(w: Relay){
succ := w

}

setPred(w: Relay){
pred := w

}

setParent(w: Relay){
parent := w

}

setLeftChild(w: Relay){
lchild := w

}

setRightChild(w: Relay){
rchild := w

}

getSucc(): Relay{
returnsucc

}

getPred(): Relay{
returnpred

}

getPredPred(): Relay{
returnpred ← getPred()

}

Figure 4: Operations needed by a peer to maintain a tree.

Theorem 7.15 At any time, the supervisor only needs to store the current value ofn and a constant
amount of contact information, and the join and leave operations only need a constant amount of
messages and three communication rounds to complete.

Broadcasting

The dynamic tree can be used for efficient broadcasting. Suppose that some nodev wants to broadcast
information to all other nodes in the system. One way of solving this is that it forwards the broadcast
message directly to the supervisor (so that the supervisor can authorize the broadcast, for example)
and the supervisor initiates sending the broadcast message down the tree. A prerequisite for this is that
the supervisor remembers the node with label 0, calledroot by it. If this is the case, then the code in
Figure 5 will be executed correctly.

Inspecting the code, we arrive at the following result, which is optimal for broadcasting in constant

9

operations of supervisor

Broadcast(m : Message){
root ← sendDown(m)

}

operations of peer

Broadcast(m : Message){
if (super 6= NULL) super ← Broadcast(m)

}

sendDown(m : Message){
if (lchild 6= NULL) lchild ← sendDown(m)
if (rchild 6= NULL) rchild ← sendDown(m)
handle broadcast message

}

Figure 5: Implementation of a broadcast operation in the dynamic tree.

degree networks. Here, thedilation means the longest path taken by a message in the broadcast
operation.

Theorem 7.16 The broadcast operation has a dilation ofO(log n) and requires a work ofO(n).

References

[1] K. Kothapalli and C. Scheideler. Supervised peer-to-peer systems. InProc. of the 2005 International
Symposium on Parallel Architectures, Algorithms, and Networks (ISPAN), 2005.

[2] C. Riley and C. Scheideler. A distributed hash table for computational grids. In18th Int. Parallel and
Distributed Processing Symposium (IPDPS), 2004.

[3] C. Riley and C. Scheideler. Guaranteed broadcasting using SPON: A supervised peer overlay network. In
3rd International Z̈urich Seminar on Communications (IZS), 2004.

10

