
9 Decentralized overlay networks

In this section we present overlay networks that are completely decentralized, i.e., they do not depend
on a supervisor. We assume that, in principle, every peer has the right to initiate the integration of new
peers into the system and that every peer knows at least one peer currently in the system so that publicly
available entry points such as a supervisor are not necessary any more. To simplify the presentation,
we will assume in this section that all peers are reliable and honest. In the next section we will consider
scenarios in which this is not the case.

This section consists of two parts. The overlay networks in the first part are based on the continuous-
discrete approach [5], and the overlay networks presented in the second part are based on so-called skip
graphs [1] defined later in this section. The difference between these two concepts is that the former
concept only works well if the peers are given random or hashed names for some pseudo-random hash
function, whereas the latter concept works well for arbitrary distinct peer names.

9.1 The continuous-discrete approach

First, we show how to maintain a dynamic hypercube, and then we show how to maintain a dynamic
de Bruijn network.

A dynamic hypercube

Recall the definition of a hypercube. According to this definition, every node with label(x1, . . . , xd) ∈
{0, 1}d is connected to the nodes(x̄1, x2, . . . , xd), (x1, x̄2, x3, . . . , xd), . . ., (x1, . . . , xd−1, x̄d), where
x̄ = (1 + x) mod2. Consider now the spaceU = [0, 1) and the collectionF = {f−i , f+

i : U → U |
i ∈ IN} of functions

f−i (x) = (x− 1/2i) mod1 and f+
i (x) = (x + 1/2i) mod1 .

When interpreting every label(x1, . . . , xd) asx =
∑d

i=1 xi/2
i, then for every neighborx′ of x in the

hypercube there is a functionf ∈ F with f(x) = x′. More precisely, ifx andx′ only differ in theith
bit, then it holds:

• if xi = 1 thenx′ = f−i (x) and

• if xi = 0 thenx′ = f+
i (x).

Hence, as long as the peer setV is assigned to regions whose union givesU and connections between
the peers are established according to the continuous-discrete approach, the resulting graphGF (V)
establishes a dynamic hypercube. The problem is, how to assign proper regions to the peers inV .
Here, we use a very simple rule:

Every peerv ∈ V chooses a random pointxv ∈ [0, 1) and is responsible for the regionRv =
[xv, succ(xv)) wheresucc(xv) is the closest successor ofxv on [0, 1) among the points of the peers.

Using this rule, it is obvious that the regions are pairwise disjoint and that
⋃

Rv
= [0, 1). Moreover,

the following lemmas hold.

Lemma 9.1 Givenn peers, every peer is responsible for a region of size at leastΩ(1/n3) and most
O(log n/n), w.h.p.

1

Proof. We first prove the upper bound. Consider any intervalI of size(c ln n)/n for some sufficiently
large constantc > 0. The probability that none of the peers has its point inI is equal to

(
1− c ln n

n

)n

≤ e−((c ln n)/n)·n = e−c ln n = n−c .

Hence, when partitioning[0, 1) into n/(c log n) such intervals, every one of these has at least one point
in them, w.h.p. Thus, a peer can be responsible for a region of size at mostO(log n/n), w.h.p.

Next we prove the lower bound. The probability that any two peer positions have a distance of less
than1/n3 is at most (

n

2

)
1

n3
≤ 1

2n

Hence, the probability is very low that such a case occurs, completing the proof. ut

Lemma 9.2 Givenn peers, every interval of sizeΘ(log n/n) hasΘ(log n) peers in it, w.h.p.

Proof. Consider some fixed intervalI of size(c ln n)/n for some sufficiently large constantc > 0.
For every peerv let the binary random variableXv be 1 if and only ifxv ∈ I. Let X =

∑
v∈V Xv. It

holds that

E[Xv] = Pr[Xv = 1] =
c ln n

n

and from the linearity of expectation it follows that

E[X] =
∑

v∈V

E[Xv] = n · c ln n

n
= c ln n .

Hence, when using the well-known Chernoff bounds, we obtain that

Pr[X ≥ (1 + ε)E[X]] ≤ e−ε2E[X]/3 = e−ε2c ln n/3 = n−ε2c/3

and
Pr[X ≤ (1− ε)E[X]] ≤ e−ε2E[X]/2 = n−ε2c/3

for all 0 ≤ ε ≤ 1. Thus, the probability is polynomially small inn that the bound in the lemma is
violated. ut

In order to interconnect the peers, we demand that every peerv must be connected to all peersw
whose regions overlap withf(Rv) for somef ∈ F and to the two neighboring peers on the[0, 1)-ring.
Since the size of these regions is equal to the size ofRv, it follows from Lemmas 9.1 and 9.2:

Lemma 9.3 Givenn peers, the dynamic hypercube has a maximum degree ofO(log2 n), w.h.p.

2

Routing in a dynamic hypercube

Suppose that we want to route a message from pointx to point y in [0, 1). Let (x1, x2, . . .) be the
binary representation ofx and(y1, y2, . . .) be the binary representation ofy. Then we use the following
continuous strategy to route the message fromx to y:

(x1, x2, . . .) → (y1, x2, . . .) → (y1, y2, x3, . . .) → . . .

If x andy have infinite binary representations, then this strategy may take an infinite amount of hops,
but in the discrete world with a finite number of peers, this is not the case with the following discrete
variant of the continuous routing strategy above:

The message starts at the peerv0 responsible forx. Peerv0 forwards the message to the peerv1

responsible for(y1, x2, . . .), peerv1 forwards it to the peerv2 responsible for(y1, y2, x3, . . .), and so
on, until the message reaches a peerv` whose region or whose neighboring region containsy. From
this peer the message is forwarded to the peer responsible for the region containingy.

Notice that the maximally remaining distance toy shrinks by a factor 2 in each step. Hence, once
a distance equal to the smallest region is reached, the routing terminates. Thus, the following theorem
immediately follows from Lemma 9.1.

Theorem 9.4 Using the continuous-discrete routing strategy, it takes at mostO(log n) hops until a
message is routing from any pointx to any pointy in [0, 1).

Besides having a small dilation, it is also important to have a small congestion, i.e., when routing
multiple messages, the maximum number of messages to be handled by a peer should be as close to
optimal as possible. In order to achieve a low congestion, the following routing strategy may be used
by any peer, which is a continuous version of Valiant’s trick:

Suppose that a peer with positionx wants to send a message to positiony. Then it chooses a
random pointz, first routes the message fromx to z and then fromz to y using the continuous-discrete
routing strategy above.

With this strategy, we obtain the following theorem.

Theorem 9.5 For every permutation routing problem, the congestion caused when using the extended
continuous-discrete routing strategy above is at mostO(log2 n), w.h.p.

Proof. Consider any permutation routing problemπ, and consider cutting[0, 1) into n′ intervals
of size1/n′ starting at integral multiples of1/n′ wheren′ is chosen so thatn′ is a power of 2 and
1/n′ = (c ln n)/n for some suitably chosen constantc. It follows from Lemma 9.2 that every interval
hasO(log n′) packets starting at it andO(log n′) packets aiming for it. Viewing these intervals as the
nodes of alog n′-dimensional hypercube, it follows from the analysis of Valiant’s trick that at most
O(log2 n′) packets pass every node, w.h.p. Since, according to Lemma 9.1, every peer is responsible
for an interval of size at mostO(log n/n), this implies that every peer is passed by at mostO(log2 n)
packets, w.h.p., which proves the theorem. ut

3

Joining and leaving a dynamic hypercube

We only consider isolated executions of join and leave requests because otherwise it can be quite tricky
to correctly update the network.

Suppose that a new peerv contacts some peerw already in the system to join the system. Thenv’s
request is first sent to the peeru owningxv using the continuous-discrete routing strategy, which only
takesO(log n) hops according to Theorem 9.4.u forwards information about all of its outgoing edges
to v, deletes all edges that it does not need any more, and informs the corresponding endpoints about
this. BecauseR(v) ⊆ R(u) for the oldR(u), the edges reported tov are a superset of the edges that it
needs to establish.v checks which of the edges are relevant for it, informs the other endpoint for each
relevant edge, and removes the others.

If a peerv wants to leave the network, it simply forwards all of its outgoing edges to the peer at
pred(xv). That peer will then merge these edges with its existing edges and notify the endpoints of
these edges about the changes.

Notice thatF = F−1, i.e., all inverse functions of functions inF are also inF . Thus, the peers do
not have to worry about incoming connections because a peerv has an outgoing connection to peerw
if and only if w has an outgoing connection tov. Hence, all connections can indeed be updated by just
looking at the outgoing edges.

We know from Theorem 9.4 that the routing part only takesO(log n) hops. Furthermore, Lem-
mas 9.1 and 9.2 imply that every peer has at mostO(log2 n) incoming and outgoing edges. Hence, we
obtain the following theorem.

Theorem 9.6 Join and leave require at mostO(log2 n) work andO(log n) communication rounds,
w.h.p.

Data management

Suppose that we want to store data in the dynamic hypercube. Here we can simply use the consistent
hashing strategy in Section 5: data items are hashed to random values in[0, 1) using a pseudo-random
hash functionh, and every data itemd is stored in the peerv with h(d) ∈ Rv.

Using this strategy, data will on expectation be evenly distributed among the peers, and on expec-
tation, at most a factor of 2 more data than necessary has to be replaced if a node joins or leaves.

A dynamic de Bruijn network

Recall the definition of a de Bruijn graph. In this definition, every node with label(x1, . . . , xd) ∈
{0, 1}d is connected to the nodes(0, x1, . . . , xd) and(1, x1, . . . , xd). Consider now the spaceU = [0, 1)
and the collectionF = {f0, f1} of functions

f0(x) = x/2 and f1(x) = (1 + x)/2 .

When interpreting every label(x1, . . . , xd) asx =
∑d

i=1 xi/2
i, then these functions are a good approx-

imation of the de Bruijn edges. In fact, ford →∞ they match the de Bruijn edges. In order to assign
proper regions to the peers inV , we use the same strategy as for the dynamic hypercube.

Every peerv ∈ V chooses a random pointxv ∈ [0, 1) and is responsible for the regionRv =
[xv, succ(xv)) wheresucc(xv) is the closest successor ofxv on [0, 1) among the points of the peers.

4

In order to interconnect the peers, we use the classesF andF−1 whereF−1 contains the inverse
functions of the functions inF . That is, every peerv is connected to all peersw whose regions overlap
with f0(Rv), f1(Rv), f−1

0 (Rv) andf−1
1 (Rv). The size of these regions differs only by a factor of 2

from the size ofRv. Furthermore,v connects to its successor and predecessor in[0, 1). It follows from
Lemmas 9.1 and 9.2:

Lemma 9.7 Givenn peers, the dynamic de Bruijn network has a maximum degree ofO(log n), w.h.p.

Routing in a dynamic de Bruijn network

Suppose that we want to route a message from pointx to point y in [0, 1). Let (x1, x2, . . .) be the
binary representation ofx and(y1, y2, . . .) be the binary representation ofy. Then we use the following
continuous-discrete strategy to route the message fromx to y:

The message starts at the peerv0 responsible forx. If y is not in the region ofv0 or one of its
neighbors,v0 chooses a random bitz1 and forwards the message to the peerv1 owning(z1x1x2 . . .). In
general, if the message has reached a peervi and(zi . . . z1y1y2 . . .) is not in the region ofvi or one of its
neighbors,vi chooses a randomzi+1 and forwards the message to the peer owning(zi+1 . . . z1x1x2 . . .).
Once the message has reached a peerwi owning (zi . . . z1y1y2 . . .), it is forwarded to the peerwi−1

owning(zi−1 . . . z1y1y2 . . .) and so on until it reaches the peer owning(y1y2 . . .).
All of the hops in the routing strategy can be performed along edges of the dynamic de Bruijn

graph. Also, notice that the maximum distance between(zi . . . z1x1x2 . . .) and (zi . . . z1y1y2 . . .)
shrinks by a factor of 2 in each hop. Hence, once a distance equal to the smallest region is reached,
the routing strategy can move from a peervi to a peerwi. Thus, the following theorem immediately
follows from Lemma 9.1.

Theorem 9.8 Using the continuous-discrete routing strategy, it takes at mostO(log n) hops until a
message is routing from any pointx to any pointy in [0, 1).

The continuous-discrete routing strategy does not only have a low dilation but also a small con-
gestion because it has Valiant’s trick already built into it. Hence, the following theorem holds using
similar arguments as in Theorem 9.5.

Theorem 9.9 For every permutation routing problem, the congestion caused when using the continuous-
discrete routing strategy above is at mostO(log2 n), w.h.p.

Joining and leaving a dynamic de Bruijn network

Suppose that a new peerv contacts some peerw already in the system to join the system. Then
v’s request is first sent to the peeru owningxv using the continuous-discrete routing strategy above,
which only takesO(log n) hops according to Theorem 9.8.u forwards information about all of its
(incoming and) outgoing edges tov, deletes all edges that it does not need any more, and informs the
corresponding endpoints about this. BecauseR(v) ⊆ R(u) for the oldR(u), the edges reported tov
are a superset of the edges that it needs to establish.v checks which of the edges are relevant for it,
informs the other endpoint for each relevant edge, and removes the others.

If a nodev wants to leave the network, it simply forwards all of its outgoing edges to the peer at
pred(xv). That peer will then merge these edges with its existing edges and notifies the endpoints of
these edges about the changes.

5

We know from Theorem 9.8 that the routing part only takesO(log n) hops. Furthermore, Lem-
mas 9.1 and 9.2 imply that every peer has at mostO(log n) outgoing edges. Hence, we obtain the
following theorem.

Theorem 9.10 Join and leave take at mostO(log n) work andO(log n) communication rounds, w.h.p.

Also the dynamic de Bruijn network can be used for data management with the help of the consis-
tent hashing approach.

9.2 Skip graphs

So far, we saw how to construct completely decentralized peer-to-peer systems with good topological
properties if the peers are assigned to random locations in the[0, 1)-interval. However, there are
several scenarios in which it would be much better if the peers are organized according to their real,
user-defined names instead of just random names.

For example, suppose that we want to implement a distributed name service such as the well-known
domain name service (DNS). Then we would like to organize the peers in a peer-to-peer system so that
a peer with a given name can be found quickly. If the names were well-spread in the name space so that
we could interpret them as well-spread numbers in the[0, 1)-interval, then we could use the dynamic
de Bruijn network to implement such a service. However, we cannot guarantee that the names will be
well-spread, and therefore we need a different overlay network design.

As another example, consider the situation that we want to design a peer-to-peer system in which
we can take locality issues into account. Locality is an important issue in the Internet. Using the
dynamic de Bruijn network can mean that a message is sentlog n times across the world before it
reaches its destination. Instead, imagine that we knew the geographic location of every peer. One
possible way of specifying such a location could be

North America.USA.MD.Baltimore.JohnsHopkinsUnivesity.ComputerScience

If such information is available, we could organize the peers in an overlay network sorted according
to this location information so that now messages will only be sent once across the world in the worst
case. Instead of a geographical location, one could also use a hierarchically specified Internet location,
starting with the backbone ISP, the local ISP, and so on (which may be determined via traceroute, for
example).

In the following, we present overlay network designs that allow peers to be ordered according
to arbitrary user-defined names. We first present (random) skip graphs [1, 4], and then we present
deterministic skip graphs which are also known as hyperrings [3].

Skip graphs

Given an infinite bit stringb = x1x2x3 . . ., we defineprefix0(b) = ε (the empty word) andprefixi(b) =
x1x2 . . . xi for every i ≥ 1. Suppose that we have a (pseudo-)random hash functionh assigning to
each node anID representing an infinite bit string. Given a set of nodesV , we define for everyv ∈ V
andi ≥ 0:

6

• succi(v) = argmin{w ∈ V | Name(w) > Name(v) and prefixi(h(v)) = prefixi(h(w))},
i.e. succi(v) is the nodew whose name is the closest successor ofv’s name (with respect to
lexicographical ordering) with the samei first bits inh(w) ash(v), and

• predi(v) = argmax{w ∈ V | Name(w) < Name(v) andprefixi(h(v)) = prefixi(h(w))}.
Notice that we view the name space as a ring here. This means forsucci(v) that if there is no nodew
with Name(w) > Name(v) that fulfills the prefix condition, then we associatesucci(v) with the node
w with smallest name so thatprefixi(h(v)) = prefixi(h(w)). If there is no other nodew in the network
with that property, then we setsucci(v) = v. In skip graphs, the following invariants have to be kept
at any time.

Invariant 9.11 For any set of nodesV currently in the system, it holds for everyv ∈ V that v is
connected tosucci(v) andpredi(v) for all i ≥ 0.

Invariant 9.11 requires that the nodes are organized in a hierarchy of doubly linked cycles, where
the node names have to be sorted in every cycle, and every node participates in exactly one cycle for
everyi ≥ 0. A cycle at leveli is calledi-cycle ori-ring, and an edge in ani-ring is called ani-edge.
Skip graphs have the following properties, wheren is the current number of nodes in the network:

Theorem 9.12 If Invariant 9.11 is true andh assigns random bit strings to nodes, then the skip graph
has a maximum degree ofO(log n), a diameter ofO(log n), and a node expansion ofΩ(1), with high
probability.

Proof. The probability that some fixed node pairv andw fulfills prefixi(h(v)) = prefixi(h(w)) is
equal to1/2i. Hence, fori ≥ 3 log n, it holds that

Pr[there is a node pairv, w with prefixi(h(v)) = prefixi(h(w))]

≤ ∑
v,w

Pr[node pairv, w fulfills prefixi(h(v)) = prefixi(h(w))]

=
∑
v,w

1

23 log n
≤ n2 · 1

n3
=

1

n
.

Hence, with high probability there is no ring of level3 log n or higher. Thus, every node has a degree
of at most2(3 log n + 1).

Next, we bound the diameter. Consider any nodev ∈ V . Our aim is to move fromv to a nodew
with largesti so thatprefixi(w) = 00 . . . 0. To do this, we move fromu0 = v to the closest successor
u1 on the 0-ring withprefix1(u1) = 0, and in general from nodeui to the closest successorui+1 on the
currenti-ring with prefixi+1(ui+1) = 00 . . . 0. For anyi ≥ 0, it holds:

Pr[the distance toui+1 is δ] =
(

1

2

)δ+1

.

Hence,

E[distance toui+1] =
∑

δ≥0

δ ·
(

1

2

)δ+1

=
∑

δ≥0

(δ + 1) ·
(

1

2

)δ+2

=
1

4

∑

δ≥0

(
1

2

)δ

 =

1

4
· 4 = 1 .

7

Since we know from the degree proof that there are at most3 log n levels with high probability, the
expected number of hops we need to perform to get fromv to w is O(log n). Furthermore, going from
w to the nodew′ with smallest bit string also takes justO(log n) hops on expectation. Hence, every
node inV can reach the nodew′ with smallesth(w′) in O(log n) steps on expectation, and this can
also be shown to hold with high probability. Thus, the diameter isO(log n), with high probability.

The expansion proof is involved and will not be shown here. See [2] for details. ut

Routing in skip graphs

Consider the following routing strategy:
Suppose that nodeu is the current location of a message with destinationName. As long as

Name 6∈ (Name(pred0(u)), Name(u)] (i.e. the message has not yet reached a nodeu that is the
closest successor ofName), u sends the message to the nodesucci(u) with maximum i so that
Name(succi(u)) ≤ Name (treating the name space as a ring).

One can show the following result:

Lemma 9.13 For any nodev ∈ V and any nameName, it takes at mostO(log n) hops, with high
probability, to send a message fromv to the node whose name is the closest successor toName.

Joining and leaving the network

Suppose that a new nodev contacts nodew ∈ V to join the system. Thenw will forward v’s request
to succ0(v) using the routing strategy above withName = Name(v). succ0(v) will then integratev
betweensucc0(v) andpred0(v). Afterwards,v sends out two requests along the 0-ring to findsucc1(v)
andpred1(v). Once they are found,v integrates itself into its 1-ring.v then uses the 1-ring to find
succ2(v) andpred2(v), and then integrates itself into the 2-ring. This continues untilv has integrated
itself into the highest possible ring containing at least 2 nodes.

Using a probabilistic analysis, one can show the following result:

Theorem 9.14 Inserting a new node requiresO(log n) time and work with high probability.

If a node wants to leave the system, it does this by simply connectingpredi(v) with succi(v) for
everyi ≥ 0. This gives the following result:

Theorem 9.15 Deleting a node requiresO(log n) time and work with high probability.

Searching

When a nodev searches for a node with nameName, then it simply uses the routing strategy described
above. Once a nodew with Name(w) = Name has been found,w reports its IP address back tov.
This strategy has the following performance:

Theorem 9.16 Any search operation requiresO(log n) time and work with high probability.

8

Hyperring

Next we consider the hyperring. Like the skip graph, also the hyperring consists of a hierarchy of
rings. However, here we are much more strict about how the rings are maintained.

Suppose that we have a hyperring withn nodes. Then it consists of approximatelylog n levels of
rings, starting with level 0. Each leveli ≥ 0 consists of approximately2i directed cycles of approxi-
matelyn/2i nodes, which we callrings. All rings have the same orientation, and we require the nodes
in every ring to be ordered according to their names. For every ringR at leveli, two rings of level
i + 1 share its nodes in an intertwined fashion. As before, a ring at leveli will be called ani-ring, and
a leveli edge will be called ani-edge. Consider somei-ring R and let(u, v, w, x) be four consecutive
nodes onR. We say that(u, v, w, x) form ani-bridge(or simply abridgeif i is clear from the context)
if there is an(i+1)-edge fromu to x and an(i+1)-edge fromv to w. An (i+1)-edge is calledperfect
if it bridges exactly twoi-edges.

bridge 2

bridge 1

Figure 1:An example of a hyperring. The bridges have a distance of 5 from each other.

It is possible to maintain a hyperring with at most one bridge in every ring. However, in this case
we would create too much update work forJOIN or LEAVE operations. Instead, we only demand that
i-bridges are sufficiently far apart from each other. A hyperring is calledk-separatedif in every i-ring
R the i-bridges onR are at leastk nodes apart from each other, which means that there are at least
k − 1 nodes between the quadruples of nodes forming a bridge. We start with a few properties of
hyperrings which are easy to prove.

Lemma 9.17 For everyk ≥ 0, thek-separated hyperring has a maximum degree of at most2(1 +
2/(k + 1)) log n and a diameter of at most3 log n.

Proof. First, we bound the maximum degree. Consider somei-ring R. In order to minimize the size
of ani+1-ring R′ on top ofR without violatingk-perfectness, the best one can do is using a repetitive
sequence ofdk/2e+1 edges, where one edge bridges three edges inR and the remainingdk/2e edges
bridge two edges inR. Hence,

|R′| ≥ |R|
3 + 2dk/2e · (1 + dk/2e) =

(
1

2
− 1

4(dk/2e+ 1) + 2

)
· |R|

≥ 1

2

(
1− 1

k + 3

)
· |R|

This also implies that|R′| can be at most1
2
(1 + 1

k+3
)|R|. Hence, ani-ring R can have a size of at most

1

2i

(
1 +

1

k + 3

)i

≤ 1

2i
· ei/(k+3) ≤ 2−i(1−2/(k+3)) .

9

This is at most 1 ifi ≥ (log n)/(1− 2/(k + 3)). Since each node has 2 edges in each level in which it
participates, the maximum node degree is2(log n)/(1− 2/(k + 3)) = 2(1 + 2/(k + 1)) log n.

Next, we bound the diameter. Consider any two nodesv and w on a ringR, and letR0 and
R1 be the two intertwined rings on top ofR. Furthermore, letv0 be the node inR0 nearest tov
and w0 be the node inR0 nearest tow. Definev1 and w1 in the same way forR1. First of all,
dR(v, v0), dR(v, v1), dR(w,w0), anddR(w, w1) are all at most 1. Hence,dR(v0, w0) ≤ dR(v, w) + 2
anddR(v1, w1) ≤ dR(v, w) + 2. Since the nodes used byR0 andR1 are disjoint, it must hold that
eitherdR0(v0, w0) ≤ dR(v, w)/2 + 1 or dR1(v1, w1) ≤ dR(v, w)/2 + 1. Hence, if we always take the
ring of lower distance in each layer, then for each layeri we obtain the recursiondi+1 ≤ di/2 + 3 with
d0 = dR(v, w). Therefore, the total number of edges used is at most3 log n. ut

Unfortunately, hyperrings with constant separation can have a bad expansion.

Theorem 9.18 For everyk ≥ 0, thek-separated hyperring has, in the worst case, an edge expansion
of

O(1/n1/(2(3(k+4))2)) .

The proof of this theorem is quite involved and can be found in [3]. Unfortunately, Theorem 9.18
implies that nok-separated hyperring withk = O((log n)1/2−ε) for some constantε > 0 can guarantee
an expansion ofΩ(1/ logc n) for some constantc depending onε. Hence, in order to have a good
expansion, we needk = Ω(

√
log n). However, notice that whenk depends on the size of the hyperring,

node insertions and deletions that have been performed in the past might have used ak that significantly
differs from thek used by current insertions and deletions. Hence, parts of the hyperring may be out of
date. So the question is whether it is necessary to revisit these parts in order to bring the hyperring up
to date. Fortunately, as one of the main results in [3], it was shown thatthis is not necessary. One can
simply use as the currentk the degree of any node currently in the system when executing aJOIN or
LEAVE operation, and oldJOIN or LEAVE operations never have to be revisited, to show the following
result. (|R| denotes the number of nodes in a ringR, and|e| denotes the number of node on the 0-ring
bridged by edgee.)

Proposition 9.19 At any time it holds:

1. thering distortion is low, i.e. for everyi-ring R, |R| ∈ [1
2
· n/2i − 1, 2 · n/2i + 1] and

2. theedge distortion is low, i.e. for everyi-edgee, |e| ≤ 4 · 2i.

The proof for this is quite complicated and can be found in [3]. For simplicity, we assume for the
rest of this section thatk is fixed. We start with describing how to route in the hyperring.

Routing in the hyperring

We use the same routing strategy as for skip graphs:
Suppose that nodeu is the current location of a message with destinationName. As long as

Name 6∈ (Name(pred0(u)), Name(u)] (i.e. the message has not yet reached a nodeu that is the
closest successor ofName), u sends the message to the nodesucci(u) with maximum i so that
Name(succi(u)) ≤ Name (treating the name space as a ring).

Since this routing strategy prefers edges of higher level and everyi + 1-edge bridges at most 3
i-edges for everyi, we obtain the following fact.

10

Fact 9.20 Any message moves along a sequence of edges of non-increasing level and uses at most two
edges in each level.

Combining this with Lemma 9.17, which says that there are at most(1 + 2/(k + 1)) log n levels,
we achieve the following result.

Lemma 9.21 For any nodev ∈ V and any nameName, it takes at mostO(log n) hops to send a
message fromv to the node whose name is the closest successor toName.

Joining and leaving the network

First, we introduce some notation. Letsucci(v) be the successor ofv in its i-ring andpredi(v) be the
predecessor ofv in its i-ring. For every nodev onR, its> i-endpoints represent all endpoints of edges
in v with level more thani. Notice that each node has two endpoints in each level. By “moving” the
i-endpoints fromu to v, we mean that we replace thei-edges(predi(u), u) and(u, succi(u)) by the
i-edges(predi(u), v) and(v, succi(u)). By “permuting” thei-endpoints ofu andv, we mean that we
move thei-endpoints ofu to v and thei-endpoints ofv to u.

Suppose now that a new nodeu contacts some nodev ∈ V to join the system. Thenv will
forwardu’s request tosucc0(u) using the routing strategy above withName = Name(u). succ0(u)
will then integrateu betweensucc0(u) andpred0(u). Afterwards,u is integrated into the hyperring
level by level, starting with level 0. In each leveli, we integrate the node by either removing an already
existing bridge in itsk + 2-neighborhood or by creating a new bridge. A bridge is removed by first
dragging it over tou by permuting> i-endpoints (see Figure 3). Then case (b) or (c) in Figure 2 is
applied. Otherwise, we just apply case (a).JOIN terminates once we reach a ring of size in{4, . . . , 7}
(for larger rings, two new subrings are created).

(a)

(b)

(c)

Figure 2: The three cases when adding a node. Case (c) reduces to case (b).

Theorem 9.22 JOIN locally preserves thek-separation of the hyperring and requiresO(k log2 n)
work andO(log k · log n) time.

Proof. JOIN locally preserves thek-separation property because it only creates a bridge if there is no
other bridge in thek + 2-neighborhood. Otherwise, it removes a bridge. Thus, it remains to prove the
work and time bounds.

11

bridge

Figure 3: Permuting> i-endpoints drags the bridge over to obtain, e.g., case (c) in Figure 2.

In each level, only aO(k)-neighborhood is investigated. In the worst case, a bridge has to be
moved tou (resp. to the node to be integrated into that level in place ofu). This requiresO(k log n)
message transmissions. Since the hyperring hasO(log n) levels, the total work isO(k log2 n).

When using edges in higher levels, we can investigate theO(k)-neighborhood of a node inO(log k)
steps. Thus, inO(log k) steps we can update the endpoints necessary to proceed with the next higher
level. Since there areO(log n) levels, this results inO(log k · log n) time. ut

We also remove a nodeu from the hyperring level by level, starting with level 0. In each level,
we remove the node by either removing an already existing bridge in itsk + 2-neighborhood or by
creating a new bridge. A bridge is removed by first dragging it over (Figure 3) and then applying case
(b) or (c) in Figure 4. Otherwise, we just apply case (a).LEAVE terminates once we reach a ring of
size in{4, . . . , 7} (rings smaller than 4 are removed).

(a)

(b)

(c)

Figure 4: The three cases when removing a node. Case (c) reduces to case (b).

Theorem 9.23 LEAVE locally preserves thek-separation of the hyperring and requiresO(k log2 n)
work andO(log k · log n) time.

The proof is similar to the proof of Theorem 9.22.

12

Searching

When a nodev searches for a node with nameName, then it simply uses the routing strategy described
above. Once a nodew with Name(w) = Name has been found,w reports its IP address back tov.
This strategy has the following performance:

Theorem 9.24 Any search operation requiresO(log n) time and work with high probability.

Furthermore, we can show the following result, demonstrating that not only the dilation but also
the congestion of search requests can be kept low in the hyperring.

Theorem 9.25 The congestion caused byn SEARCH requests, one per node, with random destinations
is O(log n), with high probability.

Proof. Fact 9.20 implies that everyi-ring R can only receive requests from rings on top of it. Thus, it
can only receive requests from its own nodes. Consider now an arbitrary nodev in R. It is easy to check
that only those requests will be sent tov whose destination is bridged by thei-edgee leavingv in R.
From Proposition 9.19 we know thate bridges at most4·2i nodes and thatR consists of at most3·n/2i

nodes. Since every node is the starting point of one request and every request has a random destination,
the expected number of requests that want to reachv in R is at most(4 · 2i/n) · (3 · n/2i) = 12.
Combining this with the fact that every request only uses at most 2 edges inR (see Fact 9.20), the
expected number of requests that traversev in R is at most 24. Because every node participates in at
mostlog n+O(1) levels, the overall expected number of search requests passing throughv isO(log n).
Using the fact that every request picks a random destination independently from other requests, one
can also show that the congestion caused bySEARCH is O(log n) with high probability. ut

References

[1] J. Aspnes and G. Shah. Skip graphs. InProc. of the 14th ACM/SIAM Symp. on Discrete Algorithms (SODA),
pages 384–393, 2003.

[2] J. Aspnes and U. Wieder. The expansion and mixing time of skip graphs with applications. InProc. of the
17th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 126–134, 2005.

[3] B. Awerbuch and C. Scheideler. The Hyperring: A low-congestion deterministic data structure for dis-
tributed environments. InProc. of the 15th ACM/SIAM Symp. on Discrete Algorithms (SODA), 2004.

[4] N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable overlay network
with practical locality properties. In4th USENIX Symposium on Internet Technologies and Systems, 2003.

[5] M. Naor and U. Wieder. Novel architectures for P2P applications: the continuous-discrete approach. In
Proc. of the 15th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 50–59, 2003.

13

