9 Decentralized overlay networks

In this section we present overlay networks that are completely decentralized, i.e., they do not depend
on a supervisor. We assume that, in principle, every peer has the right to initiate the integration of new
peers into the system and that every peer knows at least one peer currently in the system so that publicly
available entry points such as a supervisor are not necessary any more. To simplify the presentation
we will assume in this section that all peers are reliable and honest. In the next section we will consider
scenarios in which this is not the case.

This section consists of two parts. The overlay networks in the first part are based on the continuous-
discrete approach [5], and the overlay networks presented in the second part are based on so-called ski
graphs [1] defined later in this section. The difference between these two concepts is that the former
concept only works well if the peers are given random or hashed names for some pseudo-random hasl
function, whereas the latter concept works well for arbitrary distinct peer names.

9.1 The continuous-discrete approach

First, we show how to maintain a dynamic hypercube, and then we show how to maintain a dynamic
de Bruijn network.

A dynamic hypercube

Recall the definition of a hypercube. According to this definition, every node with (abel. . | z,) €
{0,1}4 is connected to the nodés,, z, ..., zq), (71, T, T3,...,24), ..., (T1,...,Tq_1,74), Where
7 = (1 + z) mod2. Consider now the spadé = [0, 1) and the collectiont’ = {f;", /it : U — U |
i € IN} of functions

fi(z)=(z—1/2)ymod1l and f"(z)= (z+1/2") modl.

When interpreting every labék,, ..., z,) asz = X" z;/2', then for every neighbar’ of z in the
hypercube there is a functighe F with f(z) = 2’. More precisely, ifc andz’ only differ in theith
bit, then it holds:

o if x; = 1thena’ = f; (z) and
o if z; = 0thenz’ = f;"(z).

Hence, as long as the peer $eis assigned to regions whose union giteéand connections between
the peers are established according to the continuous-discrete approach, the resulting:giaph
establishes a dynamic hypercube. The problem is, how to assign proper regions to the peers in
Here, we use a very simple rule:
Every peerv € V chooses a random point, € [0,1) and is responsible for the regidi, =
[x,, succ(z,)) wheresuce(z,) is the closest successoraf on [0, 1) among the points of the peers.
Using this rule, it is obvious that the regions are pairwise disjoint and that= [0, 1). Moreover,
the following lemmas hold.

Lemma 9.1 Givenn peers, every peer is responsible for a region of size at I84stn*) and most
O(logn/n), w.h.p.

Proof. We first prove the upper bound. Consider any intefval size(c1nn)/n for some sufficiently
large constant > 0. The probability that none of the peers has its point ia equal to

(1 B clnn) < (elmm)/myn _ —elnn _ —c
n

Hence, when partitioning), 1) into n/(clog n) such intervals, every one of these has at least one point
in them, w.h.p. Thus, a peer can be responsible for a region of size atifiogt:/n), w.h.p.
Next we prove the lower bound. The probability that any two peer positions have a distance of less

than1/n? is at most
n\ 1 1
o<
2/n3 ~ 2n

Hence, the probability is very low that such a case occurs, completing the proof. O
Lemma 9.2 Givenn peers, every interval of siz8(log n/n) has©(logn) peers in it, w.h.p.

Proof. Consider some fixed intervdlof size (cIlnn)/n for some sufficiently large constaat> 0.
For every peev let the binary random variabl&, be 1 if and only ifz, € I. Let X = > o X,. It

holds that
clnn

E[X,] = Pr[X, = 1] =

n
and from the linearity of expectation it follows that

EX]=) EX,)=n- chan _ clnn .

veV n

Hence, when using the well-known Chernoff bounds, we obtain that
Pr[X > (14 €)EB[X]] < e BB — =cfelnn/3 _ jp=<e/3

and
Pr[X < (1 — e)E[X]] < e “BRI/Z — py=<e/3

forall 0 < e < 1. Thus, the probability is polynomially small im that the bound in the lemma is
violated. O

In order to interconnect the peers, we demand that every:perrst be connected to all peers
whose regions overlap with(R,) for somef € F and to the two neighboring peers on ffel)-ring.
Since the size of these regions is equal to the size,oft follows from Lemmas 9.1 and 9.2:

Lemma 9.3 Givenn peers, the dynamic hypercube has a maximum degréglog”), w.h.p.

Routing in a dynamic hypercube

Suppose that we want to route a message from potat pointy in [0,1). Let (z1,x,...) be the
binary representation afand(y,, y», . . .) be the binary representationsfThen we use the following
continuous strategy to route the message frotmy:

(961,»’172,---) - (ylax%---) - (ylay27$3a---) — ...

If z andy have infinite binary representations, then this strategy may take an infinite amount of hops,
but in the discrete world with a finite number of peers, this is not the case with the following discrete
variant of the continuous routing strategy above:

The message starts at the pegresponsible for.. Peery, forwards the message to the peer
responsible fofyy, z,, . ..), peerv; forwards it to the peev, responsible fofy,, y», z3,...), and so
on, until the message reaches a pgawvhose region or whose neighboring region containgrom
this peer the message is forwarded to the peer responsible for the region conjaining

Notice that the maximally remaining distanceijtshrinks by a factor 2 in each step. Hence, once
a distance equal to the smallest region is reached, the routing terminates. Thus, the following theorem
immediately follows from Lemma 9.1.

Theorem 9.4 Using the continuous-discrete routing strategy, it takes at ridsig ») hops until a
message is routing from any pointo any pointy in [0, 1).

Besides having a small dilation, it is also important to have a small congestion, i.e., when routing
multiple messages, the maximum number of messages to be handled by a peer should be as close |
optimal as possible. In order to achieve a low congestion, the following routing strategy may be used
by any peer, which is a continuous version of Valiant’s trick:

Suppose that a peer with positionwants to send a message to positionThen it chooses a
random point, first routes the message fraio = and then front to y using the continuous-discrete
routing strategy above.

With this strategy, we obtain the following theorem.

Theorem 9.5 For every permutation routing problem, the congestion caused when using the extended
continuous-discrete routing strategy above is at n@@@bg” n), w.h.p.

Proof. Consider any permutation routing problem and consider cutting, 1) into n’ intervals

of sizel/n’ starting at integral multiples of /n’ wheren’ is chosen so that’ is a power of 2 and

1/n" = (¢lnn)/n for some suitably chosen constantt follows from Lemma 9.2 that every interval
hasO(logn’) packets starting at it an@(log n’) packets aiming for it. Viewing these intervals as the
nodes of dogn’-dimensional hypercube, it follows from the analysis of Valiant’s trick that at most
O(log® n') packets pass every node, w.h.p. Since, according to Lemma 9.1, every peer is responsible
for an interval of size at mog@(logn/n), this implies that every peer is passed by at niddtg” n)

packets, w.h.p., which proves the theorem. O

Joining and leaving a dynamic hypercube

We only consider isolated executions of join and leave requests because otherwise it can be quite tricky
to correctly update the network.

Suppose that a new peecontacts some pear already in the system to join the system. Thén
request is first sent to the peepwningzx, using the continuous-discrete routing strategy, which only
takesO (log n) hops according to Theorem 9.4 forwards information about all of its outgoing edges
to v, deletes all edges that it does not need any more, and informs the corresponding endpoints abou
this. Becausd?(v) C R(u) for the old R(u), the edges reported toare a superset of the edges that it
needs to establish. checks which of the edges are relevant for it, informs the other endpoint for each
relevant edge, and removes the others.

If a peerv wants to leave the network, it simply forwards all of its outgoing edges to the peer at
pred(z,). That peer will then merge these edges with its existing edges and notify the endpoints of
these edges about the changes.

Notice thatF = F~1, i.e., all inverse functions of functions ifi are also inF". Thus, the peers do
not have to worry about incoming connections because aple@s an outgoing connection to peer
if and only if w has an outgoing connectiontoHence, all connections can indeed be updated by just
looking at the outgoing edges.

We know from Theorem 9.4 that the routing part only takd$ogn) hops. Furthermore, Lem-
mas 9.1 and 9.2 imply that every peer has at miti$bg” n) incoming and outgoing edges. Hence, we
obtain the following theorem.

Theorem 9.6 Join and leave require at mosk(log®n) work andO(logn) communication rounds,
w.h.p.

Data management

Suppose that we want to store data in the dynamic hypercube. Here we can simply use the consisten
hashing strategy in Section 5: data items are hashed to random valQgk)insing a pseudo-random
hash functior, and every data itend is stored in the peer with h(d) € R,.

Using this strategy, data will on expectation be evenly distributed among the peers, and on expec-
tation, at most a factor of 2 more data than necessary has to be replaced if a node joins or leaves.

A dynamic de Bruijn network

Recall the definition of a de Bruijn graph. In this definition, every node with lgbel. .., z,;) €
{0, 1}%is connected to the nodé® x4, . .., r4) and(1, x;, . .., z4). Consider now the spaéé= [0, 1)
and the collectiorF” = { fy, f1} of functions

fo()==z/2 and fi(z)=(1+x)/2.

When interpreting every labétk,, . .., z4) asz = Y% | x;/2¢, then these functions are a good approx-

imation of the de Bruijn edges. In fact, far— oo they match the de Bruijn edges. In order to assign
proper regions to the peersin we use the same strategy as for the dynamic hypercube.

Every peerv € V chooses a random point, € [0,1) and is responsible for the regidi, =
[x,, succ(z,)) wheresuce(z,) is the closest successoraf on [0, 1) among the points of the peers.

4

In order to interconnect the peers, we use the clagsasd I'~! where ! contains the inverse
functions of the functions ii". That is, every peer is connected to all peets whose regions overlap
with fo(R,), fi(R,), fo '(R,) and fi ' (R,). The size of these regions differs only by a factor of 2
from the size of?,. Furthermorey connects to its successor and predecessor in). It follows from
Lemmas 9.1 and 9.2:

Lemma 9.7 Givenn peers, the dynamic de Bruijn network has a maximum degréglog n), w.h.p.

Routing in a dynamic de Bruijn network

Suppose that we want to route a message from potat pointy in [0,1). Let (z1,x,...) be the
binary representation afand(y,, v, . . .) be the binary representationspfThen we use the following
continuous-discrete strategy to route the message frtmy:

The message starts at the pegresponsible forc. If y is not in the region oty or one of its
neighborsy, chooses a random hit and forwards the message to the pgeswning (zy 2125 .. .). In
general, if the message has reached ape®erd(z; . .. 214192 . . .) is hot in the region of; or one of its
neighborsy; chooses a randomy, ; and forwards the message to the peer owiig, . . . z;z125 . .).

Once the message has reached a pg@wning (z; ... z1y1y2 . . .), it is forwarded to the peew; ;
owning(z;_1 - .. 21¥1Y2 - . .) and so on until it reaches the peer owningy; . . .).

All of the hops in the routing strategy can be performed along edges of the dynamic de Bruijn
graph. Also, notice that the maximum distance betwéen..zyzi2,...) and (z;... 211192 . .)
shrinks by a factor of 2 in each hop. Hence, once a distance equal to the smallest region is reached
the routing strategy can move from a pegeto a peerv;. Thus, the following theorem immediately
follows from Lemma 9.1.

Theorem 9.8 Using the continuous-discrete routing strategy, it takes at midétg n) hops until a
message is routing from any pointo any pointy in [0, 1).

The continuous-discrete routing strategy does not only have a low dilation but also a small con-
gestion because it has Valiant’s trick already built into it. Hence, the following theorem holds using
similar arguments as in Theorem 9.5.

Theorem 9.9 For every permutation routing problem, the congestion caused when using the continuous-
discrete routing strategy above is at maxflog® n), w.h.p.

Joining and leaving a dynamic de Bruijn network

Suppose that a new peercontacts some peer already in the system to join the system. Then
v's request is first sent to the peeowning x, using the continuous-discrete routing strategy above,
which only takesO(logn) hops according to Theorem 9.8. forwards information about all of its
(incoming and) outgoing edges to deletes all edges that it does not need any more, and informs the
corresponding endpoints about this. Becali$e) C R(u) for the old R(u), the edges reported o
are a superset of the edges that it needs to estahlishecks which of the edges are relevant for it,
informs the other endpoint for each relevant edge, and removes the others.

If a nodev wants to leave the network, it simply forwards all of its outgoing edges to the peer at
pred(z,). That peer will then merge these edges with its existing edges and notifies the endpoints of
these edges about the changes.

We know from Theorem 9.8 that the routing part only takd$ogn) hops. Furthermore, Lem-
mas 9.1 and 9.2 imply that every peer has at niddbgn) outgoing edges. Hence, we obtain the
following theorem.

Theorem 9.10 Join and leave take at moSt(log n) work andO(log) communication rounds, w.h.p.

Also the dynamic de Bruijn network can be used for data management with the help of the consis-
tent hashing approach.

9.2 Skip graphs

So far, we saw how to construct completely decentralized peer-to-peer systems with good topological
properties if the peers are assigned to random locations if0thég-interval. However, there are
several scenarios in which it would be much better if the peers are organized according to their real,
user-defined names instead of just random names.

For example, suppose that we want to implement a distributed name service such as the well-known
domain name service (DNS). Then we would like to organize the peers in a peer-to-peer system so that
a peer with a given name can be found quickly. If the names were well-spread in the name space so tha
we could interpret them as well-spread numbers inthe)-interval, then we could use the dynamic
de Bruijn network to implement such a service. However, we cannot guarantee that the names will be
well-spread, and therefore we need a different overlay network design.

As another example, consider the situation that we want to design a peer-to-peer system in which
we can take locality issues into account. Locality is an important issue in the Internet. Using the
dynamic de Bruijn network can mean that a message islsgnt times across the world before it
reaches its destination. Instead, imagine that we knew the geographic location of every peer. One
possible way of specifying such a location could be

North. America.USA.MD.Baltimore.Johnklopkins Univesity. ComputeiScience

If such information is available, we could organize the peers in an overlay network sorted according
to this location information so that now messages will only be sent once across the world in the worst
case. Instead of a geographical location, one could also use a hierarchically specified Internet location,
starting with the backbone ISP, the local ISP, and so on (which may be determined via traceroute, for
example).

In the following, we present overlay network designs that allow peers to be ordered according
to arbitrary user-defined names. We first present (random) skip graphs [1, 4], and then we present
deterministic skip graphs which are also known as hyperrings [3].

Skip graphs

Given an infinite bit string = x,z523 . . ., we defineprefix (b) = € (the empty word) angrefix,(b) =
r12o ... x; for everyi > 1. Suppose that we have a (pseudo-)random hash funktemssigning to
each node afD representing an infinite bit string. Given a set of notlesve define for every € VV
and: > 0:

e succ;(v) = argmin{w € V | Name(w) > Name(v) andprefix;(h(v)) = prefix;(h(w))},
i.e. succ;(v) is the nodew whose name is the closest successor'®iname (with respect to
lexicographical ordering) with the samérst bits inh(w) ash(v), and

e pred;(v) = argmax{w € V' | Name(w) < Name(v) andprefix,(h(v)) = prefix;(h(w))}.

Notice that we view the name space as a ring here. This measscg(v) that if there is no node
with Name(w) > Name(v) that fulfills the prefix condition, then we associatec;(v) with the node

w with smallest name so thatefix;(h(v)) = prefix,;(h(w)). If there is no other node in the network
with that property, then we seticc;(v) = v. In skip graphs, the following invariants have to be kept
at any time.

Invariant 9.11 For any set of node¥” currently in the system, it holds for everyc V thatv is
connected taucc;(v) andpred;(v) for all i > 0.

Invariant 9.11 requires that the nodes are organized in a hierarchy of doubly linked cycles, where
the node names have to be sorted in every cycle, and every node participates in exactly one cycle for
every: > 0. A cycle at level is calledi-cycle ori-ring, and an edge in airing is called an-edge.

Skip graphs have the following properties, wheris the current number of nodes in the network:

Theorem 9.12 If Invariant 9.11 is true and assigns random bit strings to nodes, then the skip graph
has a maximum degree 6f(log n), a diameter ofD(logn), and a node expansion ©0(1), with high
probability.

Proof. The probability that some fixed node paiandw fulfills prefix,(h(v)) = prefix;(h(w)) is
equal tol /2. Hence, fori > 3logn, it holds that

Pr[there is a node pair, w with prefix;(h(v)) = prefix;(h(w))]
<) Pr[node paiw, w fulfills prefix;(h(v)) = prefix;(h(w))]

VW

_ oyl e il

o 23logn — n3 n
Hence, with high probability there is no ring of lev&log n or higher. Thus, every node has a degree
of at most2(3logn + 1).

Next, we bound the diameter. Consider any node V. Our aim is to move fromv to a nodew
with largest; so thatprefix;(w) = 00...0. To do this, we move from, = v to the closest successor
uy on the 0-ring withprefix, (u;) = 0, and in general from node to the closest successor, ; on the
currenti-ring with prefix; ; (u;41) = 00...0. For anyi > 0, it holds:

1 6+1
Prlthe distance ta,,; is d] = <2>)

Hence,

1 6+1 1 0+2
E[distance tay1] =) 4- <2> =Y (5+1)- (2)
J

(

> >0
1
4

IO SR

Since we know from the degree proof that there are at Bagin levels with high probability, the
expected number of hops we need to perform to get fsdow is O(log n). Furthermore, going from
w to the nodew’ with smallest bit string also takes juSt(logn) hops on expectation. Hence, every
node inV' can reach the node’ with smallesth(w’) in O(logn) steps on expectation, and this can
also be shown to hold with high probability. Thus, the diametél (&g n), with high probability.

The expansion proof is involved and will not be shown here. See [2] for details. ad

Routing in skip graphs

Consider the following routing strategy:

Suppose that node is the current location of a message with destinafiaine. As long as
Name ¢ (Name(pred,(u)), Name(u)] (i.e. the message has not yet reached a notleat is the
closest successor dfame), u sends the message to the nogec;(«) with maximum< so that
Name(suce;(u)) < Name (treating the name space as a ring).

One can show the following result:

Lemma 9.13 For any nodev € V and any hamé ame, it takes at most(logn) hops, with high
probability, to send a message franto the node whose name is the closest succesSosiiee.

Joining and leaving the network

Suppose that a new nodecontacts nodes € V' to join the system. Themn will forward v’s request
to succy(v) using the routing strategy above wittame = Name(v). succy(v) will then integratev
betweensuccy(v) andpred, (v). Afterwards,y sends out two requests along the 0-ring to finct; (v)
andpred, (v). Once they are found, integrates itself into its 1-ringv then uses the 1-ring to find
succe(v) andpred,(v), and then integrates itself into the 2-ring. This continues wrhihs integrated
itself into the highest possible ring containing at least 2 nodes.

Using a probabilistic analysis, one can show the following result:

Theorem 9.14 Inserting a new node requirgg(log n) time and work with high probability.

If a node wants to leave the system, it does this by simply conneptingy(v) with succ;(v) for
every: > 0. This gives the following result:

Theorem 9.15 Deleting a node require®(log n) time and work with high probability.

Searching

When a node searches for a node with nafName, then it simply uses the routing strategy described
above. Once a node with Name(w) = Name has been foundy reports its IP address back to
This strategy has the following performance:

Theorem 9.16 Any search operation requirg3(log n) time and work with high probability.

Hyperring

Next we consider the hyperring. Like the skip graph, also the hyperring consists of a hierarchy of
rings. However, here we are much more strict about how the rings are maintained.

Suppose that we have a hyperring witmodes. Then it consists of approximatéby n levels of
rings, starting with level 0. Each level> 0 consists of approximately directed cycles of approxi-
matelyn /2* nodes, which we catings. All rings have the same orientation, and we require the nodes
in every ring to be ordered according to their names. For everyRirag leveli, two rings of level
i + 1 share its nodes in an intertwined fashion. As before, a ring at ieviél be called ani-ring, and
a leveli edge will be called arnedge Consider someé-ring R and let(u, v, w, z) be four consecutive
nodes onk. We say thatu, v, w, =) form ani-bridge (or simply abridgeif i is clear from the context)
if there is an(i + 1)-edge fromu to x and an(i + 1)-edge fromw to w. An (i+ 1)-edge is callegherfect
if it bridges exactly twa-edges.

bridge 2

Figure 1:An example of a hyperring. The bridges have a distance of 5 from each other.

It is possible to maintain a hyperring with at most one bridge in every ring. However, in this case
we would create too much update work ftIN or LEAVE operations. Instead, we only demand that
i-bridges are sufficiently far apart from each other. A hyperring is calledparatedf in everyi-ring
R the ¢-bridges onR are at least nodes apart from each other, which means that there are at least
k — 1 nodes between the quadruples of nodes forming a bridge. We start with a few properties of
hyperrings which are easy to prove.

Lemma 9.17 For everyk > 0, the k-separated hyperring has a maximum degree of at RQst-
2/(k + 1)) logn and a diameter of at mostlog n.

Proof. First, we bound the maximum degree. Consider somieg 1. In order to minimize the size
of ani+ 1-ring R’ on top of R without violatingk-perfectness, the best one can do is using a repetitive
sequence ofk/2] + 1 edges, where one edge bridges three edg&sand the remainingk /2| edges
bridge two edges iR. Hence,

|R| 1 1
> ——— (14 [k/2]) = (= — IR
— 3+2[k/2] (1+[k/2)) 2 A([k/21+1)+2 &

1 1
> —(1-——)-
> 3 (1) I

This also implies thatR’| can be at mos}(1 + ;-5)|R|. Hence, ari-ring R can have a size of at most

|[R]

1 1 ‘ 1 - ;)
1) < DLk o 9—i(1-2/(k43)
21(+k+3) ST <

Thisisatmost 1if > (logn)/(1 —2/(k + 3)). Since each node has 2 edges in each level in which it
participates, the maximum node degre@(iegn)/(1 —2/(k + 3)) = 2(1 +2/(k + 1)) log n.

Next, we bound the diameter. Consider any two nodesd w on a ring R, and letR, and
R; be the two intertwined rings on top d@®. Furthermore, let, be the node inRk, nearest tow
and wy be the node ink, nearest tow. Definev; andw; in the same way fo?;. First of all,
dR(U,"Uo), dR(U, U1), dR(w, wg), anddR(w, wl) are all at most 1. HenCdﬂ(Uo, U}Q) < dR(U, UJ) + 2
anddg(vi,w;) < dg(v,w) + 2. Since the nodes used B and R, are disjoint, it must hold that
eitherdg, (vo, wo) < dr(v,w)/2 + 1 0r dg, (v, w;) < dg(v,w)/2 + 1. Hence, if we always take the
ring of lower distance in each layer, then for each layee obtain the recursios;,; < d;/2 + 3 with
dy = dg(v,w). Therefore, the total number of edges used is at Bbsin. O

Unfortunately, hyperrings with constant separation can have a bad expansion.

Theorem 9.18 For everyk > 0, the k-separated hyperring has, in the worst case, an edge expansion
of
O(1/n!/CEEED?))

The proof of this theorem is quite involved and can be found in [3]. Unfortunately, Theorem 9.18
implies that ndk-separated hyperring with= O((log n)'/>=¢) for some constant > 0 can guarantee
an expansion of2(1/log®n) for some constant depending ore. Hence, in order to have a good
expansion, we nedd= Q(1/log n). However, notice that wheindepends on the size of the hyperring,
node insertions and deletions that have been performed in the past might havé tisatdsagnificantly
differs from thek used by current insertions and deletions. Hence, parts of the hyperring may be out of
date. So the question is whether it is necessary to revisit these parts in order to bring the hyperring up
to date. Fortunately, as one of the main results in [3], it was showritilsais not necessaryOne can
simply use as the curreitthe degree of any node currently in the system when executiagnaor
L EAVE operation, and oldoIN or LEAVE operations never have to be revisited, to show the following
result. (R| denotes the number of nodes in a riRgand|e| denotes the number of node on the 0-ring
bridged by edge.)

Proposition 9.19 At any time it holds:
1. thering distortion is low i.e. for everyi-ring R, |R| € [5 - n/2" —1,2-n/2" + 1] and
2. theedge distortion is lowi.e. for everyi-edgee, |e| < 4 - 2°.

The proof for this is quite complicated and can be found in [3]. For simplicity, we assume for the
rest of this section thdt is fixed. We start with describing how to route in the hyperring.

Routing in the hyperring

We use the same routing strategy as for skip graphs:

Suppose that node is the current location of a message with destinafiéime. As long as
Name ¢ (Name(pred,(u)), Name(u)] (i.e. the message has not yet reached a notleat is the
closest successor dfame), u sends the message to the nogec;(u) with maximumi so that
Name(succ;(u)) < Name (treating the name space as a ring).

Since this routing strategy prefers edges of higher level and every-edge bridges at most 3
i-edges for every, we obtain the following fact.

10

Fact 9.20 Any message moves along a sequence of edges of non-increasing level and uses at most tw
edges in each level.

Combining this with Lemma 9.17, which says that there are at fflost2/(k + 1)) log n levels,
we achieve the following result.

Lemma 9.21 For any nodev € V and any naméName, it takes at most)(logn) hops to send a
message from to the node whose name is the closest succesSWdiee.

Joining and leaving the network

First, we introduce some notation. Leicc;(v) be the successor ofin its i-ring andpred, (v) be the
predecessor af in its i-ring. For every node on R, its > i-endpoints represent all endpoints of edges
in v with level more thani. Notice that each node has two endpoints in each level. By “moving” the
i-endpoints fromu to v, we mean that we replace thedges(pred;(u), u) and (u, succ;(u)) by the
i-edges(pred,(u), v) and(v, succ;(u)). By “permuting” thei-endpoints ofu andv, we mean that we
move thei-endpoints of: to v and thei-endpoints ob to w.

Suppose now that a new nodecontacts some node € V to join the system. Then will
forward u’s request tasuccy(u) using the routing strategy above witume = Name(u). succy(u)
will then integrateu betweensuccy(u) andpred,(u). Afterwards,u is integrated into the hyperring
level by level, starting with level 0. In each levelve integrate the node by either removing an already
existing bridge in itsk + 2-neighborhood or by creating a new bridge. A bridge is removed by first
dragging it over tou by permuting> i-endpoints (see Figure 3). Then case (b) or (c) in Figure 2 is
applied. Otherwise, we just apply case @!N terminates once we reach a ring of sizgin. .., 7}
(for larger rings, two new subrings are created).

TN = TS

@

7’ ://:’ \:\:\ N # s E _:\ é ; ’:_:\ N
(b)
- (c)

Figure 2: The three cases when adding a node. Case (c) reduces to case (b).

Theorem 9.22 JoiN locally preserves thé-separation of the hyperring and require3(k log” n)
work andO(log k - logn) time.

Proof. JoIN locally preserves thg-separation property because it only creates a bridge if there is no
other bridge in thé + 2-neighborhood. Otherwise, it removes a bridge. Thus, it remains to prove the
work and time bounds.

11

Figure 3: Permuting- i-endpoints drags the bridge over to obtain, e.g., case (c) in Figure 2.

In each level, only & (k)-neighborhood is investigated. In the worst case, a bridge has to be
moved tou (resp. to the node to be integrated into that level in place)off his requiresD(k log n)
message transmissions. Since the hyperringlasz n) levels, the total work i€)(k log® n).

When using edges in higher levels, we can investigat&tig-neighborhood of a node if(log k)
steps. Thus, i (log k) steps we can update the endpoints necessary to proceed with the next higher
level. Since there ar@(log n) levels, this results iW(log k - log n) time. O

We also remove a node from the hyperring level by level, starting with level 0. In each level,
we remove the node by either removing an already existing bridge in-it2-neighborhood or by
creating a new bridge. A bridge is removed by first dragging it over (Figure 3) and then applying case
(b) or (c) in Figure 4. Otherwise, we just apply case (aEAVE terminates once we reach a ring of
sizein{4,...,7} (rings smaller than 4 are removed).

,': i:g ;: :‘\ < — /i : : i\
(a)
(b)

\._\/ ‘:: :/” —_— : ":‘ :”:"‘
-~ (c)

Figure 4. The three cases when removing a node. Case (c) reduces to case (b).
Theorem 9.23 LEAVE locally preserves thé-separation of the hyperring and requiré k log” n)
work andO(log k - log n) time.

The proof is similar to the proof of Theorem 9.22.

12

Searching

When a node searches for a node with namame, then it simply uses the routing strategy described
above. Once a node with Name(w) = Name has been foundy reports its IP address back ©o
This strategy has the following performance:

Theorem 9.24 Any search operation requirg3(log n) time and work with high probability.

Furthermore, we can show the following result, demonstrating that not only the dilation but also
the congestion of search requests can be kept low in the hyperring.

Theorem 9.25 The congestion caused hySEARCH requests, one per node, with random destinations
is O(log n), with high probability.

Proof. Fact 9.20 implies that everyring R can only receive requests from rings on top of it. Thus, it

can only receive requests from its own nodes. Consider now an arbitrary imodg It is easy to check

that only those requests will be sentitevhose destination is bridged by thedgee leavingv in R.

From Proposition 9.19 we know thabridges at most-2¢ nodes and thak consists of at most-n /2!

nodes. Since every node is the starting point of one request and every request has a random destinatiol
the expected number of requests that want to reach R is at most(4 - 2'/n) - (3 - n/2") = 12.
Combining this with the fact that every request only uses at most 2 edgegsee Fact 9.20), the
expected number of requests that traverse R is at most 24. Because every node participates in at
mostlog n+O(1) levels, the overall expected number of search requests passing thrsu@fog n).

Using the fact that every request picks a random destination independently from other requests, one
can also show that the congestion cause®byrcH is O(logn) with high probability. O

References

[1] J. Aspnes and G. Shah. Skip graphsPtac. of the 14th ACM/SIAM Symp. on Discrete Algorithms (SQDA)
pages 384-393, 2003.

[2] J. Aspnes and U. Wieder. The expansion and mixing time of skip graphs with applicatidPmclrof the
17th ACM Symp. on Parallel Algorithms and Architectures (SPpAges 126134, 2005.

[3] B. Awerbuch and C. Scheideler. The Hyperring: A low-congestion deterministic data structure for dis-
tributed environments. IRroc. of the 15th ACM/SIAM Symp. on Discrete Algorithms (SQBR@20)4.

[4] N.J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable overlay network
with practical locality properties. 14th USENIX Symposium on Internet Technologies and Sy s26®3.

[5] M. Naor and U. Wieder. Novel architectures for P2P applications: the continuous-discrete approach. In
Proc. of the 15th ACM Symp. on Parallel Algorithms and Architectures (SRfsfyes 50-59, 2003.

13

