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Problem 1: Basic Understanding (5 points)
Please answer these questions in words and/or pictures (not calculations).

(a) Suppose we have a maximum flow problem with multiple sources and destinations, and
every source can send flow to any destination. Does it suffice to use a single-commodity
flow algorithm, or do we need a multi-commodity flow algorithm to solve this problem?
Justify your answer.

(b) How do we have to manipulate a hypercube to obtain a butterfly?

(c) What is the difference between oblivious and adaptive routing?

(d) Why is it in general not a good idea to use a path system for oblivious routing that has
only a single path for every source-destination pair?

(e) Is there a difference in the performance of the FIFO queueing rule between the adversarial
and the stochastic injection model? Why?

Problem 2: Degree and Diameter (4 points)
For any d ∈ IN let Gd = (V,E) be a graph with node set V = [2]d and edge set E = {{x, y} |
x = (xd−1, . . . , x0) with xd−1 = 0 and y = (xd−2, . . . , x0, y0) with y0 ∈ {0, 1}}.

a) What is the degree of Gd? Justify your answer. (2 points)

b) What is the diameter of Gd? Justify your answer. (2 points)

Hint: it may help to draw a picture of Gd for small d, starting with node (0, . . . , 0).

Problem 3: Expansion (2 points)
Compute the expansion of a d-dimensional hypercube. It is sufficient here to guess the right set
U and compute the value c(U, Ū)/ min{c(U), c(Ū)}.

Problem 4: Multicommodity Flows (3 points)
Consider the discrete Awerbuch-Leighton algorithm given in assignment 3 (see also Figure 1)
for (1 + ε)-feasible multicommodity flow problems of demand 1 for every commodity, i.e. the
demands can be increased by a (1+ε) factor and there is still a feasible solution. Use the fact that
it guarantees bounded buffers to design a discrete Awerbuch-Leighton algorithm with bounded



buffers for (1+ε)-feasible multicommodity flow problems of arbitrary integral demands. (A proof
of correctness is not needed.)
Hint: a commodity of demand d can be seen as d commodities of demand 1. (However, the
algorithm has to be expressed in terms of the original commodities!)

What about (1 + ε)-feasible multicommodity flow problems with arbitrary positive demands?
(2 extra points)

Discrete Awerbuch-Leighton Algorithm:
At each node u:

1. Distribute newly injected flow evenly among the buffers Qi(e), i.e. distribute
it so that afterwards for every i, q̄i(e) is the same for every edge e leaving u.

2. For every edge (u, v), select any i with maximum ∆i(u, v). If this is negative,
no flow is sent. Otherwise, compute fi = min{1, ∆i(u, v)/2} and send a flow
of c(e) · fi from Qi(u, v) to Qi(v, u).

3. Receive the transmitted flow and absorb flow that reached its destination.

4. Rebalance the queue heights so that for every i, q̄i(e) is the same for every
edge e leaving u.

Figure 1: The Discrete Awerbuch-Leighton algorithm.

Problem 5: Routing (4 points)

(a) Consider the problem of routing a multicommodity flow problem in an n × n-mesh in
which the total demand leaving or leading to a node is at most d. Use the fact that the
flow number of the n × n-mesh is Θ(n) to compute an upper bound on the congestion
and dilation (in terms of n and d) of routing any such multicommodity flow problem. (2
points)

(b) Consider the problem of simulating a communication step of a hypercube by a mesh of
the same size. For this, we may use any one-to-one mapping of the hypercube nodes to the
mesh nodes. Use [(a)] to determine the congestion and dilation of simulating an arbitrary
communication step in the hypercube (i.e. along each edge a flow of up to 1 may be sent)
by the mesh. (2 points)

Good luck!


