Fundamental Algorithms

WS 2006/2007

Jens Ernst

Lehrstuhl fiir Effiziente Algorithmen
Institut fdr Informatik

iéi% Fundamental Algorithms (CSE) m

General Information:

* Audience: Students of the program “Computational
Science and Engineering” (CSE)

e Lecture: 2 hours/wk

* Practice Session (not mandatory): 2 hours/wk

i%i% Fundamental Algorithms (CSE) m

General Information (contd):

e |_ecturer: Dr. Jens Ernst, Zimmer 03.13.061

Email: ernsti@in.tum.de
Tel. 289 — 19426

Office hours: None (just call)

e | ecture; Tue. 11:15-13:00, Room 03.11.018

* Practice Session: What day/time suits you?

mailto:ernstj@in.tum.de

géii Fundamental Algorithms (CSE) m

 Homework assignments: Not mandatory, but
recommended; Not required for admission
to the exams

* Tests: Midterm and Final exams
* Dates will be announced plenty ahead of time

iéi% Fundamental Algorithms (CSE)

 Lecture Material:
1. Introduction, Basics and Notation

2. Developing Algorithms by Induction

3. Searching and Sorting

4. Data Structures and Advanced Searching
5. Graph Algorithms

6. Text Algorithms

7.

8.

L]

Fundamental Algorithms (CSE) m

‘Recommended Literature:

* Thomas Cormen, Charles Leiserson, Ronald Rivest,
Clifford Stein, “Introduction to Algorithms”
MIT Press, Cambridge MA, 2. Edn, 2001

* Robert Sedgewick, “Algorithms”
Pearson Education, Munchen 2002

- S. Dasgupta, C.H. Papadimitriou, U.V. Vazirani

Available online at
http://www.cse.ucsd.edu/~dasgupta/mcgrawhill/all.pdf

Note: None of these is “the textbook” for this course. Please take notes in class.

iéi% Fundamental Algorithms (CSE) m

1. Introduction:

Definition (Algorithm): An algorithm is a uniquely defined
procedure to obtain the desired output, given some set of
input data. Here we consider algorithms satisfying the
following properties:

« sequential. At each point in time exactly one
operation is carried out

Remark: Parallel and distributed algorithms are non-sequential

» deterministic: At each point in time, the next
operation to be carried out is uniquely defined

Fundamental Algorithms (CSE) m

e Remark 1. Complexity theory, for instance is concerned with

non-deterministic algorithms in which each step can have two
or more subsequent steps.

. Remark 2: Randomized Algorithms can decide between

alternative operations as a result of a random event, e.g. by
flipping a coin.

« statically finite: The description of the algorithm (e.g. in
the form of pseudo source code requires only a
finite amount of space.

Fundamental Algorithms (CSE) m

» dynamically finite: At each point in time during the
execution of the algorithm, only a finite amount
amount of storage is used.

 termination: For any input, the execution ends after a
finite number of steps.

Remark: This may not be the case for online algorithms,
that do not know their entire input at the beginning of their
execution.

iéi% Fundamental Algorithms (CSE) m

Standard Examples of Algorithmic Problems:

 Data organization and efficient data access in a web
search engine

 Data storage and efficient data manipulation in a database
» Assembly of the entire human genome sequence

* Computing a VLSI layout

* Routing of TCP/IP packets in the internet

« Compression of an audio or video file

» Efficient encryption and decryption of a set of secret data
to be transmitted over a non-trustworthy medium

etc...

iéi% Fundamental Algorithms (CSE) m

Algorithms and Efficiency:

Typically, the efficiency of algorithms is assessed in terms of
running time and storage usage. Both are specified as a

function of input size (given in bits). (Why?)

* Running time is mostly measured as the number of operations
carried out during the execution (e.g. number of arithmetic
operations or number of comparisons).

Example: Suppose some machine can carry out one operation
per microsecond. Let us consider several algorithms of
varying efficiency for the same problem: ...

i

(contd.)

Fundamental Algorithms (CSE)

For various input sizes n, we die give the running time T(n)

L]

(wall clock time in seconds) for different algorithms requiring
t(n)=7000n, 1000n- log(n), 100n° or 2" operations.

20 50 100 200 |500 1000 | 10000
71000 n 0.02s | 0.05s | 0.1s 0.2s |0.5s 1s 10s
1000 nlogn |0.09s | 0.3s |0.6s 1.5s |4.5s 10s |2 min
100 n2 0.04s [0.25s |1s 4s 25s 2min | 2.8 h
10 n3 0.02s |1s 10s Tmin (21 min |2.7h |116d
2" 1s 35y | 3x10% cent

iéi% Fundamental Algorithms (CSE) m

As you see, If input size n grows, the practical usability of your
algorithm depends entirely on its complexity.

Unfortunately, this fact is often ignored in the software industry.

“Let's just go and buy a faster machine ...”

Note: The only thing that changes as a result of a faster
machine (e.g. executing two operations per microsecond) Is a
constant factor in the running time. But as n grows, it's the
asymptotic complexity that matters.

Fundamental Algorithms (CSE) m

1.4e+08 T T T T | T T

1000*n
1000*n*log(n) -—------
1005 %2 --------

tn)

1.2e+08
16+08 |- i
8e+07 |- i
6e+07 |- i
4e+07 |- i

2e+07 | o

50 100 150 200 250 300 350 400 450 500

60000

50000

40000

30000

20000

10000

Fundamental Algorithms (CSE) m

1000*n i

1000*n*log(n) ----~*-
100* n**2 <0

4
4
r &l

i%i% Fundamental Algorithms (CSE) m

What is the maximum tolerable n ?

Suppose, our machine can execute f operations per second
(in the example: f =109). Let the algorithm require

t(n) operations to solve a problem of size n.

Then the wall clock execution time T(n) Is

T(n)=t(n)/f [sec].

If the computation needs to have finished after s operations, the
Input size is limited to

n< t'(s-f)

(where we assume that f(n) is a strictly growing function).

iéi% Fundamental Algorithms (CSE) m

Remark: This shows us the effect of increasing the processor
frequency f, as you do by buying a faster machine:

Example: Let the time complexity be t(n)=n°and let s be the
maximum tolerable time for the computation. Using a machine
twice (1000 times) as fast, the allowable input size n increases
by only a factor of 1.414 (31.62).

In the case of t(n)=2", n can be allowed to grow by only a
constant of log(2)=1 (by |log(1000) |=9) !

Hence, if your algorithm is too complex, the benefit of a faster
machine diminishes.

iéi% Fundamental Algorithms (CSE) m

Goals of this course:

* Introduction to formalisms and terminology for algorithm design
» Formalization of algorithmic problems

* Fundamental techniques in algorithm design

» Algorithms for standard problems

* Techniques for analyzing time and space complexity

* Primitive and higher data structures

* Homework assignments and practice sessions

* Hints on implementation and other practical issues

