
11 Universal Routing Protocols

Efficient communication mechanisms are a prerequisite to exploit the performance of large par-
allel and distributed systems. The problem of moving information from specified sources to
specified sinks is called routing. The routing problem involves choosing the right paths through
the network and scheduling the packet movements along these paths. In this section, we will
assume that appropriate routing paths are given so that we only have to focus on finding proper
scheduling protocols.

11.1 Notation

In the following, we assume that the communication network can be modeled as an undirected
graph G = (V,E). Time is divided into time units and in each time unit, every edge can
be crossed by at most one packet in each direction. A routing path of a packet must form a
contiguous sequence of edges in G. Usually, these routing paths are simple, i.e., every edge is
used at most once in a path. Routing a single packet through a network is easy, but when
routing multiple packets, local decision rules are needed that determine which packet to prefer
if multiple packets want to cross the same link at the same time.

In the universal routing problem we are given an arbitrary collection of n simple routing
paths with congestion C and dilation D, and the goal is to find a schedule for the movement of
packets along these paths, one per path, so that the time until all packets have reached their
destinations is minimized. The dilation is the length (i.e., the number of edges) of the longest
path in the collection, and the congestion is defined as the maximum, over all edges e in the
network, of the number of paths using e in the same direction.

A classical result in routing theory is that for every collection of simple routing paths with
congestion C and dilation D there exists a schedule with runtime O(C + D). Since max{C, D}
is a lower bound for any schedule, this is best possible up to a constant factor. An important
question has been whether this time bound can also be achieved online, i.e., the nodes in the
given graph can compute locally, without any coordination and preprocessing, in which order
to forward the packets so that a runtime as close to C + D as possible can be achieved. In this
section, we will present some of these protocols. All of them are randomized, which comes as no
surprise, because it is known that deterministic routing protocols perform poorly in the worst
case. In the following, [x] means the set {0, . . . , x− 1} for any x ∈ IN.

11.2 The Random Delay Protocol

The oldest online protocol that deviates only by a factor logarithmic in n, C and D from a best
possible runtime of O(C+D) for arbitrary path collections is the protocol presented by Leighton,
Maggs and Rao in [2]. We present an extension of it, called here the random delay protocol,
that can route packets along an arbitrary simple path collection of size n with congestion C and
dilation D in O(C + D log n) steps, w.h.p. (the protocol in [2] requires O(C + D log(nD)) time
steps, w.h.p.).

1

Description of the Protocol

The protocol assumes that all links have bandwidth B (fixed later), that is, up to B packets
can traverse a link at one time step. Clearly, each time step for links with bandwidth B can
be simulated in B time steps by links with bandwidth 1. The following algorithm is used as a
basic building block for the random delay protocol.

Algorithm Route(`):
Each packet is assigned an initial delay, chosen uniformly and independently at
random from the range [C/ log n]. A packet that is assigned a delay of δ waits in its
initial buffer for δ steps and then moves on without waiting again until it reaches its
destination or traversed ` links. If more than B packets want to use the same link
at the same time then all of them stop.

The random delay protocol works as follows.

repeat
execute Route(min{D,n})

until all packets reached their destinations

Theorem 11.1 Suppose we are given an arbitrary simple path collection P of size n with con-
gestion C and dilation D. Then the random delay protocol needs at most O(C + D log n) time
steps to finish routing in P, w.h.p.

Proof. Let us consider some fixed edge e and time step t during the execution of Route(`).
Since at most C packets want to traverse e and each of these packets chooses an initial delay
independently at random from a range of size C/ log n, the probability that at least B = max{α+
2, 2e} log n + 2 packets want to traverse e at time step t is at most

(
C

B

) (
1

C/ log n

)B

≤
(

e log n

B

)B

≤
(

1

2

)(α+2) log n+2

=
1

4nα+2
.

Let us say that a packet P fails at edge e if at least B other packets want to use e at the same
time as P . Then the probability that P fails at least k = dD/ne times during the execution of
the random delay protocol is bounded by

(
D + k

k

) (
1

4nα+2

)k

≤
(

4D

k

)k (
1

4nα+2

)k

≤
(

1

nα+1

)k

≤ 1

nα+1
.

Since there are n packets to consider, the probability that there exists a packet with at least k
failures is at most n ·n−α−1 = n−α. Hence, w.h.p. the random delay protocol successfully routes
all packets along the given path collection in time

B · (` + C/ log n) · (D/` + k)

= O((C + min{D, n} log n) · (D/ min{D, n}+ dD/ne))
C≤n
= O(C + D log n) .

This completes the proof of Theorem 11.1. ut

2

Limitations

The runtime bound of the random delay protocol holds for arbitrary, even non-simple, path
collections. However, the definition of C must be changed for non-simple path collections in a
way that if a packet traverses an edge e q times then it has to count q times for the congestion
at e.

In the following we show how a multiplicative factor of log n in the time bound can be
avoided when routing packets along more restricted classes of path collections. Let us start by
demonstrating this for leveled path collections.

11.3 The Random Rank Protocol

A leveled network is a network in which the nodes can be separated into levels L0, L1, L2, . . . with
the property that every edge connects two nodes of consecutive levels. If the leveled network
consists of levels from L0 to LD, we say its depth is D. A leveled path in such a network is a path
that starts at some node in Li for some i and then follows edges along the levels Li, Li+1, Li+2, . . .
until it ends in some level Lj, j > i.

The random rank protocol has its origin in papers by Aleliunas and Upfal and can be found
in a similar form as described below in Leighton’s book [1]. It routes packets along an arbitrary
leveled path collection of size n with congestion C and depth D in O(C + D + log n) steps,
w.h.p., using edge buffers of size C. (Note that the depth of a leveled path collection is the
number of levels formed by its nodes, and not necessarily its dilation.)

Description of the Protocol

At the beginning, every packet p gets a random rank denoted by rank(p) that is stored in its
routing information. We require rank(p) to be chosen uniformly and independently from the
choices of the other packets from some fixed range [K] (K will be determined later). Additionally,
each packet stores an identification number id(p) ∈ [n] in its routing information that is different
from all identification numbers of the other packets. The random rank protocol uses the following
contention resolution rule.

Priority rule:
It two or more packets contend to use the same link at the same time then the one
with minimal rank is chosen.

If two packets have the same rank then, in order to break ties, the one with the lowest id
wins. The protocol then works as follows in each time step

For each link with nonempty buffer, select a packet according to the priority rule
and send it along that link.

For the random rank protocol the following time bound has been shown (see, e.g., [1]).

Theorem 11.2 Suppose we are given a leveled path collection P of size n with congestion C
and depth D. Let K ≥ 8C. Then the random rank protocol needs at most O(C + D + log n)
time steps to finish routing in P, w.h.p., using edge buffers of size C.

3

Proof. Consider the runtime of the random rank protocol to be at least T ≥ D + s. We want
to show that it is very improbable that s is large. For this we need to find a structure that
witnesses a large s. This structure should become more and more unlikely to exist the larger s
becomes.

Let p1 be a packet that arrived at its destination v1 in step T . We follow the path of p1

backwards until we reach a link e1, where it was delayed the last time. Let us denote the length
of the path from the destination of p1 to e1 (inclusive) by `1, and the packet that delayed p1 by
p2. From e1 we follow the path of p2 backwards until we reach a link e2 where p2 was delayed
the last time by some packet p3. Let us denote the length of the path from e1 (exclusive) to e2

(inclusive) by `2. We repeat this construction until we arrive at a packet ps+1 that prevented
the packet ps at edge es from moving forward. Altogether it holds for all i ∈ {1, . . . , s}: packet
pi+1 leaves the buffer of ei at time step T −∑i

j=1(`j + 1) + 1, and prevents at that time step pi

from moving forward.

se

. . .
1

2

1
s

l 1

1223

p p e p e p

l

v

Figure 1: The structure of a delay path.

The path from es to v1 recorded by this process in reverse order is called delay path (see
Figure 1). It consists of s contiguous parts of routing paths of length `1, . . . , `s ≥ 0 with∑s

i=1 `i ≤ D. Because of the contention resolution rule it holds rank(pi) ≥ rank(pi+1) for all
i ∈ {1, . . . , s}. A structure that contains all these features is defined as follows.

Definition 11.3 (s-delay sequence) An s-delay sequence consists of

• s not necessarily different delay links e1, . . . , es;

• s + 1 delay packets p1, . . . , ps+1 such that the path of pi traverses ei and ei−1 in that order
for all i ∈ {2, . . . , s}, the path of ps+1 contains es, and the path of p1 contains e1;

• s integers `1, . . . , `s ≥ 0 such that `1 is the number of links on the path of p1 from e1

(inclusive) to its destination, for all i ∈ {2, . . . , s} `i is the number of links on the path of
pi from ei (inclusive) to ei−1 (exclusive), and

∑s
i=1 `i ≤ D; and

• s + 1 integers r1, . . . , rs+1 with 0 ≤ rs+1 ≤ . . . ≤ r1 < K.

A delay sequence is called active if for all i ∈ {1, . . . , s + 1} we have rank(pi) = ri.

Our observations above yield the following lemma.

Lemma 11.4 Any choice of the ranks that yields a routing time of T ≥ D + s steps implies an
active s-delay sequence.

4

Proof. Suppose the random rank protocol needs T ≥ D+s steps. Then we get for
∑s

i=1 `i ≤ D
that T ≥ ∑s

i=1 `i + s and therefore T −∑s
i=1 `i− s ≥ 0. Hence we can construct an active delay

sequence of length s such that packet ps+1 leaves the buffer of es at time step T−∑s
i=1(`i+1)+1 ≥

1. From this the lemma follows. ut
Lemma 11.5 The number of different s-delay sequences is at most

n · Cs ·
(
D + s

s

)
·
(
s + K

s + 1

)
.

Proof. There are at most
(

D+s
s

)
possibilities to choose the `i such that

∑s
i=1 `i ≤ D. Further-

more, there are n packets from which p1 can be chosen. Since p1 and `1 determine the link e1

and the congestion at e1 is at most C, there are at most C possibilities to choose packet p2.
The same holds for the packets p3, . . . , ps+1 at the edges e2, . . . , es. Hence we altogether have at

most
(

D+s
s

)
· n · Cs possibilities to choose the delay packets. Finally, there are at most

(
s+K
s+1

)

ways to select the ri such that 0 ≤ rs+1 ≤ . . . ≤ r1 < K. ut

Note that during the execution of the random rank protocol the packets have a unique
ordering w.r.t. their priority levels. (If two or more packets have the same rank, then the
id’s of the packets are compared.) Hence the packets in an s-delay sequence must be different.
Since the packets choose their ranks independently at random, the probability that an s-delay
sequence is active is 1/Ks+1. Thus

Pr[The random rank protocol needs at least D + s steps]
Lemma 11.4≤ Pr[there exists an active s-delay sequence]

Lemma 11.5≤ n · Cs ·
(
D + s

s

)
·
(
s + K

s + 1

)
· 1

Ks+1

≤ n · Cs · 2D+s · 2s+K · 1

Ks+1

≤ n · 22s+D+K ·
(

C

K

)s

If we set K ≥ 8C and s = K + D + (α + 1) log n, where α > 0 is an arbitrary constant, then

Pr[The random rank protocol needs at least D + s steps]

≤ n · 22s+D+K · 2−3s = n · 2−s+D+K =
1

nα

which concludes the proof of Theorem 11.2. ut

Limitations

The following observation shows that there are simple path systems for which the random rank
protocol performs poorly. Its proof can be found in [3].

Observation 11.6 There exists a simple path collection of size n with dilation D = O(log n/ log log n)
and congestion C = O(log n/ log log n), where the expected routing time of the random rank pro-
tocol is bounded by Ω((log n/ log log n)3/2).

5

The path collection used for this observation consists of many subcollections of paths. Each
subcollection consists of a linear array of length D, with loops of length

√
D between adjacent

nodes (see Figure 2).

D edges

.

1 edge

Figure 2: The counterexample.

The packets traversing each subcollection of paths are broken into
√

D groups numbered 0
through

√
D− 1 of

√
D packets each. The packets in group i use the linear array for i

√
D steps

and then use
√

D− i loops as their path. Note that if, for all i ≥ 0, the packets in group i have
smaller ranks than the packets in groups with larger numbers, than the packets in group i delay
the packets in group i + 1 by D − (i + 1)

√
D + i steps.

11.4 The Growing Rank Protocol

Now we present a protocol that routes packets along an arbitrary shortcut-free path collection
of size n with congestion C and dilation D in O(C + D + log n) steps, w.h.p., using buffers of
size C. It is called growing rank protocol [4] and works as follows.

Description of the Protocol

Initially, each packet is assigned an integer rank chosen randomly, independently, and uniformly
from [K]. For each step, the protocol works as follows.

For each link with nonempty buffer,

• choose a packet p according to the priority rule,

• increase the rank of p by K/D, and

• move p forward along the link.

We generalize the result in [4] by analyzing the performance of the growing rank protocol for
the following type of path collections.

Definition 11.7 A path collection P is called d-shortcut-free if any piece of length at most d
of a path in P can not be shortcut by any combination of other pieces of paths in P.

We can show the following theorem.

6

Theorem 11.8 Suppose we are given a d-shortcut-free path collection P of size n with conges-
tion C and dilation D, d ≤ D. Let K ≥ 8C. Then the growing rank protocol needs at most
O(C + max{1, log(nD)

d
}D) time steps, w.h.p., to finish routing in P.

Proof. Similar to the proof of Theorem 11.2 we want to find a structure that witnesses a long
runtime of the growing rank protocol. First we introduce the following definitions.

In the following, we denote the rank of a packet p while waiting to traverse a link e by
ranke(p). Let id : {set of packets} → [n] be an arbitrary bijective function. We define the

ident-rank of p at e as ranke(p) + id(p)
n

and denote it by id-ranke(p). Note that in each round
the ident-ranks of all packets are distinct. This type of rank ensures that whenever a packet p
delays a packet p′ at a link e it holds id-ranke(p) < id-ranke(p′). The following lemma shows
that the rank of any packet can not be greater than 2K − 1 during the routing.

Lemma 11.9 Suppose p is a packet which is stored in the buffer of link e in some round. Then
rank e(p) ≤ 2K − 1.

Proof. At the beginning, the rank of p is at most K − 1. Since the length of the routing
path of p is at most D, the rank of p is increased by K

D
for at most D times. Thus, ranke(p) ≤

K − 1 + D · K
D
≤ 2K − 1. ut

Analogous to the proof for the random rank protocol, the following delay sequence will serve
as a witness for a long runtime of the growing rank protocol.

Definition 11.10 ((s, `, K)-delay sequence) An (s, `, K)-delay sequence consists of

1. s not necessarily distinct delay links e1, . . . , es;

2. s + 1 delay packets p1, p2, . . . , ps+1 such that the path of pi moves along the link ei and the
link ei−1 in that order for all i ∈ {2, . . . , s}, the path of ps+1 contains es, and the path of
p1 contains e1;

3. s integers `1, `2, . . . , `s ≥ 0 such that `1 is the number of links on the routing path of
packet p1 from e1 (inclusive) to its destination, for all i ∈ {2, . . . , s} `i is the number of
links on the routing path of packet pi from link ei (inclusive) to link ei−1 (exclusive), and∑s

i=1 `i ≤ `; and

4. s integer keys r1, r2, . . . , rs+1 such that 0 ≤ rs+1 ≤ · · · ≤ r2 ≤ r1 < 2K.

We call s the length of the delay sequence. Further we say that a delay sequence is active, if
rank ei(pi) = ri for all i ∈ {1, . . . , s} and rank es(ps+1) = rs+1

Lemma 11.11 Suppose the routing takes T ≥ 2D or more rounds. Then there exists an active
(T − 2D, 2D,K)-delay sequence.

Proof. First, we give a construction scheme for a delay sequence. Let p1 be a packet that
arrived at its destination v1 in step T . We follow p1’s routing path backwards to the last link
on this path where it was delayed. We call this link e1, and the length of the path from v to
e1 (inclusive) `1. Let p2 be the packet that caused the delay, since it was preferred against p1.

7

We now follow the path of p2 backwards until we reach a link e2 at which p2 was forced to wait,
because the packet p3 was preferred. Let us call the length of the path from e1 (exclusive) to
e2 (inclusive) `2. We change the packet again and follow the path of p3 backwards. We can
continue this construction until we arrive at a packet ps+1 that prevented the packet ps at edge
es from moving forward.

The path from es to v1 recorded by this process in reverse order is called delay path. It
consists of contiguous parts of routing paths. In particular, the part of the delay path from link
ei (inclusive) to link ei−1 (exclusive) is a subpath of the routing path of packet pi.

Let ri = rankei(pi) for all 1 ≤ i ≤ s and rs+1 = rankes(ps+1). Because of the contention
resolution rule we have 0 ≤ rs+1 ≤ . . . ≤ r1, and r1 ≤ 2K − 1 because of Lemma 11.9. Thus, we
have constructed an active (s, `, K)-delay sequence for every ` ≥ ∑s

i=1 `i.
Our next goal is to bound the sum of the `i’s. In addition to the ranks r1, . . . , rs+1, we

denote by r0 the rank of p1 at its destination. It follows immediately from the protocol that
ri + `i · K

D
≤ ri−1 for all 1 ≤ i ≤ s. As a consequence,

s∑

i=1

`i · K

D
≤ r0

Lemma 11.9
=⇒

s∑

i=1

`i ≤ (2K − 1) · D

K
≤ 2D . (1)

Since the delay sequence consists of
∑s

i=1 `i moves and s delays, it covers at most t =∑s
i=1 `i + s time steps. It follows that

t =
s∑

i=1

`i + s
(1)

≤ 2D + s .

Consequently, if we stop the above construction at packet pT−2D+1, we still have t ≤ T and
therefore found an active (T − 2D, 2D,K)-delay sequence. ut

Instead of considering the whole delay sequence, we will only consider a piece of it that is chosen
in such a way that we can be sure that no packet can appear twice in it. For this we introduce
the following definition.

Definition 11.12 ((s′, `′, K′)-delay subsequence) An (s′, `′, K ′)-delay
subsequence consists of

1. s′ not necessarily distinct delay links e1, . . . , es′;

2. s′+1 delay packets p1, p2, . . . , ps′+1 such that the path of pi moves along the link ei and the
link ei−1 in that order for all i ∈ {2, . . . , s′}, the path of ps′+1 contains es′, and the path of
p1 contains e1;

3. s′ integers `1, `2, . . . , `s′ ≥ 0 such that `i is the number of links on the routing path of packet
pi from link ei (inclusive) to link ei−1 (exclusive) for all i ∈ {2, . . . , s′}, and

∑s′
i=2 `i ≤ `′;

and

4. s′ integer keys r1, r2, . . . , rs′+1 such that 0 ≤ rs′+1 ≤ · · · ≤ r2 ≤ r1 < rs′+1 + 2K ′ and
r1 < 2K.

8

We say that a delay subsequence is active, if rank ei(pi) = ri for all i ∈ {1, . . . , s′} and
rank es′ (ps′+1) = rs′+1

The following lemma will be helpful to bound the total delay, length, and delay range of a
subsequence of a delay sequence. Its proof is similar to a proof in [5] (see Lemma 2.10).

Lemma 11.13 If there exists an active (s, `, K)-delay sequence, then there exists an active
(s

2α
, 2`

α
, 2K

α
)-delay subsequence for every α ≥ 1.

Proof. Suppose that an (s, `, K)-delay sequence is active. Divide the packet sequence p2, . . . , ps+1

into α contiguous subsequences such that each subsequence has at least bs/αc ≥ s/2α packets.
This also partitions the delay path into subpaths. Let subsequence 0 consist only of packet p1.
For every subsequence i ≥ 1, let `i denote the length of the ith subpath and let 2Ki denote the
delay range of ranks for the ith subsequence, i.e., 2Ki is the difference between the rank of the
last packet in subsequence i− 1 when delayed by the first packet in subsequence i, and the rank
of the last packet in subsequence i when delaying the second last. We know that there must be
fewer than α/2 segments with Ki > 2K/α, since

∑
2Ki ≤ 2K. Furthermore there must be fewer

than α/2 segments satisfying `i > 2`/α, since
∑

`i ≤ `. Thus there must exist some segment
for which `i ≤ 2`/α and Ki ≤ 2K/α. ut

Next we show that, if we restrict 2K
α

to be at most d
2
· D

K
, then no packet can appear twice in a

(s
2α

, 2`
α
, 2K

α
)-delay subsequence.

Lemma 11.14 For any (s′, `′, K ′)-delay subsequence with K ′ ≤ d
2
· D

K
it holds that no packet

can appear twice in it.

Proof. Suppose, in contrast to our claim, that there is some packet p appearing twice in an
(s′, `′, K ′)-delay sequence. Then there exist i and j with 1 ≤ i < j ≤ s′ + 1 and p = pi = pj.
Thus, the routing path of p crosses the delay path at the delay links ej−1 and ei in that order.
Since the rank of a packet is increased by K

D
each time it traverses an edge and the range of the

ranks is bounded by d · D
K

, the length of the path the packet p traverses from ej−1 (inclusive)
to ei (exclusive) can be at most d. Let m denote the distance from link ej−1 (inclusive) to link
ei (exclusive) in the delay path. Since the routing paths are d-shortcut-free, the rank of p is
increased at most m times while moving from ej−1 to ei, and hence,

id-rankei(p) ≤ id-rankej−1(p) + m · K

D
. (2)

On the other hand, since for every k ∈ {1, . . . , s′} packet pk+1 delays packet pk at edge
ek, we have id-rankek(pk) > id-rankek(pk+1) for all k ∈ {1, . . . , s′}. Further, the length of the
routing path of packet pk+1 from ek+1 to ek is `k+1, and thus the rank of pk+1 is increased by
`k+1 · K

D
on its path from ek+1 to ek for all k ∈ {1, . . . , s′ − 1}. It follows that id-rankek(pk) >

id-rankek+1(pk+1) + `k+1 · K
D

for all k ∈ {1, . . . , s′ − 1}. This yields

id-rankei(p) > id-rankej−1(p) +
j−1∑

k=i+1

`k · K

D

= id-rankej−1(p) + m · K

D
. (3)

9

Since (3) contradicts (2), there is no packet that appears twice in the delay subsequence. ut

Our goal is therefore to restrict the range of the ranks used in the delay subsequence to be
considered to at most d · D

K
. First we count the number of ways to construct an (s′, `′, K ′)-delay

subsequence.

Lemma 11.15 The number of different (s′, `′, K ′)-delay subsequences is at most

n ·D · 2K · Cs′ ·
(
`′ + s′

s′

)
·
(
s′ + 2K ′

s′ + 1

)
.

Proof. There are n packets from which p1 can be chosen, and at most D possibilities to choose
`1. Furthermore there are at most

(
`′+s′

s′

)
possibilities to choose the `i such that

∑s
i=2 `i ≤ `′.

Since p1 and `1 determine the link e1 and the congestion at e1 is at most C, there are at most
C possibilities to choose packet p2. The same holds for the packets p3, . . . , ps′+1 at the edges

e2, . . . , es′ . Hence we altogether have at most n ·D ·
(

`′+s′
s′

)
·Cs′ possibilities to choose the delay

packets. Finally, there are at most 2K
(

s′+2K′
s′+1

)
ways to select the ri such that 0 ≤ rs′+1 ≤ . . . ≤

r1 < rs′+1 + 2K ′ and r1 < 2K. ut

Since the packets choose their ranks independently at random, the probability that an
(`′, s′, K ′)-delay subsequence is active is 1/Ks′+1. Thus

Pr[there exists an active (`′, s′, K ′)-delay subsequence]

≤ n ·D · 2K · Cs′ ·
(
`′ + s′

s′

)
·
(
s′ + 2K ′

s′ + 1

)
· 1

Ks′+1

≤ n ·D · Cs′ · 2`′+s′ · 2s′+2K′ · 1

Ks′

= n ·D · 22s′+`′+2K′ ·
(

C

K

)s′

If we set K ≥ 8C and s′ ≥ `′+2K ′+(β +1) log n+log D, where β > 0 is an arbitrary constant,
then

Pr[there exists an active (`′, s′, K ′)-delay subsequence]

≤ n ·D · 22s′+`′+2K′ · 2−3s′ = n ·D · 2−s′+`′+2K′ ≤ 1

nβ

With K ′ = d
2
· K

D
we get from Lemma 11.13 that d

2
· K

D
= 2K

α
and therefore α = 4D

d
. Since any

(s, `, K)-delay sequence can have at most 2D edges, it holds that `′ ≤ 4D
α

= d, which has to be
ensured for our analysis to work. Therefore the total delay s of the growing rank protocol is at
most

2αs′ = 2
4D

d

(
d + d · K

D
+ (k + 1) log n + log D

)

= O

(
D + C +

log(nD)

d
D

)
.

This concludes the proof of Theorem 11.8. ut

10

Limitations

In case of bounded buffers, deadlocks can arise. Furthermore, the following observation can be
shown (see [6]).

Observation 11.16 Suppose C satisfies log n/ log log n ≤ C ≤ nε for some constant ε < 1 and
C ≥ D/ log log n. Then there is a simple path system of size n with dilation D and congestion
C such that the expected routing time of the growing rank protocol is bounded by Ω(C + D ·
log n/ log log n).

The observation uses the following path collection.

uu

vv

3 4

3 4

uu u

v

uu

vvv

1 2

1 2

5 6

5 6

uu

v

d−1 d

v
d−1 d

Figure 3: The counterexample.

Let A and B be two sets of packets of size C/2 with source node u1 and v1 respectively. The
routing path of the packets in A is

u1 → u2 → v1 → v2 → v3 → v4 → u3 → u4 → u5 → u6 → v5 → . . .

. . . → vd−3 → vd−2 → vd−1 → vd → ud−1 → ud

and the routing path of the packets in B is

v1 → v2 → u1 → u2 → u3 → u4 → v3 → v4 → v5 → v6 → u5 → . . .

. . . → ud−3 → ud−2 → ud−1 → ud → vd−1 → vd .

Since this path collection is at most 4-shortcut-free, the observation demonstrates that the
analysis of the growing rank protocol above is nearly tight. Observation 11.16 further shows
that the growing rank protocol can not be efficiently applied to arbitrary simple path collections.
Note that it is still an open problem whether efficient shortcut-free path systems exist for any
network. In case of shortest path systems, however, networks exist such that any shortest path
system has a much higher expected congestion than the best simple path system (consider the
union of a mesh and a complete binary tree).

References

[1] F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays · Trees ·
Hypercubes. Morgan Kaufmann Publishers (San Mateo, CA, 1992)

11

[2] F.T. Leighton, B.M. Maggs, S.B. Rao. Universal packet routing algorithms. In Proc. of the
29th Ann. Symp. on Foundations of Computer Science, pp. 256-271, 1988.

[3] F.T. Leighton, B.M. Maggs, S. Rao. Packet routing and job-shop scheduling in O(congestion
+ dilation) steps. Combinatorica 14, pp. 167-186, 1994.

[4] F. Meyer auf der Heide and B. Vöcking. A packet routing protocol for arbitrary networks.
In 12th Symp. on Theoretical Aspects of Computer Science, pp. 291-302, 1995.

[5] F.T. Leighton, B.M. Maggs, A.G. Ranade, S.B. Rao. Randomized routing and sorting on
fixed-connection networks. Journal of Algorithms 17, pp. 157-205, 1994.

[6] C. Scheideler. Universal Routing Strategies for Interconnection Networks. Springer Lecture
Notes in Computer Science, 1390, 1998.

12

