
8 Decentralized overlay networks I
In the next two sections we present overlay networks that are completely decentralized, i.e., they do not
depend on a supervisor. We assume that, in principle, every peer has the right to initiate the integration
of new peers into the system and that every peer knows at least one peer currently in the system so
that publicly available entry points such as a supervisor are not necessary any more. In this section,
we will focus on overlay networks that are based on the continuous-discrete approach [5], and in the
next section overlay networks are presented that are based on so-called skip graphs [2]. Each each
section, we will first assume that all peers are reliable and honest, and then we show how to remove
this assumption.

8.1 Overlay networks for reliable, honest peers
Recall the hierarchical decomposition approach in Section 7. Our basic approach for the decentralized
case is that each time a new peer p enters the system, a random label `(p) ∈ {0, 1}∗ is generated for it,
and this will be used to assign it to some place in the decomposition tree so that the following invariant
is maintained (which only differs from the corresponding invariant in Section 7 by the missing item 3,
which demands that peers are located at close-by levels).

Invariant 8.1

1. The subcubes of the (nodes assigned to the) peers are disjoint and

2. the union of the subcubes of the peers gives the entire set U .

In order preserve this invariant, the following is done when peers join or leave the system.

Joining the system

When a new peer p joins the system, it follows down the decomposition tree (which is simulated by a
proper routing scheme in the given overlay network) according to its label `(p) until it arrives at some
node v that is currently occupied by peer q. Then q is moved to node v0 and p is moved to node v1
of the decomposition tree (i.e., q splits its region into two pieces and gives one of them to p) so that
Invariant 8.1 still holds.

Leaving the system

When a peer p at node v in the decomposition tree leaves, the peer at the lowest position in the
decomposition tree that is reachable from the sibling of v, say q, is taken to replace the position of p
(and thereby takes over its region). q must have a peer q′ at its prior sibling in the decomposition tree
which is moved to the parent of its node to take over q’s old region.

Given the two rules, one can show the following result for U = [0, 1)d [1].

Lemma 8.2 Suppose that there are n peers in the system. If the join-leave activity of the peers is
independent of their labels, then the level of every peer in the decomposition tree is within log n ±
(logd log n + O(1)), w.h.p.
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The lemma implies that the sizes of the regions assigned to the peers only differ by a factor of
O(log n). Often, using the decomposition tree approach is overly complicated, especially when U =
[0, 1). In this case, a much simpler strategy is to use the consistent hashing approach in order to
partition [0, 1) among the peers:

• Every peer p is assigned to some random point xp ∈ [0, 1).

• Every peer p is responsible for the region Rp = [xp, succ(xp)) where succ(xp) is the closest
point succeeding xp in [0, 1) that is occupied by a peer.

Using this rule, it is obvious that the regions are pairwise disjoint and that
⋃

Rv
= [0, 1), which is

necessary for applying the continuous-discrete approach. For this strategy, it holds:

Lemma 8.3 Suppose that there are n peers in the system. If the join-leave activity of the peers is
independent of their positions, then every peer is responsible for a region of size at least Ω(1/n3) and
most O(log n/n), w.h.p.

Proof. We first prove the upper bound. Consider any interval I of size (c ln n)/n for some sufficiently
large constant c > 0. The probability that none of the peers has its point in I is equal to

(
1− c ln n

n

)n

≤ e−((c ln n)/n)·n = e−c ln n = n−c .

Hence, when partitioning [0, 1) into n/(c log n) such intervals, every one of these has at least one point
in them, w.h.p. Thus, a peer can be responsible for a region of size at most O(log n/n), w.h.p.

Next we prove the lower bound. The probability that any two peer positions have a distance of less
than 1/n3 is at most (

n

2

)
1

n3
≤ 1

2n

Hence, the probability is very low that such a case occurs, completing the proof. ut

The upper bound is acceptable though much better results can be achieved when performing local
load balancing. In fact, evenly balancing the region size among the Θ(log n) closest peers in [0, 1)
would ensure that the region size of every peer is Θ(1/n), w.h.p., which is implied by the following
lemma.

Lemma 8.4 Given n peers, every interval of size Θ(log n/n) has Θ(log n) peers in it, w.h.p.

Proof. Consider some fixed interval I of size (c ln n)/n for some sufficiently large constant c > 0.
For every peer v let the binary random variable Xv be 1 if and only if xv ∈ I . Let X =

∑
v∈V Xv. It

holds that
E[Xv] = Pr[Xv = 1] =

c ln n

n

and from the linearity of expectation it follows that

E[X] =
∑

v∈V

E[Xv] = n · c ln n

n
= c ln n .
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Hence, when using the well-known Chernoff bounds, we obtain that

Pr[X ≥ (1 + ε)E[X]] ≤ e−ε2E[X]/3 = e−ε2c ln n/3 = n−ε2c/3

and
Pr[X ≤ (1− ε)E[X]] ≤ e−ε2E[X]/2 = n−ε2c/3

for all 0 ≤ ε ≤ 1. Thus, the probability is polynomially small in n that the bound in the lemma is
violated. ut

Next we consider specific examples of decentralized overlay networks based on U = [0, 1). We
start with the dynamic hypercube, and then we consider the dynamic de Bruijn network.

The dynamic hypercube

Recall the definition of the continuous form of the hypercube. According to this definition,

• U = [0, 1) and

• F = {f−i , f+
i | i ≥ 1} with f−i (x) = (x− 1/2i) mod 1 and f+

i (x) = (x + 1/2i) mod 1.

The dynamic hypercube for the decentralized case is based on the continuous-discrete approach to-
gether with a cycle connecting each peer to its predecessor and successor in [0, 1). If the peers are
assigned to random points in [0, 1), the results in the previous section together with Lemmas 8.3 and
8.4 imply the following result.

Lemma 8.5 Given n peers, the dynamic hypercube has a maximum degree of O(log2 n), w.h.p.

Routing in a dynamic hypercube

Suppose that we want to route a message from point x to point y in [0, 1). Let (x1, x2, . . .) be the
binary representation of x and (y1, y2, . . .) be the binary representation of y. Then we use the following
continuous strategy to route the message from x to y:

(x1, x2, . . .) → (y1, x2, . . .) → (y1, y2, x3, . . .) → . . .

If x and y have infinite binary representations, then this strategy may take an infinite amount of hops,
but in the discrete world with a finite number of peers, this is not the case with the following discrete
variant of the continuous routing strategy above:

The message starts at the peer v0 responsible for x. Peer v0 forwards the message to the peer v1

responsible for (y1, x2, . . .), peer v1 forwards it to the peer v2 responsible for (y1, y2, x3, . . .), and so
on, until the message reaches a peer v` whose region or whose neighboring region contains y. From
this peer the message is forwarded to the peer responsible for the region containing y.

Notice that the maximal remaining distance to y shrinks by a factor 2 in each step. Hence, once a
distance equal to the smallest region is reached, the routing terminates. Thus, the following theorem
immediately follows from Lemma 8.3.

Theorem 8.6 Using the continuous-discrete routing strategy, it takes at most O(log n) hops until a
message is routed from any point x to any point y in [0, 1).
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Besides having a small dilation, it is also important to have a small congestion, i.e., when routing
multiple messages, the maximum number of messages to be handled by a peer should be as close to
optimal as possible. In order to achieve a low congestion, the following routing strategy may be used
by any peer, which is a continuous version of Valiant’s trick:

Suppose that a peer with position x wants to send a message to position y. Then it chooses a random
point z ∈ [0, 1), first routes the message from x to z and then from z to y using the continuous-discrete
routing strategy above.

With this strategy, we obtain the following theorem.

Theorem 8.7 For every permutation routing problem, the congestion caused when using the extended
continuous-discrete routing strategy above is at most O(log2 n), w.h.p.

Proof. Consider any permutation routing problem π, and consider cutting [0, 1) into n′ intervals
of size 1/n′ starting at integral multiples of 1/n′ where n′ is chosen so that n′ is a power of 2 and
1/n′ = (c ln n)/n for some suitably chosen constant c. It follows from Lemma 8.4 that every interval
has O(log n′) packets starting at it and O(log n′) packets aiming for it. Viewing these intervals as the
nodes of a log n′-dimensional hypercube, it follows from the analysis of Valiant’s trick that at most
O(log2 n′) packets pass every node, w.h.p. Since, according to Lemma 8.3, every peer is responsible
for an interval of size at most O(log n/n), this implies that every peer is passed by at most O(log2 n)
packets, w.h.p., which proves the theorem. ut

Joining and leaving a dynamic hypercube

We only consider isolated executions of join and leave requests because otherwise it can be quite tricky
to correctly update the network.

Suppose that a new peer v contacts some peer w already in the system to join the system. Then v’s
request is first sent to the peer u owning xv using the continuous-discrete routing strategy, which only
takes O(log n) hops according to Theorem 8.6. u forwards information about all of its outgoing edges
to v, deletes all edges that it does not need any more, and informs the corresponding endpoints about
this. Because R(v) ⊆ R(u) for the old R(u), the edges reported to v are a superset of the edges that it
needs to establish. v checks which of the edges are relevant for it, informs the other endpoint for each
relevant edge, and removes the others.

If a peer v wants to leave the network, it simply forwards all of its outgoing edges to the peer at
pred(xv). That peer will then merge these edges with its existing edges and notify the endpoints of
these edges about the changes.

We know from Theorem 8.6 that the routing part only takes O(log n) hops. Furthermore, Lem-
mas 8.3 and 8.4 imply that every peer has at most O(log2 n) incoming and outgoing edges. Hence, we
obtain the following theorem.

Theorem 8.8 Join and leave require at most O(log2 n) work and O(log n) communication rounds,
w.h.p.

Data management

Suppose that we want to store data in the dynamic hypercube. Here we can simply use the consistent
hashing strategy in Section 5: data items are hashed to random values in [0, 1) using a pseudo-random
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hash function h (which is known to all peers), and every data item d is stored in the peer v with
h(d) ∈ Rv.

Using this strategy, data will on expectation be evenly distributed among the peers, and on expecta-
tion, at most a factor of 2 more data than necessary has to be replaced if a node joins or leaves. (Recall
the section on hashing.)

A dynamic de Bruijn network

Recall the definition of the continuous de Bruijn graph. According to this definition,

• U = [0, 1) and

• F = {f0, f1} with f0(x) = x/2 and f1(x) = (1 + x)/2.

The dynamic de Bruijn graph for the decentralized case is based on the continuous-discrete approach
together with a cycle connecting each peer to its predecessor and successor in [0, 1). It follows from
Lemmas 8.3 and 8.4:

Lemma 8.9 Given n peers, the dynamic de Bruijn network has a maximum degree of O(log n), w.h.p.

Routing in a dynamic de Bruijn network

Suppose that we want to route a message from point x to point y in [0, 1). Let (x1, x2, . . .) be the
binary representation of x and (y1, y2, . . .) be the binary representation of y. Then we use the following
continuous-discrete strategy to route the message from x to y:

The message starts at the peer v0 responsible for x. If y is not in the region of v0 or one of its
neighbors, v0 chooses a random bit z1 and forwards the message to the peer v1 owning (z1x1x2 . . .). In
general, if the message has reached a peer vi and (zi . . . z1y1y2 . . .) is not in the region of vi or one of its
neighbors, vi chooses a random zi+1 and forwards the message to the peer owning (zi+1 . . . z1x1x2 . . .).
Once the message has reached a peer wi owning (zi . . . z1y1y2 . . .), it is forwarded to the peer wi−1

owning (zi−1 . . . z1y1y2 . . .) and so on until it reaches the peer owning (y1y2 . . .).
All of the hops in the routing strategy can be performed along edges of the dynamic de Bruijn

graph. Also, notice that the maximum distance between (zi . . . z1x1x2 . . .) and (zi . . . z1y1y2 . . .)
shrinks by a factor of 2 in each hop. Hence, once a distance equal to the smallest region is reached,
the routing strategy can move from a peer vi to a peer wi. Thus, the following theorem immediately
follows from Lemma 8.3.

Theorem 8.10 Using the continuous-discrete routing strategy, it takes at most O(log n) hops until a
message is routing from any point x to any point y in [0, 1).

The continuous-discrete routing strategy does not only have a low dilation but also a small con-
gestion because it has Valiant’s trick already built into it. Hence, the following theorem holds using
similar arguments as in Theorem 8.7.

Theorem 8.11 For every permutation routing problem, the congestion caused when using the continuous-
discrete routing strategy above is at most O(log2 n), w.h.p.
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Joining and leaving a dynamic de Bruijn network

Suppose that a new peer v contacts some peer w already in the system to join the system. Then
v’s request is first sent to the peer u owning xv using the continuous-discrete routing strategy above,
which only takes O(log n) hops according to Theorem 8.10. u forwards information about all of its
(incoming and) outgoing edges to v, deletes all edges that it does not need any more, and informs the
corresponding endpoints about this. Because R(v) ⊆ R(u) for the old R(u), the edges reported to v
are a superset of the edges that it needs to establish. v checks which of the edges are relevant for it,
informs the other endpoint for each relevant edge, and removes the others.

If a node v wants to leave the network, it simply forwards all of its outgoing edges to the peer at
pred(xv). That peer will then merge these edges with its existing edges and notifies the endpoints of
these edges about the changes.

We know from Theorem 8.10 that the routing part only takes O(log n) hops. Furthermore, Lem-
mas 8.3 and 8.4 imply that every peer has at most O(log n) outgoing edges. Hence, we obtain the
following theorem.

Theorem 8.12 Join and leave take at most O(log n) work and O(log n) communication rounds, w.h.p.

Also the dynamic de Bruijn network can be used for data management with the help of the consis-
tent hashing approach.

8.2 Robustness against random faults
In order to protect against random faults in dynamic networks based on U = [0, 1), each peer v aims
at preserving the following invariant (which is similar to the supervised case).

Invariant 8.13 Every peer v in the system is connected to

• predi(v) and succi(v) for every i ∈ {1, . . . , k} and

• all peers w with the property that Γ(R(Nv)) ∩R(Nw) 6= ∅
where Nv = {v} ∪ {predi(v) | i ∈ {1, . . . , k}} ∪ {succi(v) | i ∈ {1, . . . , k}} and for any set V ′ ⊆ V ,
R(V ′) =

⋃
v∈V ′ R(v).

When doing this, the following result can be shown.

Theorem 8.14 If faults of peers are independent of their positions and only happen at a (sufficiently
small) constant rate, then the peers can maintain the the Invariant 8.13 everywhere, w.h.p.

The result holds since for a sufficiently small constant fault rate and a sufficiently large k, no entire
sequence of k consecutive peers in [0, 1) will become faulty within a constant number of steps, w.h.p.,
and every peer only needs a constant number of communication rounds to update its connectivity
information as peers among its predecessors and successors become faulty as long as this is in principle
possible (i.e., not all of its predecessors and successors fail).
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8.3 Robustness against adversarial join-leave behavior
Finally, we consider the problem of protecting an overlay network against adversarial join-leave be-
havior. More precisely, we consider the following scenario. There are n blue (or honest) nodes and
εn red (or adversarial) nodes for some fixed constant ε < 1. There is a rejoin operation that, when
applied to node v, lets v first leave the system and then join it again from scratch. The leaving is done
by simply removing v from the system and the joining is done with the help of a join operation to be
specified by the system. We assume that the sequence of rejoin requests is controlled by an adversary,
which is a typical assumption in the analysis of online algorithms. The adversary can only issue rejoin
requests for the red nodes, but it can do this in an arbitrary adaptive manner. That is, at any time it can
inspect the entire system and select whatever red node it likes to rejoin the system. Our goal is to find
an oblivious join strategy, i.e., a strategy that cannot distinguish between the blue and red nodes, so
that for any adversarial strategy above the following two conditions can be preserved for every interval
I ⊆ [0, 1) of size at least (c log n)/n for a constant c > 0 and any polynomial number of rounds in n:

• Balancing condition: I contains Θ(|I| · n) nodes.

• Majority condition: the blue nodes in I are in the majority.

It is not difficult to see that the brute-force strategy of giving every node a new random place whenever
a node rejoins will achieve the stated goal, with high probability, but this would be a very expensive
strategy. The challenge is to find a join operation that needs as little randomness and as few rearrange-
ments as possible to satisfy the two conditions. Fortunately, there is such a strategy, called the cuckoo
rule. We first introduce some notation, and then we describe the strategy.

In the following, a region is an interval of size 1/2r in [0, 1) for some integer r that starts at an
integer multiple of 1/2r. Hence, there are exactly 2r regions of size 1/2r. A k-region is a region
of size (closest from above to) k/n, and for any point x ∈ [0, 1), the k-region Rk(x) is the unique
k-region containing x.

Cuckoo rule: If a new node v wants to join the system, pick a random x ∈ [0, 1). Place v into x and
move all nodes in Rk(x) to points in [0, 1) chosen uniformly and independently at random (without
replacing any further nodes).

See Figure 1 for an illustration of the cuckoo rule. The following result can be shown [3]:

0 1

v

random k−region

Figure 1: The cuckoo rule. (a) A new node is placed at a random point x. (b) Old nodes in Rk(x) are
evicted and moved to new, random places.
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Theorem 8.15 For any constants ε and k with ε < 1− 1/k, the cuckoo rule with parameter k satisfies
the balancing and majority conditions for a polynomial number of rounds, with high probability, for
any adversarial strategy within our model. The inequality ε < 1 − 1/k is sharp as counterexamples
can be constructed otherwise.

We just sketch the proof of the theorem. Let R̂ be any fixed region of size (c log n) · k/n, for some
constant c, for which we want to check the balancing and majority conditions over polynomial in n
many steps. Thus, R̂ contains exactly c log n many k-regions. The age of a k-region is the difference
between the current round and the last round when a new node was placed into it (and all old nodes got
evicted), and the age of R̂ is defined as the sum of the ages of its k-regions. A node in R̂ is called new
if it was placed in R̂ when it joined the system, and otherwise it is called old. The first lemma follows
directly from the cuckoo rule because every k-region can have at most one new node at any time.

Lemma 8.16 At any time, R̂ contains at most c log n new nodes.

In order to bound the number of old nodes in R̂, we first have to bound the age of R̂ (Lemma 8.17).
Then we bound the maximum number of nodes in a k-region (Lemma 8.18) and use this to bound
the number of evicted blue and red nodes in a certain time interval (Lemma 8.19). After that, we can
combine all lemmas to bound the number of old blue and red nodes in R̂ (Lemma 8.20).

Lemma 8.17 At any time, R̂ has an age within (1 ± δ)(c log n) n/k, with high probability, where
δ > 0 is a constant that can be made arbitrarily small depending on the constant c.

Lemma 8.18 For any k-region R in R̂ it holds at any time that R has at most O(k log n) nodes, with
high probability.

Next we bound the number of blue and red nodes that are evicted in a certain time interval.

Lemma 8.19 For any time interval I of size T = (γ/ε) log3 n, the number of blue nodes that are
evicted in I is within (1± δ)T · k, with high probability, and the number of red nodes that are evicted
in I is within (1±δ)T ·εk, with high probability, where δ > 0 can be made arbitrarily small depending
on γ.

Combining Lemmas 8.17 to 8.19, we obtain the following lemma.

Lemma 8.20 At any time, R̂ has within (1±δ)(c log n)·k old blue nodes and within (1±δ)(c log n)·εk
old red nodes, with high probability, where the lower bound on the red nodes holds if none of the red
nodes has rejoined.

Combining Lemmas 8.16 and 8.20, we can now prove when the balancing and majority conditions
are satisfied.

• Balancing condition: From Lemmas 8.16 and 8.20 it follows that every region R of size
(c log n)k/n has at least (1−δ)(c log n)·k and at most (1+δ)(c log n+(c log n)k+(c log n)εk) =
(1 + δ)(c log n)(1 + (1 + ε)k) nodes, where the constant δ > 0 can be made arbitrarily small.
Hence, the regions are balanced within a factor of close to (1 + ε + 1/k).
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• Majority condition: From Lemmas 8.16 and 8.20 it also follows that every region of size
(c log n)k/n has at least (1−δ)(c log n) ·k blue nodes and at most (1+δ)(c log n+(c log n) ·εk)
red nodes, w.h.p., where the constant δ > 0 can be made arbitrarily small. These bounds are
also tight in the worst case, which happens if the adversary focuses on a specific region R of size
(c log n)k/n and continuously rejoins with any red node outside of R. Hence, the adversary is
not able to obtain the majority in any region of size (c log n)k/n as long as (c log n)(εk + 1) <
(c log n) · k which is true if and only if ε < 1− 1/k.

Hence, for ε < 1 − 1/k the balancing and majority conditions are satisfied, w.h.p., and this is sharp,
which proves Theorem 8.15.

The cuckoo rule has the drawback that it only works if only the red nodes show adversarial join-
leave behavior. What if both kinds of nodes show adversarial join-leave behavior? Then we need to
extend the cuckoo rule in the following way in order to main the balancing and majority conditions.

The join operation works in the same way as the cuckoo rule. But whenever a peer wants to leave
the network, we use the following leave operation:

Leave(v): If a peer v leaves the system, then a k-region R is chosen uniformly at random among the
k-regions of Rkc log n(x) for some (sufficiently large) constant c, where x is the position of v. R is
flipped with a k-region R′ chosen uniformly at random in [0, 1), and then all peers in R (as well as v)
have to rejoin the system from scratch using the cuckoo rule.

Hence, the departure of a peer may spawn several join operations. We call this algorithm the
cuckoo&flip strategy. With this strategy the balancing and majority conditions can be kept, with high
probability. More precisely, one can show the following result [4]:

Theorem 8.21 For any constants ε and k with ε < 1/4 − (2 log k + 1)/k, the cuckoo&flip strategy
satisfies the balancing and majority conditions for any polynomial number of rejoin requests, with
high probability, for any adversarial strategy within our model.

Hence, as long as ε < 1/4, only a constant factor overhead has to be paid (on average) compared
to standard join and leave operations without any additional replacements of peers.
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