
9 Decentralized overlay networks II
So far, we saw how to construct completely decentralized peer-to-peer systems with good topological
properties if the peers are assigned to random locations in the [0, 1)-interval. However, there are
several scenarios in which it would be much better if the peers are organized according to their real,
user-defined names instead of just random names.

For example, suppose that we want to implement a distributed name service such as the well-known
domain name service (DNS). Then we would like to organize the peers in a peer-to-peer system so that
a peer with a given name can be found quickly. If the names were well-spread in the name space so that
we could interpret them as well-spread numbers in the [0, 1)-interval, then we could use the dynamic
de Bruijn network to implement such a service. However, we cannot guarantee that the names will be
well-spread, and therefore we need a different overlay network design.

As another example, consider the situation that we want to design a peer-to-peer system in which
we can take locality issues into account. Locality is an important issue in the Internet. Using the
dynamic de Bruijn network can mean that a message is sent log n times across the world before it
reaches its destination. Instead, imagine that we knew the geographic location of every peer. One
possible way of specifying such a location could be

North America.USA.MD.Baltimore.Johns Hopkins Univesity.Computer Science

If such information is available, we could organize the peers in an overlay network sorted according
to this location information so that now messages will only be sent once across the world in the worst
case. Instead of a geographical location, one could also use a hierarchically specified Internet location,
starting with the backbone ISP, the local ISP, and so on (which may be determined via traceroute, for
example).

In the following, we present overlay network designs that allow peers to be ordered according
to arbitrary user-defined names. We first present (random) skip graphs [1, 4], and then we present
deterministic skip graphs which are also known as hyperrings [3].

9.1 Skip graphs
Given an infinite bit string b = x1x2x3 . . ., we define prefix0(b) = ε (the empty word) and prefixi(b) =
x1x2 . . . xi for every i ≥ 1. Suppose that we have a (pseudo-)random hash function h assigning to
each node an ID representing an infinite bit string. Given a set of nodes V , we define for every v ∈ V
and i ≥ 0:

• succi(v) = argmin{w ∈ V | Name(w) > Name(v) and prefixi(h(v)) = prefixi(h(w))},
i.e. succi(v) is the node w whose name is the closest successor of v’s name (with respect to
lexicographical ordering) with the same i first bits in h(w) as h(v), and

• predi(v) = argmax{w ∈ V | Name(w) < Name(v) and prefixi(h(v)) = prefixi(h(w))}.

Notice that we view the name space as a ring here. This means for succi(v) that if there is no node w
with Name(w) > Name(v) that fulfills the prefix condition, then we associate succi(v) with the node
w with smallest name so that prefixi(h(v)) = prefixi(h(w)). If there is no other node w in the network
with that property, then we set succi(v) = v. In skip graphs, the following invariants have to be kept
at any time.

1

Invariant 9.1 For any set of nodes V currently in the system, it holds for every v ∈ V that v is
connected to succi(v) and predi(v) for all i ≥ 0.

Invariant 9.1 requires that the nodes are organized in a hierarchy of doubly linked cycles, where
the node names have to be sorted in every cycle, and every node participates in exactly one cycle for
every i ≥ 0. A cycle at level i is called i-cycle or i-ring, and an edge in an i-ring is called an i-edge.
Skip graphs have the following properties, where n is the current number of nodes in the network:

Theorem 9.2 If Invariant 9.1 is true and h assigns random bit strings to nodes, then the skip graph
has a maximum degree of O(log n), a diameter of O(log n), and a node expansion of Ω(1), with high
probability.

Proof. The probability that some fixed node pair v and w fulfills prefixi(h(v)) = prefixi(h(w)) is
equal to 1/2i. Hence, for i ≥ 3 log n, it holds that

Pr[there is a node pair v, w with prefixi(h(v)) = prefixi(h(w))]

≤ ∑
v,w

Pr[node pair v, w fulfills prefixi(h(v)) = prefixi(h(w))]

=
∑
v,w

1

23 log n
≤ n2 · 1

n3
=

1

n
.

Hence, with high probability there is no ring of level 3 log n or higher. Thus, every node has a degree
of at most 2(3 log n + 1).

Next, we bound the diameter. Consider any pair of nodes v, w ∈ V . Our aim is to move from v to
w by adapting to the bits in h(w) = x1x2x3 . . . one by one. To do this, we move from u0 = v to the
closest successor u1 on the 0-ring with prefix1(u1) = x1, and in general from node ui to the closest
successor ui+1 on the current i-ring with prefixi+1(ui+1) = x1x2 . . . xi+1. For any i ≥ 0, it holds:

Pr[the distance from ui to ui+1 on the i-ring is δ] =
(

1

2

)δ+1

.

Hence,

E[distance to ui+1] =
∑

δ≥0

δ ·
(

1

2

)δ+1

=
∑

δ≥0

(δ + 1) ·
(

1

2

)δ+2

=
1

4

∑

δ≥0

(
1

2

)δ

2

=
1

4
· 4 = 1 .

Since we know from the degree proof that there are at most 3 log n levels with high probability, the
expected number of hops we need to perform to get from v to w is O(log n), and this can also be shown
to hold with high probability. Thus, the diameter is O(log n), with high probability.

The expansion proof is involved and will not be shown here. See [2] for details. ut

2

Routing in skip graphs

Consider the following routing strategy:
Suppose that node u is the current location of a message with destination Name. As long as

Name 6∈ [Name(u), Name(succ0(u))) (i.e. the message has not yet reached a node u that is the
closest predecessor of Name), u sends the message to the node succi(u) with maximum i so that
Name(succi(u)) ≤ Name (treating the name space as a ring).

One can show the following result:

Lemma 9.3 For any node v ∈ V and any name Name, it takes at most O(log n) hops, with high
probability, to send a message from v to the node whose name is the closest successor to Name.

Joining and leaving the network

Suppose that a new node v contacts node w ∈ V to join the system. Then w will forward v’s request
to pred0(v) using the routing strategy above with Name = Name(v). pred0(v) will then integrate v
between pred0(v) and succ0(v). Afterwards, v sends out two requests along the 0-ring to find pred1(v)
and succ1(v). Once they are found, v integrates itself into its 1-ring. v then uses the 1-ring to find
pred2(v) and succ2(v), and then integrates itself into the 2-ring. This continues until v has integrated
itself into the highest possible ring containing at least 2 nodes.

Using a probabilistic analysis, one can show the following result:

Theorem 9.4 Inserting a new node requires O(log n) time and work with high probability.

If a node wants to leave the system, it does this by simply connecting predi(v) with succi(v) for
every i ≥ 0. This gives the following result:

Theorem 9.5 Deleting a node requires O(log n) time and work with high probability.

Searching

When a node v searches for a node with name Name, then it simply uses the routing strategy described
above. Once a node w with Name(w) = Name has been found, w reports its IP address back to v.
This strategy has the following performance:

Theorem 9.6 Any search operation requires O(log n) time and work with high probability.

9.2 The hyperring
Next we consider the hyperring. Like the skip graph, also the hyperring consists of a hierarchy of
rings. However, here we are much more strict about how the rings are maintained.

Suppose that we have a hyperring with n nodes. Then it consists of approximately log n levels of
rings, starting with level 0. Each level i ≥ 0 consists of approximately 2i directed cycles of approxi-
mately n/2i nodes, which we call rings. All rings have the same orientation, and we require the nodes
in every ring to be ordered according to their names. For every ring R at level i, two rings of level
i + 1 share its nodes in an intertwined fashion. As before, a ring at level i will be called an i-ring, and

3

a level i edge will be called an i-edge. Consider some i-ring R and let (u, v, w, x) be four consecutive
nodes on R. We say that (u, v, w, x) form an i-bridge (or simply a bridge if i is clear from the context)
if there is an (i+1)-edge from u to x and an (i+1)-edge from v to w. An (i+1)-edge is called perfect
if it bridges exactly two i-edges.

bridge 2

bridge 1

Figure 1: An example of a hyperring. The bridges have a distance of 5 from each other.

It is possible to maintain a hyperring with at most one bridge in every ring. However, in this case
we would create too much update work for JOIN or LEAVE operations. Instead, we only demand that
i-bridges are sufficiently far apart from each other. A hyperring is called k-separated if in every i-ring
R the i-bridges on R are at least k nodes apart from each other, which means that there are at least
k − 1 nodes between the quadruples of nodes forming a bridge. We start with a few properties of
hyperrings which are easy to prove.

Lemma 9.7 For every k ≥ 0, the k-separated hyperring has a maximum degree of at most 2(1 +
2/(k + 1)) log n and a diameter of at most 3 log n.

Proof. First, we bound the maximum degree. Consider some i-ring R. In order to minimize the size
of an i+1-ring R′ on top of R without violating k-perfectness, the best one can do is using a repetitive
sequence of dk/2e+1 edges, where one edge bridges three edges in R and the remaining dk/2e edges
bridge two edges in R. Hence,

|R′| ≥ |R|
3 + 2dk/2e · (1 + dk/2e) =

(
1

2
− 1

4(dk/2e+ 1) + 2

)
· |R|

≥ 1

2

(
1− 1

k + 3

)
· |R|

This also implies that |R′| can be at most 1
2
(1 + 1

k+3
)|R|. Hence, an i-ring R can have a size of at most

1

2i

(
1 +

1

k + 3

)i

≤ 1

2i
· ei/(k+3) ≤ 2−i(1−2/(k+3)) .

This is at most 1 if i ≥ (log n)/(1− 2/(k + 3)). Since each node has 2 edges in each level in which it
participates, the maximum node degree is 2(log n)/(1− 2/(k + 3)) = 2(1 + 2/(k + 1)) log n.

Next, we bound the diameter. Consider any two nodes v and w on a ring R, and let R0 and
R1 be the two intertwined rings on top of R. Furthermore, let v0 be the node in R0 nearest to v
and w0 be the node in R0 nearest to w. Define v1 and w1 in the same way for R1. First of all,
dR(v, v0), dR(v, v1), dR(w,w0), and dR(w, w1) are all at most 1. Hence, dR(v0, w0) ≤ dR(v, w) + 2

4

and dR(v1, w1) ≤ dR(v, w) + 2. Since the nodes used by R0 and R1 are disjoint, it must hold that
either dR0(v0, w0) ≤ dR(v, w)/2 + 1 or dR1(v1, w1) ≤ dR(v, w)/2 + 1. Hence, if we always take the
ring of lower distance in each layer, then for each layer i we obtain the recursion di+1 ≤ di/2 + 3 with
d0 = dR(v, w). Therefore, the total number of edges used is at most 3 log n. ut

Unfortunately, hyperrings with constant separation can have a bad expansion.

Theorem 9.8 For every k ≥ 0, the k-separated hyperring has, in the worst case, an edge expansion
of

O(1/n1/(2(3(k+4))2)) .

The proof of this theorem is quite involved and can be found in [3]. Unfortunately, Theorem 9.8
implies that no k-separated hyperring with k = O((log n)1/2−ε) for some constant ε > 0 can guarantee
an expansion of Ω(1/ logc n) for some constant c depending on ε. Hence, in order to have a good
expansion, we need k = Ω(

√
log n). However, notice that when k depends on the size of the hyperring,

node insertions and deletions that have been performed in the past might have used a k that significantly
differs from the k used by current insertions and deletions. Hence, parts of the hyperring may be out of
date. So the question is whether it is necessary to revisit these parts in order to bring the hyperring up
to date. Fortunately, as one of the main results in [3], it was shown that this is not necessary. One can
simply use as the current k the degree of any node currently in the system when executing a JOIN or
LEAVE operation, and old JOIN or LEAVE operations never have to be revisited, to show the following
result. (|R| denotes the number of nodes in a ring R, and |e| denotes the number of node on the 0-ring
bridged by edge e.)

Proposition 9.9 At any time it holds:

1. the ring distortion is low, i.e. for every i-ring R, |R| ∈ [1
2
· n/2i − 1, 2 · n/2i + 1] and

2. the edge distortion is low, i.e. for every i-edge e, |e| ≤ 4 · 2i.

The proof for this is quite complicated and can be found in [3]. For simplicity, we assume for the
rest of this section that k is fixed. We start with describing how to route in the hyperring.

Routing in the hyperring

We use the same routing strategy as for skip graphs:
Suppose that node u is the current location of a message with destination Name. As long as

Name 6∈ [Name(u), Name(succ0(u))) (i.e. the message has not yet reached a node u that is the
closest predecessor of Name), u sends the message to the node succi(u) with maximum i so that
Name(succi(u)) ≤ Name (treating the name space as a ring).

Since this routing strategy prefers edges of higher level and every i + 1-edge bridges at most 3
i-edges for every i, we obtain the following fact.

Fact 9.10 Any message moves along a sequence of edges of non-increasing level and uses at most two
edges in each level.

Combining this with Lemma 9.7, which says that there are at most (1+2/(k +1)) log n levels, we
achieve the following result.

Lemma 9.11 For any node v ∈ V and any name Name, it takes at most O(log n) hops to send a
message from v to the node whose name is the closest successor to Name.

5

Joining and leaving the network

First, we introduce some notation. Let succi(v) be the successor of v in its i-ring and predi(v) be the
predecessor of v in its i-ring. For every node v on R, its > i-endpoints represent all endpoints of edges
in v with level more than i. Notice that each node has two endpoints in each level. By “moving” the
i-endpoints from u to v, we mean that we replace the i-edges (predi(u), u) and (u, succi(u)) by the
i-edges (predi(u), v) and (v, succi(u)). By “permuting” the i-endpoints of u and v, we mean that we
move the i-endpoints of u to v and the i-endpoints of v to u.

Suppose now that a new node u contacts some node v ∈ V to join the system. Then v will
forward u’s request to pred0(u) using the routing strategy above with Name = Name(u). pred0(u)
will then integrate u between pred0(u) and succ0(u). Afterwards, u is integrated into the hyperring
level by level, starting with level 0. In each level i, we integrate the node by either removing an already
existing bridge in its k + 2-neighborhood or by creating a new bridge. A bridge is removed by first
dragging it over to u by permuting > i-endpoints (see Figure 3). Then case (b) or (c) in Figure 2 is
applied. Otherwise, we just apply case (a). JOIN terminates once we reach a ring of size in {4, . . . , 7}
(for larger rings, two new subrings are created).

(a)

(b)

(c)

Figure 2: The three cases when adding a node. Case (c) reduces to case (b).

bridge

Figure 3: Permuting > i-endpoints drags the bridge over to obtain, e.g., case (c) in Figure 2.

Theorem 9.12 JOIN locally preserves the k-separation of the hyperring and requires O(k log2 n)
work and O(log k · log n) time.

6

Proof. JOIN locally preserves the k-separation property because it only creates a bridge if there is no
other bridge in the k + 2-neighborhood. Otherwise, it removes a bridge. Thus, it remains to prove the
work and time bounds.

In each level, only a O(k)-neighborhood is investigated. In the worst case, a bridge has to be
moved to u (resp. to the node to be integrated into that level in place of u). This requires O(k log n)
message transmissions. Since the hyperring has O(log n) levels, the total work is O(k log2 n).

When using edges in higher levels, we can investigate the O(k)-neighborhood of a node in O(log k)
steps. Thus, in O(log k) steps we can update the endpoints necessary to proceed with the next higher
level. Since there are O(log n) levels, this results in O(log k · log n) time. ut

We also remove a node u from the hyperring level by level, starting with level 0. In each level,
we remove the node by either removing an already existing bridge in its k + 2-neighborhood or by
creating a new bridge. A bridge is removed by first dragging it over (Figure 3) and then applying case
(b) or (c) in Figure 4. Otherwise, we just apply case (a). LEAVE terminates once we reach a ring of
size in {4, . . . , 7} (rings smaller than 4 are removed).

(a)

(b)

(c)

Figure 4: The three cases when removing a node. Case (c) reduces to case (b).

Theorem 9.13 LEAVE locally preserves the k-separation of the hyperring and requires O(k log2 n)
work and O(log k · log n) time.

The proof is similar to the proof of Theorem 9.12.

Searching

When a node v searches for a node with name Name, then it simply uses the routing strategy described
above. Once a node w with Name(w) = Name has been found, w reports its IP address back to v.
This strategy has the following performance:

Theorem 9.14 Any search operation requires O(log n) time and work with high probability.

Furthermore, we can show the following result, demonstrating that not only the dilation but also
the congestion of search requests can be kept low in the hyperring.

7

Theorem 9.15 The congestion caused by n SEARCH requests, one per node, with random destinations
is O(log n), with high probability.

Proof. Fact 9.10 implies that every i-ring R can only receive requests from rings on top of it. Thus, it
can only receive requests from its own nodes. Consider now an arbitrary node v in R. It is easy to check
that only those requests will be sent to v whose destination is bridged by the i-edge e leaving v in R.
From Proposition 9.9 we know that e bridges at most 4 ·2i nodes and that R consists of at most 3 ·n/2i

nodes. Since every node is the starting point of one request and every request has a random destination,
the expected number of requests that want to reach v in R is at most (4 · 2i/n) · (3 · n/2i) = 12.
Combining this with the fact that every request only uses at most 2 edges in R (see Fact 9.10), the
expected number of requests that traverse v in R is at most 24. Because every node participates in at
most log n+O(1) levels, the overall expected number of search requests passing through v is O(log n).
Using the fact that every request picks a random destination independently from other requests, one
can also show that the congestion caused by SEARCH is O(log n) with high probability. ut

9.3 Robustness against adversarial join-leave behavior
Finally, we consider the problem of protecting the skip graph or hyperring against adversarial join-
leave behavior.

Consider the following game: There are n white pebbles (the honest peers) and εn black pebbles
(the adversarial peers) for some fixed constant ε < 1. Initially, all of the white pebbles are laid down
in a ring, and the adversary has all of the black pebbles in its bag. In each round, the adversary can
look at the entire ring and can select to add a black pebble to the ring (if its bag is not empty) or to
take any black pebble from the ring and put it back into its bag (i.e. we consider adaptive adversaries).
However, the adversary cannot place a black pebble into any position it likes. This is handled by a join
strategy to be specified by the system. The goal is to find an oblivious join strategy, i.e. a strategy that
cannot distinguish between the white and black pebbles in the ring, that integrates the black pebbles
into this ring and may do some further rearrangements so that for a polynomial number of rounds
the adversary will not manage to include its black pebbles into the ring so that there is a sequence of
s = Θ(log n) consecutive pebbles in which at least half of the pebbles are black. If this is achieved by
the join strategy, it wins. Otherwise, the adversary wins.

We propose the k-rotation strategy in order to randomly perturb the pebbles. The k-rotation strat-
egy works as follows: Initially, the new black pebble is declared a homeless pebble. For k− 1 rounds,
place the currently homeless pebble into a random position of the ring and declare the pebble previ-
ously placed at that position the new homeless pebble. Afterwards, create a new position at a random
place in the ring and place the homeless pebble there.

It turns out that k ≤ 2 is not sufficient but k ≥ 3 is sufficient for the system to win with high
probability. Interestingly, the adversary has a good chance of winning for k = 2 even if it has only
O(log n) pebbles, whereas the adversary has only a negligible chance of winning for k = 3, even when
having n/4 pebbles. Thus, a sharp threshold can be identified for the system to win or lose. The results
are summarized in the following theorem [5].

Theorem 9.16 Let n and s = O(log n) be sufficiently large. When using the k-rotation strategy, it
holds:

8

• If k = 1, then the adversary only needs s/2 pebbles to win within O(n) join attempts, with high
probability.

• If k = 2, then the adversary only needs s pebbles to win within O(n log s) join attempts on
expectation and within O((n log s) log n) join attempts, with high probability.

• If k ≥ 3, then the adversary loses with high probability as long as it has ≤ εn nodes for some
constant ε < 1− 2/k, and this result is tight.

In fact, the k-rotation rule ensures that for any k ≥ 3, the fraction of black pebbles in a sequence of s
consecutive pebbles is at most

(1 + δ)

(
1 + kε

k + kε

)

with high probability, where δ > 0 can be an arbitrarily small constant depending on s.

Thus, as k increases, ε can get arbitrarily close to 1. Note that ε must be smaller than 1 because
otherwise there is certainly no chance for the system to win.

Using the insight above together with the rule that every peer connects to its closest Θ(log n) pre-
decessors and successors on the ring, adversarial behavior can be washed out by majority decision so
that topologies based on the skip graph and hyperring concept can be preserved even under adversarial
behavior.

References
[1] J. Aspnes and G. Shah. Skip graphs. In Proc. of the 14th ACM/SIAM Symp. on Discrete Algorithms (SODA),

pages 384–393, 2003.

[2] J. Aspnes and U. Wieder. The expansion and mixing time of skip graphs with applications. In Proc. of the
17th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 126–134, 2005.

[3] B. Awerbuch and C. Scheideler. The Hyperring: A low-congestion deterministic data structure for dis-
tributed environments. In Proc. of the 15th ACM/SIAM Symp. on Discrete Algorithms (SODA), 2004.

[4] N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable overlay network
with practical locality properties. In 4th USENIX Symposium on Internet Technologies and Systems, 2003.

[5] C. Scheideler. How to spread adversarial nodes? Rotate! In Proc. of the 37th ACM Symp. on Theory of
Computing (STOC), pages 704–713, 2005.

9

