Buffer Trees

Lars Arge. The Buffer Tree: A New Technique for Optimal I/O Algorithms. In Proceedings of Fourth Workshop on Algorithms and Data Structures (WADS), Lecture Notes in Computer Science Vol. 955, Springer-Verlag, 1995, 334-345.

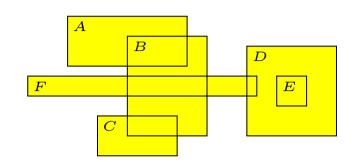
Computational Geometry

Pairwise Rectangle Intersection

Input N rectangles

Output all R pairwise intersections

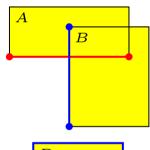
Example (A, B) (B, C) (B, F) (D, E) (D, F)



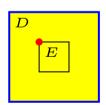
Intersection Types

Intersection

Identified by...



Orthogonal Line Segment Intersection on 4N rectangle sides



Batched Range Searching

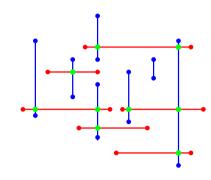
on ${\cal N}$ rectangles and ${\cal N}$ upper-left corners

Algorithm Orthogonal Line Segment Intersection

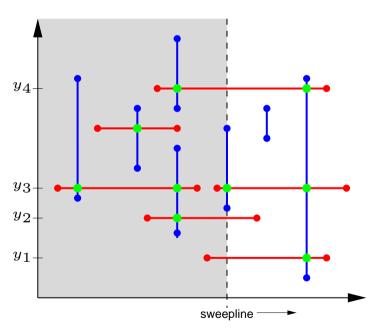
+ Batched Range Searching + Duplicate removal

Orthogonal Line Segment Intersection

Input N segments, vertical and horizontal Output all R intersections



Sweepline Algorithm

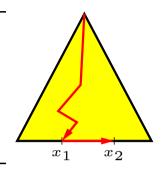


- Sort all endpoints w.r.t. *x*-coordinate
- Sweep left-to-right with a range tree T
 storing the y-coordinates of horizontal
 segments intersecting the sweepline
- Left endpoint \Rightarrow insertion into T
- Right endpoint \Rightarrow deletion from T
- Vertical segment $[y_1, y_2] \Rightarrow$ report $T \cap [y_1, y_2]$

Total (internal) time $O(N \cdot \log_2 N + R)$

Range Trees

Create	Create empty structure	
Insert(x)	Insert element x	
Delete(x)	Delete the inserted element \boldsymbol{x}	
$Report(x_1, x_2)$	Report all $x \in [x_1, x_2]$	



	Binary search trees	B -trees	
	(internal)	(# I/Os)	
Updates	$O(\log_2 N)$	$O(\log_B N)$	
Report	$O(\log_2 N + R)$	$O(\log_B N + \frac{R}{B})$	

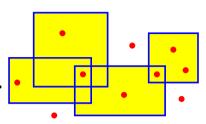
Orthogonal Line Segment Intersection using B-trees

$$O(\operatorname{Sort}(N) + N \cdot \log_B N + \frac{R}{B}) \text{ I/Os } \dots$$

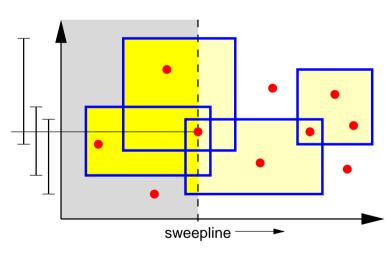
Batched Range Searching

Input N rectangles and points

Output all R(r, p) where point p is within rectangle r



Sweepline Algorithm



- Sort all points and left/right rectangle sides w.r.t. x-coordinate
- Sweep left-to-right while storing the y-intervals of rectangles intersecting the sweepline in a segment tree T
- Left side \Rightarrow insert interval into T
- Right side \Rightarrow delete interval from T
- Point $(x, y) \Rightarrow$ stabbing query : report all $[y_1, y_2]$ where $y \in [y_1, y_2]$

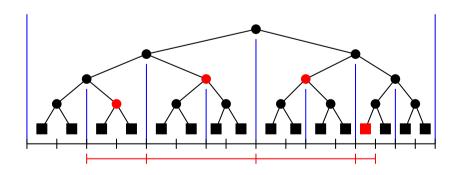
Total (internal) time $O(N \cdot \log_2 N + R)$

Segment Trees

Create	Create empty structure
$Insert(x_1, x_2)$	Insert segment $[x_1, x_2]$
$Delete(x_1, x_2)$	Delete the inserted segment $[x_1, x_2]$
Report(x)	Report the segments $[x_1, x_2]$ where $x \in [x_1, x_2]$

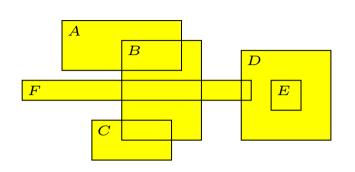
Assumption The endpoints come from a fixed set S of size N+1

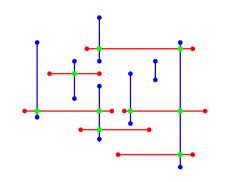
- ullet Construct a balanced binary tree on the N intervals defined by S
- Each node spans an interval and stores a linked list of intervals
- ullet An interval I is stored at the $O(\log N)$ nodes where the node intervals $\subseteq I$ but the intervals of the parents are not

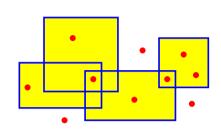


Create	$O(N\log_2 N)$
Insert	$O(\log_2 N)$
Delete	$O(\log_2 N)$
Report	$O(\log_2 N + R)$

Computational Geometry – Summary







Pairwise Rectangle Intersection
Orthogonal Line Segment Intersection
Batched Range Searching

$$O(N \cdot \log_2 N + R)$$

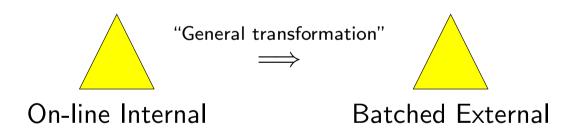
$$\begin{array}{ll} \text{Updates} & O(\log_2 N) \\ \text{Queries} & O(\log_2 N + R) \end{array}$$

Observations on Range and Segment Trees

- Only inserted elements are deleted, i.e. Delete does not have to check if the elements are present in the structure
- Applications are off-line, i.e. amortized performance is sufficient
- Queries to the range trees and segment trees can be answered lazily,
 i.e. postpone processing queries until there are sufficiently many
 queries to be handled simultaneously
- Output can be generated in arbitrary order, i.e. batched queries
- The deletion time of a segment in a segment tree is known when the segment is inserted, i.e. no explicit delete operation required

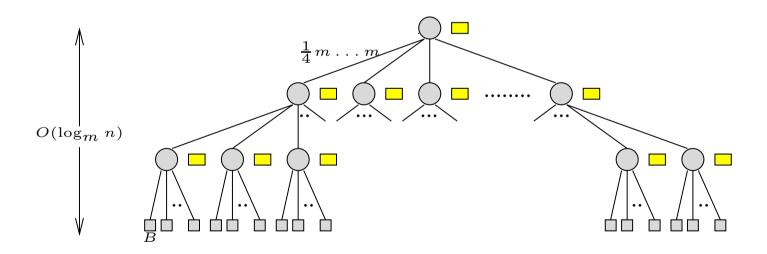
Assumptions for buffer trees

Buffer Trees



Buffer Trees

- (a,b)-tree, a=m/4 and b=m
- \bullet Buffer at internal nodes m blocks
- Buffers contain delayed operations, e.g. Insert(x) and Delete(x)
- ullet Internal memory buffer containing $\leq B$ last operations Moved to root buffer when full
- Invariant Buffers at internal nodes contain $\leq mB/2$ elements



Buffer Emptying: Insertions Only

Emptying internal node buffers

- Distribute $\leq m/2$ blocks of elements to children
- For each child with m/2 blocks of elements recursively empty buffer
- If buffer non-empty repeat

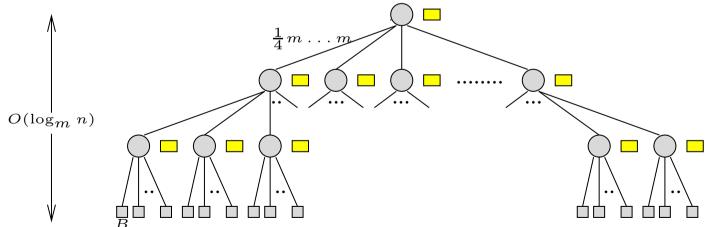
Emptying leaf buffers

- Sort buffer
- Merge buffer with leaf blocks

 $O(\frac{n}{m})$ buffer empty operations per internal level, each of O(m) I/Os \Rightarrow in total $O(\operatorname{Sort}(N))$ I/Os

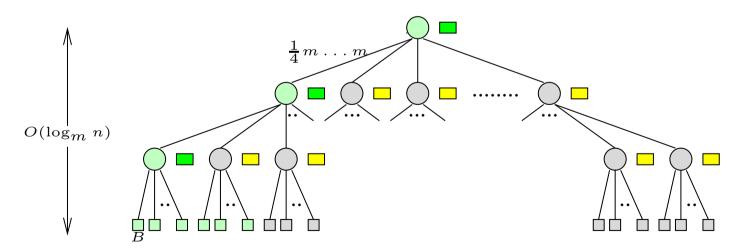
Rebalance by splitting nodes bottom-up (where buffers are empty)

Corollary Optimal sorting by top-down emptying all buffers



Priority Queues

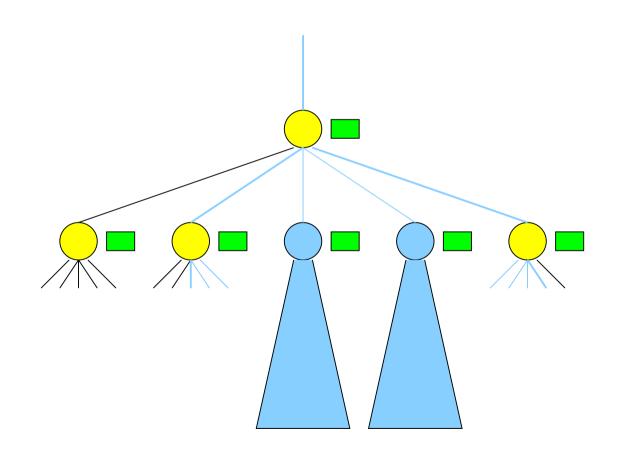
- Operations : Insert(x) and DeleteMin
- Internal memory min-buffer containing the $\frac{1}{4}mB$ smallest elements
- Allow nodes on leftmost path to have degree between 1 and m \Rightarrow rebalancing only requires node splittings
- Buffer emptying on leftmost path \Rightarrow two leftmost leaves contain $\geq mB/4$ elements
- Insert and DeleteMin amortized $O(\frac{1}{B}\log_{M/B}\frac{N}{B})$ I/Os



Batched Range Trees

Delayed operations in buffers : Insert(x), Delete(x), $Report(x_1, x_2)$

Assumption: Only inserted elements are deleted



Time Order Representation

Definition A buffer is in time order representation (TOR) if

- 1. Report queries are older than Insert operations and younger than Delete operations
- 2. Insertions and deletions are in sorted order
- 3. Report queries are sorted w.r.t. x_1

Delete	Report	Insert	time
x_1, x_2, \dots	$[x_{11}, x_{12}], [x_{21}, x_{22}], \dots$	y_1,y_2,\dots	
$x_1 \le x_2 \le \cdots$	$x_{11} \le x_{21} \le \cdots$	$y_1 \leq y_2 \leq \cdots$	

Constructing Time Order Representations

Lemma A buffer of O(M) elements can be made into TOR using $O(\frac{M+R}{B})$ I/Os where R is the number of matches reported

Proof

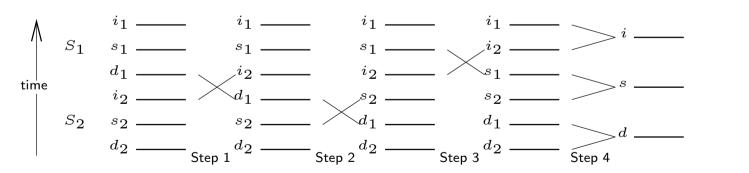
- Load buffer into memory
- First Inserts are shifted up thru time
 - If $\mathsf{Insert}(x)$ passes $\mathsf{Report}(x_1, x_2)$ and $x \in [x_1, x_2]$ then a match is reported
 - If Insert(x) meets Delete(x), then both operations are removed
- Deletes are shifted down thru time
 - If $\mathsf{Delete}(x)$ passes $\mathsf{Report}(x_1, x_2)$ and $x \in [x_1, x_2]$ then a match is reported
- Sort Deletions, Reports and Insertion internally
- Output to buffer

Merging Time Order Representations

Lemma Two list S_1 and S_2 in TOR where the elements in S_2 are older than the elements in S_1 can be merged into one time ordered list in $O(\frac{|S_1|+|S_2|+R}{B})$ I/Os

Proof

- 1. Swap i_2 and d_1 and remove canceling operations
- 2. Swap d_1 and s_2 and report matches
- 3. Swap i_2 and s_1 and report matches
- 4. Merge lists

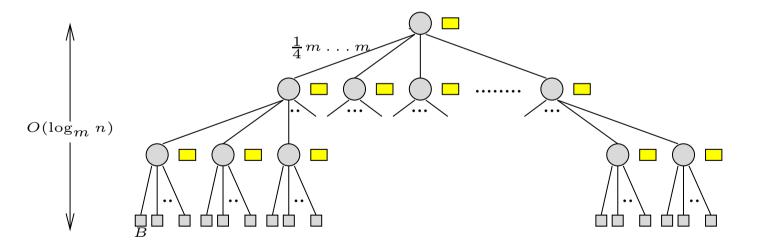


Emptying All Buffers

Lemma Emptying all buffers in a tree takes $O(\frac{N+R}{B})$ I/Os

Proof

- Make all buffers into time order representation, $O(\frac{N+R}{B})$ I/Os
- Merge buffers top-down for complete layers \Rightarrow since layer sizes increase geometrically, #I/Os dominated by size of lowest level, i.e $O(\frac{N+R}{B})$ I/Os



Note The tree should be rebalanced afterwards

Emptying Buffer on Overflow

Invariant Emptying a buffer distributes information to children in TOR

- 1. Load first m blocks in and make TOR and report matches
- 2. Merge with result from parent in TOR that caused overflow
- 3. Identify which subtrees are spanned completely by a Report (x_1, x_2)
- 4. Empty subtrees identified in ??.
 - Merge with Delete operations
 - Generate output for the range queries spanning the subtrees
 - Merge Insert operations
- 5. Distribute remaining information to trees not found in ??.

Batched Range Trees - The Result

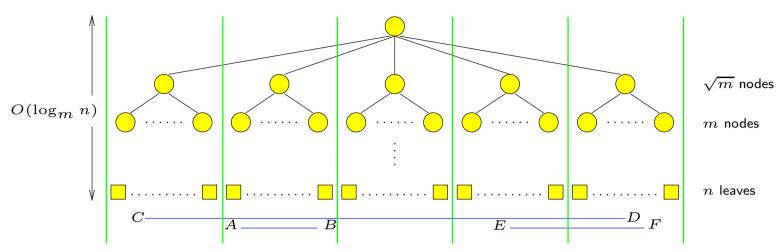
Rebalancing As in (a,b)-trees, except that buffers must be empty. For Fusion and Sharing a forced buffer emptying on the sibling is required, causing O(m) additional I/Os. Since at most O(n/m) rebalancing steps done $\Rightarrow O(n)$ additional I/Os.

Total #I/Os Bounded by generated output $O(\frac{R}{B})$, and $O(\frac{1}{B})$ I/O for each level an operation is moved down.

Theorem Batched range trees support

$$O\left(\frac{1}{N}\mathsf{Sort}(N)\right) \text{ amortized I/Os}$$
 Queries
$$O\left(\frac{1}{N}\mathsf{Sort}(N) + \frac{R}{B}\right) \text{ amortized I/Os}$$

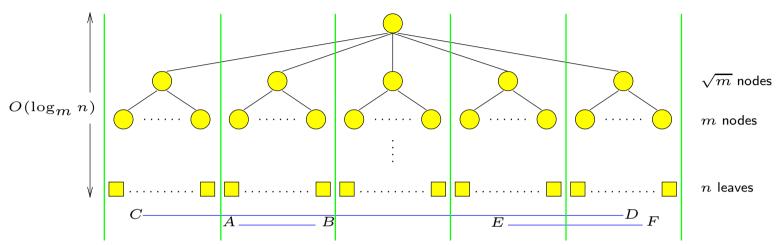
Batched Segment Trees



Internal node:

- Partition x-interval in \sqrt{m} slabs/intervals
- O(m) multi-slabs defined by continuous ranges of slabs
- Segments spanning at least one slab (long segment) stored in list associated with largest multi-slab it spans
- Short segments, as well as ends of long segments, are stored further down the tree

Batched Segment Trees



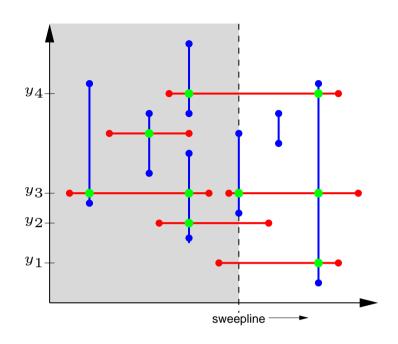
- Buffer-emptying process in $O(m + \frac{R}{B})$ I/Os:
 - Load buffer O(m)
 - Store long segments from buffer in multi-slab lists O(m)
 - Report "intersections" between queries from buffer and segments in relevant multi-slab lists $O(\frac{R}{B})$
 - "Push" elements one level down O(m)

Batched Segment Trees

Theorem Batched segment trees support

Queries $O(\frac{1}{N}\mathsf{Sort}(N) + \frac{R}{B})$ amortized I/Os

Orthogonal Line Segment Intersection



- Sort all endpoints w.r.t. x-coordinate
- ullet Sweep left-to-right with a batched range tree T
- Left endpoint \Rightarrow insertion into T
- Right endpoint \Rightarrow deletion from T
- Vertical segment ⇒ batched report

$$O(\frac{1}{B}\log_{M/B}\frac{N}{B})$$

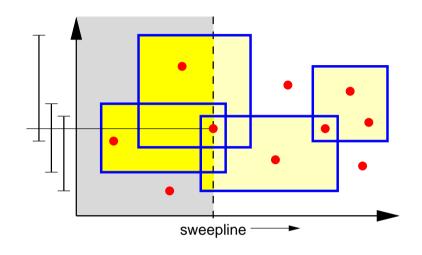
Sort(N)

 $O(\frac{N}{R})$

$$O(\frac{1}{B}\log_{M/B}\frac{N}{B} + \frac{R}{B})$$

$$O(\operatorname{Sort}(N) + \frac{R}{B})$$
 I/Os

Batched Range Searching



- Sort w.r.t. x-coordinate
- Sweep left-to-right with a batched segment tree T
- Left side \Rightarrow insert interval into T
- Right side \Rightarrow delete interval from T
- Point ⇒ batched stabbing query

$$O(\frac{1}{B}\log_{M/B}\frac{N}{B})$$

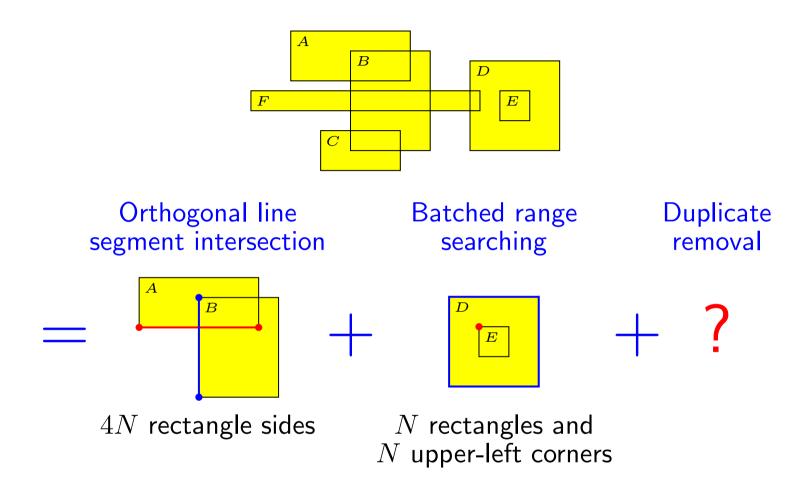
Sort(N)

 $O(\frac{N}{B})$

$$\frac{O(\frac{1}{B}\log_{M/B}\frac{N}{B} + \frac{R}{B})}{O(\mathsf{Sort}(N) + \frac{R}{B}) \; \mathsf{I/Os}}$$

$$O(\operatorname{Sort}(N) + \frac{R}{B})$$
 I/Os

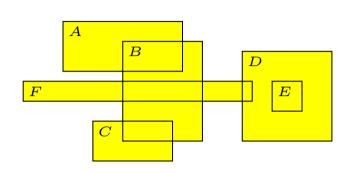
Pairwise Rectangle Intersection

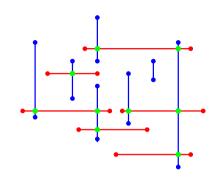


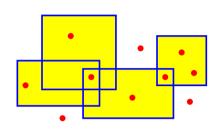
Trick Only generate one intersection between two rectangles

$$\Rightarrow O(\operatorname{Sort}(N) + \frac{R}{B}) \text{ I/Os}$$

Buffer Tree Applications – Summary







Pairwise Rectangle Intersection Orthogonal Line Segment Intersection Batched Range Searching

$$O(\operatorname{Sort}(N) + \frac{R}{B})$$

Batched Range Trees Batched Segment Trees

Updates
$$O(\frac{1}{N}\mathsf{Sort}(N))$$

Updates
$$O(\frac{1}{N}\mathsf{Sort}(N))$$

Queries $O(\frac{1}{N}\mathsf{Sort}(N) + \frac{R}{B})$

Priority Queues

$$O(\frac{1}{N}\mathsf{Sort}(N))$$