Algorithmen für die Speicherhierarchie Lineare Algebra: untere Schranken

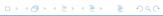
Riko Jacob

Lehrstuhl für Effiziente Algorithmen Fakultät für Informatik Technische Universität München

Vorlesung 12. November 2007

Gliederung

- Modellbildung: Semiring I/O Maschine
- Volumenschranken
 - Algorithmen: Vollbesetzte Matrix mal Vektor
 - Gradschranke
 - Algorithmus: Vollbesetzte Matrix mal Matrix
 - Untere Schranke: Vollbesetzte Matrix mal Matrix
- 3 Zählschranken
 - Algorithmus: Dünnbesetzte Matrix mal Vektor
 - Untere Schranke: Dünnbesetzte Matrizen



Erinnerung Permutieren

Elemente sind Atome (nur bewegen, kopieren, löschen)

Multiplikation erfordert mehr Modellbildung

- Zwischenergebnisse nötig
- Struktur der Zahlen kann Aufgabe trivialisieren (0 oder R)

⇒ Semiring I/O-Maschine:

- Nur Addieren und Multiplizieren, kein Minus oder geteilt (inverse Elemente)
- Rechnen nur im Hauptspeicher, wird nicht gezählt
- Speicherplatz in Anzahl von Zahlen
- Indizes und Adressen f
 ür umsonst

Erinnerung Permutieren

Elemente sind Atome (nur bewegen, kopieren, löschen)

Multiplikation erfordert mehr Modellbildung

- Zwischenergebnisse nötig
- Struktur der Zahlen kann Aufgabe trivialisieren (0 oder R)
- ⇒ Semiring I/O-Maschine:
 - Nur Addieren und Multiplizieren, kein Minus oder geteilt (inverse Elemente)
 - Rechnen nur im Hauptspeicher, wird nicht gezählt
 - Speicherplatz in Anzahl von Zahlen
 - Indizes und Adressen f
 ür umsonst

Erinnerung Permutieren

Elemente sind Atome (nur bewegen, kopieren, löschen)

Multiplikation erfordert mehr Modellbildung:

- Zwischenergebnisse nötig
- Struktur der Zahlen kann Aufgabe trivialisieren (0 oder ℝ)
- \Rightarrow Semiring I/O-Maschine:
 - Nur Addieren und Multiplizieren, kein Minus oder geteilt (inverse Elemente)
 - Rechnen nur im Hauptspeicher, wird nicht gezählt
 - Speicherplatz in Anzahl von Zahlen
 - Indizes und Adressen f
 ür umsonst

Erinnerung Permutieren

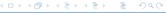
Elemente sind Atome (nur bewegen, kopieren, löschen)

Multiplikation erfordert mehr Modellbildung:

- Zwischenergebnisse nötig
- Struktur der Zahlen kann Aufgabe trivialisieren (0 oder ℝ)
- ⇒ Semiring I/O-Maschine:
 - Nur Addieren und Multiplizieren, kein Minus oder geteilt (inverse Elemente)
 - Rechnen nur im Hauptspeicher, wird nicht gezählt
 - Speicherplatz in Anzahl von Zahlen
 - Indizes und Adressen für umsonst

Diskussion Semiring I/O-Maschine

- Alle Zwischenergebnisse haben Form Matrix-Vektor $\frac{\sum_{j \in S} x_j \cdot a_{ij}}{\sum_{k \in S} a_{ik} \cdot b_{kj}}$ X_i , a_{ii}, $x_i \cdot a_{ii}$, Matrix-Matrix $a_{ik} \cdot b_{ki}$, b_{ij}, a_{ii}, Skalarprodukt $\sum x_i a_{ii} y_i$ $x_i \cdot a_{ii}, a_{ii} \cdot y_i,$ $X_i, y_i,$ a_{ii}, sind so klassifizierbar
- Verzweigungen im Programm helfen nicht
- Indizes sind Teil des Programms
- Wie "I/O-Pebble Game / independent evaluation" [Hong, Kung 1981]
- Fokus auf Datenfluss (statt Algebra)



Diskussion Semiring I/O-Maschine

- Alle Zwischenergebnisse haben Form Matrix-Vektor x_i , a_{ij} , $x_j \cdot a_{ij}$, $\sum_{j \in S} x_j \cdot a_{ij}$ Matrix-Matrix a_{ij} , b_{ij} , $a_{ik} \cdot b_{kj}$, $\sum_{k \in S} a_{ik} \cdot b_{kj}$ Skalarprodukt x_i , y_j , a_{ij} , $x_i \cdot a_{ij}$, $a_{ij} \cdot y_j$, $\sum_{k \in S} a_{ik} \cdot b_{kj}$ sind so klassifizierbar
- Verzweigungen im Programm helfen nicht
- Indizes sind Teil des Programms
- Wie "I/O-Pebble Game / independent evaluation" [Hong, Kung 1981]
- Fokus auf Datenfluss (statt Algebra)

Diskussion Semiring I/O-Maschine

Alle Zwischenergebnisse haben Form

```
Matrix-Vektor x_i, a_{ij}, x_j \cdot a_{ij}, \sum_{j \in S} x_j \cdot a_{ij}
Matrix-Matrix a_{ij}, b_{ij}, a_{ik} \cdot b_{kj}, \sum_{k \in S} a_{ik} \cdot b_{kj}
Skalarprodukt x_i, y_j, a_{ij}, x_i \cdot a_{ij}, a_{ij} \cdot y_j, \sum_{k \in S} a_{ik} \cdot b_{kj}
sind so klassifizierbar
```

- Verzweigungen im Programm helfen nicht
- Indizes sind Teil des Programms
- Wie "I/O-Pebble Game / independent evaluation" [Hong, Kung 1981]
- Fokus auf Datenfluss (statt Algebra)

Vollbesetzte Matrix mal Vektor

Problem

$$y = A \cdot x$$
, $y_i = \sum_{k=1..N} a_{ik} \cdot x_k$

Direkter Algorithmus

Total $O(N^2/B)$ I/Os

Annahme

a_{ik} ohne I/O verfügbar

- Teile y in Blöcke der Größe s = M E
- $-\frac{N}{s}$ mal x scannen

$$O\left(\frac{N}{M}\frac{N}{B}\right) = O\left(\frac{N^2}{MB}\right)$$
 I/Os

	0	1		4	6	7
S	8					15
	16					23
	24					31
	32					39
	40					47

Vollbesetzte Matrix mal Vektor

Problem

$$y = A \cdot x$$
, $y_i = \sum_{k=1..N} a_{ik} \cdot x_k$

Direkter Algorithmus

Total $O(N^2/B)$ I/Os

Annahme

a_{ik} ohne I/O verfügbar

- $-\,$ Teile y in Blöcke der Größe s=M-E
- $-\frac{N}{s}$ mal x scannen

$$O\left(\frac{N}{M}\frac{N}{B}\right) = O\left(\frac{N^2}{MB}\right)$$
 I/Os

1	0	1	2	3	4	5	6	7
S	8							
	16							
	24							
	32							
	40			43	44	45	46	47

Vollbesetzte Matrix mal Vektor

Problem

$$y = A \cdot x$$
, $y_i = \sum_{k=1..N} a_{ik} \cdot x_k$

Direkter Algorithmus

Total $O(N^2/B)$ I/Os

Annahme

a_{ik} ohne I/O verfügbar

Algorithm 2: Blockweiser Algorithmus

- Teile y in Blöcke der Größe s = M B
- $-\frac{N}{s}$ mal x scannen

$$O\left(rac{N}{M}rac{N}{B}
ight)=O\left(rac{N^2}{MB}
ight)$$
 I/Os

s
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47

Algorithmen: Vollbesetzte Matrix mal Vektor

Skalarprodukt mit Bandmatrix

Problem

- Alle Einträge $a_{ii} = 1$ oder $a_{ii} = 0$
- Band: unterer und oberer Rand monoton
- k: Anzahl der 1-Einträge
- Berechne y^TAx

Anwendung

Suche gemessene in synthetisierten Massenspektren

[Roos, Jacob, Grossmann, Fischer, Buhmann, Gruissem, Baginsky, Widmayer, 2007]

$$O\left(\frac{N_x+N_y}{B}+\frac{k}{BM}\right)$$
 I/Os

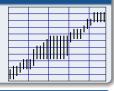
$$O\left(\frac{N_x + N_y}{B} + \frac{k}{BM}\right)$$
 I/Os

Algorithmen: Vollbesetzte Matrix mal Vektor

Skalarprodukt mit Bandmatrix

Problem

- Alle Einträge $a_{ii} = 1$ oder $a_{ii} = 0$
- Band: unterer und oberer Rand monoton
- k: Anzahl der 1-Einträge
- Berechne y^TAx



Anwendung

Suche gemessene in synthetisierten Massenspektren

[Roos, Jacob, Grossmann, Fischer, Buhmann, Gruissem, Baginsky, Widmayer, 2007]

Algorithmus

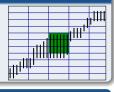
Arbeite in Streifen der Breite M - B

$$O\left(\frac{N_x + N_y}{B} + \frac{k}{BM}\right)$$
 I/Os

Skalarprodukt mit Bandmatrix

Problem

- Alle Einträge $a_{ij}=1$ oder $a_{ij}=0$
- Band: unterer und oberer Rand monoton
- k: Anzahl der 1-Einträge
- Berechne y^TAx



Anwendung

Suche gemessene in synthetisierten Massenspektren

[Roos, Jacob, Grossmann, Fischer, Buhmann, Gruissem, Baginsky, Widmayer, 2007]

Algorithmus

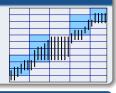
Arbeite in Streifen der Breite M - B

$$O\left(\frac{N_x + N_y}{B} + \frac{k}{BM}\right)$$
 I/Os

Skalarprodukt mit Bandmatrix

Problem

- Alle Einträge $a_{ij}=1$ oder $a_{ij}=0$
- Band: unterer und oberer Rand monoton
- k: Anzahl der 1-Einträge
- Berechne y^TAx



Anwendung

Suche gemessene in synthetisierten Massenspektren

[Roos, Jacob, Grossmann, Fischer, Buhmann, Gruissem, Baginsky, Widmayer, 2007]

Algorithmus

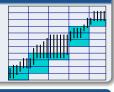
Arbeite in Streifen der Breite M - B

$$O\left(\frac{N_x + N_y}{B} + \frac{k}{BM}\right)$$
 I/Os

Skalarprodukt mit Bandmatrix

Problem

- Alle Einträge $a_{ij}=1$ oder $a_{ij}=0$
- Band: unterer und oberer Rand monoton
- k: Anzahl der 1-Einträge
- Berechne y^TAx



Anwendung

Suche gemessene in synthetisierten Massenspektren

[Roos, Jacob, Grossmann, Fischer, Buhmann, Gruissem, Baginsky, Widmayer, 2007]

Algorithmus

Arbeite in Streifen der Breite M - B

$$O\left(\frac{N_x + N_y}{B} + \frac{k}{BM}\right)$$
 I/Os

Skalarprodukt mit Bandmatrix

Problem

- Alle Einträge $a_{ij} = 1$ oder $a_{ij} = 0$
- Band: unterer und oberer Rand monoton
- k: Anzahl der 1-Einträge
- Berechne y^TAx

Anwendung

Suche gemessene in synthetisierten Massenspektren

[Roos, Jacob, Grossmann, Fischer, Buhmann, Gruissem, Baginsky, Widmayer, 2007]

Algorithmus

Arbeite in Streifen der Breite M - B

$$O\left(\frac{N_x+N_y}{B}+\frac{k}{BM}\right)$$
 I/Os

Algorithmen: Vollbesetzte Matrix mal Vektor Gradschranke Algorithmus: Vollbesetzte Matrix mal Matrix Untere Schranke: Vollbesetzte Matrix mal Matrix

Gradschranke

Annahme

Alle elementaren Produkte haben Grad $\leq D$

Ein elementares Produkt ist D-Tupel von Eingabevariablen. Nach einem Input sind B neue Variablen im Speicher, diese erlauben höchstens $M^{D-1}B$ neue Tupel zu bilden.

Beispiel

Bandmatrix Skalarprodukt / Vollbesetzte Matrix–Vektor Alle elementaren Produkte haben Grad 2 Nach einem I/O höchstens MB neue $\Rightarrow \Omega\left(\frac{k}{MB}\right)$ I/Os

Zusammen mit Scanning-Bound: vorgestellte Algorithmen sind optimal

Algorithmus: Vollbesetzte Matrix mal Matrix

Matrix Multiplikation

Problem

$$C = A \cdot B$$
, $c_{ij} = \sum_{k=1..N} a_{ik} \cdot b_{kj}$

Layout von Matrizen

Spalten

Vollbesetzte Matrix mal Matrix

Algorithmus 1: Nested loops

- Zeilen Layout
- Lesen einer Spalte von B benötigt N I/Os
- Total O(N3) I/Os

$$\begin{cases} \text{for } i = 1 \text{ to } N \\ \text{for } j = 1 \text{ to } N \\ c_{ij} = 0 \\ \text{for } k = 1 \text{ to } N \\ c_{ij} = c_{ij} + a_{ik} \cdot b_{kj} \end{cases}$$

- Teile A und B in $s \times s$ Blöcke mit $s = \Theta(\sqrt{M})$
- Algorithm 1 für die $\frac{N}{s} \times \frac{N}{s}$ Matrizen Elemente sind $s \times s$ Matrizen
- -s imes s-Blöcke oder (Zeilen und $M=\Omega(B^2)$)

	•	·						
_1	0	1	2		4		6	
S	8	9	10	11	12	13	14	15
	16							
	24	25	26	27	28		30	
	32				36		38	
	40	41	42	43	44		46	
	48							
	56	57	58	59	60	61	62	63

0	$\left(\left(\frac{N}{s}\right)^3\right.$	$\frac{s^2}{B}$	= 0	$\left(\frac{N^3}{s \cdot B}\right)$	= 0	$\left(\frac{N^3}{B\sqrt{M}}\right)$	I/Os

Vollbesetzte Matrix mal Matrix

Algorithmus 1: Nested loops

- Zeilen Layout
- Lesen einer Spalte von B benötigt N I/Os
- Total O(N³) I/Os

for
$$i = 1$$
 to N
for $j = 1$ to N
 $c_{ij} = 0$
for $k = 1$ to N
 $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$

- Teile *A* und *B* in $s \times s$ Blöcke mit $s = \Theta(\sqrt{M})$
- Algorithm 1 für die $\frac{N}{s} \times \frac{N}{s}$ Matrizen Elemente sind $s \times s$ Matrizen

$$-s imes s$$
-Blöcke oder (Zeilen und $M=\Omega(B^2)$

	•	s →						
٦	1.0	1						
s	8	9	10	11	12	13	14	15
	16	17	18	19	20	21	22	23
	24	25	26	27	28	29	30	31
	32	33	34	35	36	37	38	39
	40	41	42	43	44	45	46	47
	48	49	50	51	52	53	54	55
	56	57	58	59	60	61	62	63

$$O\left(\left(\frac{N}{s}\right)^3 \cdot \frac{s^2}{B}\right) = O\left(\frac{N^3}{s \cdot B}\right) = O\left(\frac{N^3}{B\sqrt{M}}\right)$$
 I/Os

Vollbesetzte Matrix mal Matrix

Algorithmus 1: Nested loops

- Zeilen Layout
- Lesen einer Spalte von B benötigt N I/Os
- Total O(N³) I/Os

$$\begin{array}{l} \text{for } i = 1 \text{ to } N \\ \text{for } j = 1 \text{ to } N \\ c_{ij} = 0 \\ \text{for } k = 1 \text{ to } N \\ c_{ij} = c_{ij} + a_{ik} \cdot b_{kj} \end{array}$$

- Teile *A* und *B* in $s \times s$ Blöcke mit $s = \Theta(\sqrt{M})$
- Algorithm 1 für die $\frac{N}{s} \times \frac{N}{s}$ Matrizen Elemente sind $s \times s$ Matrizen
- -s imes s-Blöcke oder $\left(ext{ Zeilen und } M = \Omega(B^2)
 ight)$

	↓	s •						
_1	0	1	2	3	4	5	6	7
s	8	9	10	11	12	13	14	15
	16	17	18	19	20	21	22	23
	24	25	26	27	28	29	30	31
	32	33	34	35	36	37	38	39
	40	41	42	43	44	45	46	47
	48	49	50	51	52	53	54	55
	56	57	58	59	60	61	62	63

) ($\left(\left(\frac{N}{s}\right)^3\right)$	$\cdot \frac{s^2}{B}$	$=O\left(\frac{N^3}{s\cdot B}\right)$	= O	$\left(\frac{N^3}{B\sqrt{M}}\right)$	I/Os
------------	---	-----------------------	---------------------------------------	-----	--------------------------------------	------

Algorithmen: Vollbesetzte Matrix mal Vektor Gradschranke Algorithmus: Vollbesetzte Matrix mal Matrix Untere Schranke: Vollbesetzte Matrix mal Matrix

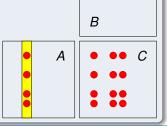
Vollbesetzte Matrix-Matrix

Berechnung in Runden [Hong, Kung 1981]

Für jede (M, B)-I/O Berechnung mit ℓ I/Os gibt es eine (2M, B)-I/O Berechnung mit höchstens 2ℓ I/Os, der Gestalt (Speicher leer, laden, speichern, Speicher leer)*

untere Schranke: elementare Produkte pro Runde

- Sei c #Ergebnisse (C, Output)
- a_i # Elemente in Spalte i von A
- b_i # Elemente in Zeile i von B
- Speicher: $c, \sum_i a_i + b_i \leq M$
- − Produkte: $\sum_{i} \min\{a_i \cdot b_i, c\}$
- Maximal für $a_i = b_i = \sqrt{M}, c = M$ #Produkte $\leq M\sqrt{M}$



Algorithmen: Vollbesetzte Matrix mal Vektor Gradschranke Algorithmus: Vollbesetzte Matrix mal Matrix Untere Schranke: Vollbesetzte Matrix mal Matrix

untere Schranke: vollbesetzte Matrix-Matrix

Theorem [Hong, Kung 1981]

Ein Semiring I/O Programm, dass eine vollbesetzte $N_1 \times N_2$ mit einer $N_2 \times N_3$ Matrix multipliziert benötigt

$$\Omega\left(\frac{N_1N_2N_3}{B\sqrt{M}}\right)$$

Beweis:

Es gibt $N_1N_2N_3$ elementare Produkte, also (vorige Folie) $\Omega\left(\frac{N_1N_2N_3}{M\sqrt{M}}\right)$ Runden.

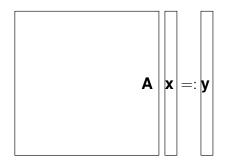
Eine Runde hat M/B I/Os.

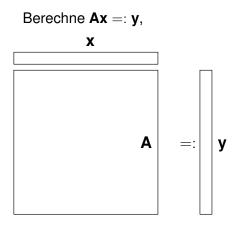
Berechne

$$\mathbf{A} \mathbf{x} =: \mathbf{y}$$

Berechne $\mathbf{A}\mathbf{x} =: \mathbf{y}$,

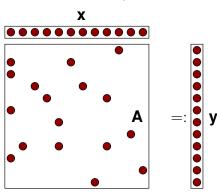
A ist $N \times N$ Matrix





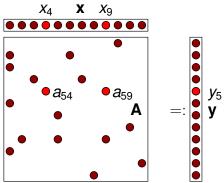
A ist $N \times N$ Matrix

Berechne $\mathbf{A}\mathbf{x} =: \mathbf{y}$,



A ist $N \times N$ Matrix mit kN Einträgen $\neq 0$. $(1 \le k \le \sqrt{N})$

Berechne Ax =: y,

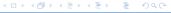


Permutieren ist Spezialfall:

k = 1, eine 1 pro Zeile und pro Spalte

A ist $N \times N$ Matrix mit kN Einträgen $\neq 0$. $(1 \le k \le \sqrt{N})$

$$y_i = \sum_{j=1}^N a_{ij} x_j$$



Anwendungen

dünn besetzte Matrizen:

- Diskretisierung von Differentialgleichungen
- Modifikation von digitalen Bildern
- Adjazenzmatrix eines Graphen

Operationen:

- Iteratives Lösen eines Gleichungssystems
- Eigenwerte und Eigenvektoren
- Googles PageRank

Programmierung:

- Software Bibliothek: "Sparse Matrix Kernel"
- Googles "MapReduce"


```
for i = 1 to N do

y_i := 0;

for i = 1 to N do

y_i := y_i + a_{ij}x_j;

end

end
```

Kontrollstruktur hängt nur von A ab

 \Rightarrow Eigentlich ein langes Programm ohne Verzweigung i,j sind dann Konstanten \bigcirc Technische Universität


```
\begin{array}{l} \textbf{for } i=1 \ to \ N \ \textbf{do} \\ y_i:=0; \\ \textbf{for } i=1 \ to \ N \ \textbf{do} \\ & | \ \textbf{if } a_{ij} \neq 0 \ \textbf{then} \\ & | \ y_i:=y_i+a_{ij}x_j; \\ & \ \textbf{end} \\ \textbf{end} \\ \textbf{end} \end{array}
```

Kontrollstruktur hängt nur von A ab

 \Rightarrow Eigentlich ein langes Programm ohne Verzweigung i,j sind dann Konstanten \bigcirc Technische Universit.


```
for i=1 to N do
\begin{array}{c} y_i:=0;\\ \text{for } i=1 \text{ to } N \text{ do} \\ & | if \ a_{ij} \neq 0 \text{ then} \\ & | y_i:=y_i+a_{ij}x_j;\\ & | \text{end} \\ & | \text{end} \end{array}
```

A ist Liste
$$L = [(i, j, a_{ij})]$$

for $i = 1$ to N do
 $| y_i := 0;$
end
for $(i, j, a_{ij}) \in L$ do
 $| y_i := y_i + a_{ij}x_j;$
end

Kontrollstruktur hängt nur von A ab

 \Rightarrow Eigentlich ein langes Programm ohne Verzweigung i,j sind dann Konstanten \bigcirc Technische Universität


```
for i=1 to N do
\begin{array}{c} y_i:=0;\\ \text{for } i=1 \text{ to } N \text{ do} \\ & \text{ if } a_{ij}\neq 0 \text{ then} \\ & | y_i:=y_i+a_{ij}x_j;\\ & \text{ end} \\ & \text{end} \end{array}
```

A ist Liste
$$L = \lfloor (i, j, a_{ij}) \rfloor$$

for $i = 1$ to N do
| $y_i := 0$;
end
for $(i, j, a_{ij}) \in L$ do
| $y_i := y_i + a_{ij}x_j$;
end

Kontrollstruktur hängt nur von A ab

⇒ Eigentlich ein langes Programm ohne Verzweigung

i, j sind dann Konstanten

for
$$i=1$$
 to N do
$$\begin{array}{c} y_i:=0;\\ \text{for } i=1 \text{ to } N \text{ do} \\ & | if \ a_{ij}\neq 0 \text{ then} \\ & | y_i:=y_i+a_{ij}x_j;\\ & | \text{end} \\ & | \text{end} \end{array}$$

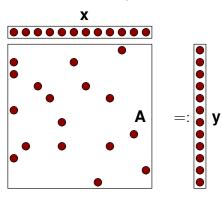
A ist Liste
$$L = [(i, j, a_{ij})]$$

for $i = 1$ to N do
| $y_i := 0$;
end
for $(i, j, a_{ij}) \in L$ do
| $y_i := y_i + a_{ij}x_j$;
end

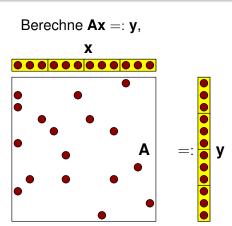
Kontrollstruktur hängt nur von A ab

⇒ Eigentlich ein langes Programm ohne Verzweigung i, j sind dann Konstanten

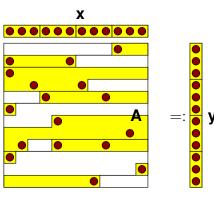
Berechne $\mathbf{A}\mathbf{x} =: \mathbf{y}$,



A ist $N \times N$ Matrix mit kN Einträgen $\neq 0$. $(1 \le k \le \sqrt{N})$



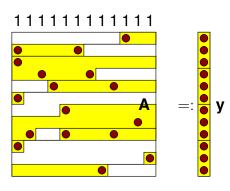
A ist $N \times N$ Matrix mit kN Einträgen $\neq 0$. $(1 \le k \le \sqrt{N})$



A ist $N \times N$ Matrix mit kN Einträgen $\neq 0$. $(1 \le k \le \sqrt{N})$

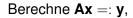
Row-major Layout

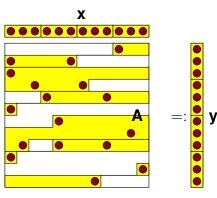
Berechne $\mathbf{A}\mathbf{x} =: \mathbf{y}$,



A ist $N \times N$ Matrix mit kN Einträgen $\neq 0$. $(1 \le k \le \sqrt{N})$

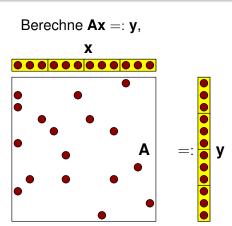
Row-major Layout Zeilensummen $\Theta(kN/B)$ I/Os





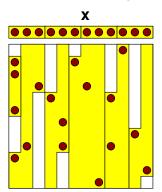
A ist $N \times N$ Matrix mit kN Einträgen $\neq 0$. $(1 \le k \le \sqrt{N})$

Row-major Layout Direkter Alg. $\Theta(kN)$ I/Os



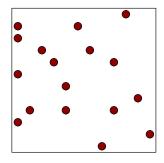
A ist $N \times N$ Matrix mit kN Einträgen $\neq 0$. $(1 \le k \le \sqrt{N})$

Berechne $\mathbf{A}\mathbf{x} =: \mathbf{y}$,



A ist $N \times N$ Matrix mit kN Einträgen $\neq 0$. $(1 \le k \le \sqrt{N})$

Berechne **Ax** =: **y**,

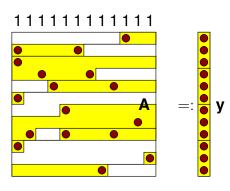


A ist $N \times N$ Matrix mit kN Einträgen $\neq 0$. $(1 \le k \le \sqrt{N})$

Einträge sind Produkte $a_{ij}x_j$



Berechne $\mathbf{A}\mathbf{x} =: \mathbf{y}$,



A ist $N \times N$ Matrix mit kN Einträgen $\neq 0$. $(1 \le k \le \sqrt{N})$

Row-major Layout Zeilensummen $\Theta(kN/B)$ I/Os

Sortierbasiertes Multiplizieren

```
A ist Liste L = [(i, j, a_{ij})], Z ist gleichartige Liste for i = 1 to N do y_i := 0;
Sortiere L nach Spalten (j);
for (i, j, a_{ij}) \in L do z_{ij} := a_{ij}x_j; // j aufsteigend
Sortiere Z nach Zeilen (i);
for (i, j, z_{ij}) \in Z do y_i := y_i + z_{ij}; // j aufsteigend
```


Analyse des Sortierbasierten Programms

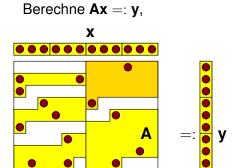
Multiplikationen und Additionen: O(kN)

I/Os:

$$O\left(\frac{kN}{B}\log_{\frac{M}{B}}\frac{kN}{M}\right)$$

Sortierbasiertes Multiplizieren Block Layout

```
A ist Liste L = [(i, j, a_{ij})], Z ist gleichartige Liste for i = 1 to N do y_i := 0;
Sortiere L nach Spalten (j); L ist in Block-Row-Major Layout for (i, j, a_{ij}) \in L do z_{ij} := a_{ij}x_j; // j aufsteigend Sortiere Z nach Zeilen (i); for (i, j, z_{ij}) \in Z do y_i := y_i + z_{ij}; // j aufsteigend
```



A ist $N \times N$ Matrix mit kN Einträgen $\neq 0$. $(1 \le k \le \sqrt{N})$

Block-Column-major Layout

Analyse des Sortierbasierten Programms

Multiplikationen und Additionen: O(kN)

I/Os:

$$O\left(\frac{kN}{B}\log_{\frac{M}{B}}\frac{kN}{M}\right)$$

$$O\left(\frac{kN}{B}\log_{\frac{M}{B}}\frac{N}{M}\right)$$

Sortierbasiertes Multiplizieren

Block Layout und Addieren beim Sortieren

```
A ist Liste L = \lceil (i, j, a_{ii}) \rceil, Z ist gleichartige Liste
for i = 1 to N do v_i := 0;
Sortiere L nach Spalten (i); L ist in Block-Row-Major Layout
for (i, j, a_{ii}) \in L do z_{ii} := a_{ii}x_i; //j aufsteigend
Sortiere Z nach Zeilen (i):
begin Beim Sortieren von Z nach Zeilen
    if (i, j, z_{ii}) und (i, h, z_{ih}) zugleich im Speicher then
    z_{ij} := z_{ij} + z_{ih}, werfe z_{ih} weg;
    end
end
```

for $(i, j, z_{ii}) \in Z$ do $y_i := y_i + z_{ii}$; //i aufsteigend

Analyse des Sortierbasierten Programms

Multiplikationen und Additionen: O(kN)

I/Os:

$$O\left(\frac{kN}{B}\log_{\frac{M}{B}}\frac{kN}{M}\right)$$

$$O\left(\frac{kN}{B}\log_{\frac{M}{B}}\frac{N}{M}\right)$$

$$O\left(\frac{kN}{B}\log_{\frac{M}{B}}\frac{N}{kM}\right)$$

Dünnbesetzte Matrizen

k-Dünnbesetzte Matrix

Die $N \times N$ Matrix A hat kN Nicht-Null-Einträge, also im Schnitt k Einträge pro Spalte.

Bekannt: [Aggarwal, Vitter 1988]

Permutationsmatrizen sind Spezialfall:

$$\Omega\left(\min\left\{\frac{N}{B}\left(1+\log_{M/B}\frac{N}{M}\right),N\right\}\right)$$

Somit Faktor k schwächer als Algorithmen



Aussage der unteren Schranken

$$B > 2$$
, $M \ge 4B$ und $k \le N^{1-\epsilon}$

$$\Theta\left(\min\left\{\frac{kN}{B}\left(1+\log_{M/B}\frac{N}{\max\{k,M\}}\right),kN\right\}\right)$$

▶ Freies Layout

$$B > 6$$
, $M > 3B$ und $k < \sqrt[3]{N}$

$$\Theta\left(\min\left\{\frac{kN}{B}\left(1+\log_{M/B}\frac{N}{kM}\right),kN\right\}\right)$$

Gilt für k > 5 auch wenn Eingabe- und Ausgabe-Vektor in beliebiger Form gespeichert werden können.

Beweisidee Untere Schranken

- Wie [Aggarwal, Vitter 1988]: Vergleiche Anzahl schneller Programme mit Anzahl von Aufgaben
- Normalisieren der Programme:
 - Mengen statt Listen
 - Ergebnisse rückwärts (nur Zeile statt auch Teilmenge von Spalten)
 - Berechnung so früh wie möglich
 - ⇒ kurze, eindeutige Beschreibung jedes Programms
- Sorgfältiges Auflösen der entstehenden Ungleichung

Eine ungewöhnliche Aufgabe

Aufgabe Gegeben y_1, \ldots, y_N , erzeuge eine Liste der Länge kN, interpretiert als N Blöcke von k Variablen.

$$(y_1, y_2, y_3) \rightsquigarrow ([y_1, y_3], [y_1, y_2], [y_2, y_3]) \equiv \begin{pmatrix} y_1 & y_1 \\ & y_2 & y_2 \\ y_3 & & y_3 \end{pmatrix}$$

Ziel: Erzeuge alle *k*-regulären Matrizen in Column Major Layout.

- Annahme: Variablen können nur bewegt, kopiert oder gelöscht werden.
- Normalisiere: Ordnung im Speicher/Blöcken ist unwichtig
 Mengen von Indizes
- Dies ist Zeit-umgekehrt die Aufgabe Zeilen-Summen zu berechnen (x = 1)

Eine ungewöhnliche Aufgabe

Aufgabe Gegeben y_1, \ldots, y_N , erzeuge eine Liste der Länge kN, interpretiert als N Blöcke von k Variablen.

$$(1,2,3) \quad \rightsquigarrow \quad (\{1,3\},\{1,2\},\{2,3\}) \quad \equiv \begin{pmatrix} y_1 & y_1 \\ & y_2 & y_2 \\ y_3 & & y_3 \end{pmatrix}$$

Ziel: Erzeuge alle *k*-regulären Matrizen in Column Major Layout.

- Annahme: Variablen können nur bewegt, kopiert oder gelöscht werden.
- Normalisiere: Ordnung im Speicher/Blöcken ist unwichtig
 - ⇒ Mengen von Indizes
- Dies ist Zeit-umgekehrt die Aufgabe Zeilen-Summen zu berechnen (x = 1)

Eine ungewöhnliche Aufgabe

Aufgabe Gegeben y_1, \ldots, y_N , erzeuge eine Liste der Länge kN, interpretiert als N Blöcke von k Variablen.

$$(1,2,3) \quad \rightsquigarrow \quad (\{1,3\},\{1,2\},\{2,3\}) \quad \equiv \begin{pmatrix} y_1 & y_1 \\ y_2 & y_2 \\ y_3 & y_3 \end{pmatrix}$$

Ziel: Erzeuge alle *k*-regulären Matrizen in Column Major Layout.

- Annahme: Variablen können nur bewegt, kopiert oder gelöscht werden.
- Normalisiere: Ordnung im Speicher/Blöcken ist unwichtig
 - ⇒ Mengen von Indizes
- Dies ist Zeit-umgekehrt die Aufgabe Zeilen-Summen zu berechnen (x = 1).

- Symbolische Representation: Zahlen → Indizes von Variablen
- $\mathcal{M} \subset [N]$, $|\mathcal{M}| \leq M$; $\mathcal{T}_i \subset [N]$, $|\mathcal{T}_i| \leq B$.
- Verfolge die Bewegung der Variablen
- Eindeutige Anfangskonfiguration $\mathcal{M} = \emptyset$, $\mathcal{T}_1 = \{1, ..., B\}, ..., \mathcal{T}_{N/B} = \{N B + 1, ..., N\}$
- Endkonfiguration bestimmt die Gestalt der Matrix bis auf Anordnung in den Mengen

- Symbolische Representation: Zahlen → Indizes von Variablen
- $\mathcal{M} \subset [N]$, $|\mathcal{M}| \leq M$; $\mathcal{T}_i \subset [N]$, $|\mathcal{T}_i| \leq B$.
- Verfolge die Bewegung der Variablen
- Eindeutige Anfangskonfiguration $\mathcal{M} = \emptyset$, $\mathcal{T}_1 = \{1, ..., B\}, ..., \mathcal{T}_{N/B} = \{N B + 1, ..., N\}$
- Endkonfiguration bestimmt die Gestalt der Matrix bis auf Anordnung in den Mengen

- Symbolische Representation: Zahlen → Indizes von Variablen
- $\mathcal{M} \subset [N]$, $|\mathcal{M}| \leq M$; $\mathcal{T}_i \subset [N]$, $|\mathcal{T}_i| \leq B$.
- Verfolge die Bewegung der Variablen
- Eindeutige Anfangskonfiguration $\mathcal{M} = \emptyset$, $\mathcal{T}_1 = \{1, ..., B\}, ..., \mathcal{T}_{N/B} = \{N B + 1, ..., N\}$
- Endkonfiguration bestimmt die Gestalt der Matrix bis auf Anordnung in den Mengen

- Symbolische Representation: Zahlen → Indizes von Variablen
- $\mathcal{M} \subset [N]$, $|\mathcal{M}| \leq M$; $\mathcal{T}_i \subset [N]$, $|\mathcal{T}_i| \leq B$.
- Verfolge die Bewegung der Variablen
- Eindeutige Anfangskonfiguration $\mathcal{M} = \emptyset$, $\mathcal{T}_1 = \{1, ..., B\}, ..., \mathcal{T}_{N/B} = \{N B + 1, ..., N\}$
- Endkonfiguration bestimmt die Gestalt der Matrix bis auf Anordnung in den Mengen

- Symbolische Representation: Zahlen → Indizes von Variablen
- $\mathcal{M} \subset [N]$, $|\mathcal{M}| \leq M$; $\mathcal{T}_i \subset [N]$, $|\mathcal{T}_i| \leq B$.
- Verfolge die Bewegung der Variablen
- Eindeutige Anfangskonfiguration $\mathcal{M} = \emptyset$, $\mathcal{T}_1 = \{1, ..., B\}, ..., \mathcal{T}_{N/B} = \{N B + 1, ..., N\}$
- Endkonfiguration bestimmt die Gestalt der Matrix bis auf Anordnung in den Mengen

Zählen

Endkonfiguration

Eine Endkonfiguration entspricht einer bestimmten Anzahl von verschiedenen Matrizen.

Mehrdeutigkeit:

$$\begin{cases} 3^{kN}, & B < k \\ 1, & B = k \\ (2eB/k)^{kN}, & B > k \end{cases}$$

Anzahl verschiedener Programme (Datenfluss-Spur)

Anzahl Nachfolgekonfigurationen pro I/O-Operation:

$$\ell \binom{M+B}{B}$$

Zählen

Endkonfiguration

Eine Endkonfiguration entspricht einer bestimmten Anzahl von verschiedenen Matrizen.

Mehrdeutigkeit:

$$\begin{cases} 3^{kN}, & B < k \\ 1, & B = k \\ (2eB/k)^{kN}, & B > k \end{cases}$$

Anzahl verschiedener Programme (Datenfluss-Spur)

Anzahl Nachfolgekonfigurationen pro I/O-Operation:

$$\ell \binom{M+B}{B}$$

Theorem: Matrizen Erzeugen

Lemma

Für B > 2, $M \ge 4B$ und $k \le N^{1-\varepsilon}$ gilt

$$\ell(k,N) \geq \min \left\{ \kappa(\varepsilon) \frac{kN}{B} \log_{M/B} \frac{N}{\max\{k,M\}} \,,\, \frac{1}{8} \kappa'(\varepsilon) kN \right\} \,.$$

Proof

Ergibt sich aus

$$\binom{N}{k}^{N} \leq \left(\binom{M+B}{B} \ell \right)^{\ell} \cdot \max\{3, 2eB/k\}^{kN}$$

Theorem: Matrizen Erzeugen

Lemma

Für B > 2, $M \ge 4B$ und $k \le N^{1-\varepsilon}$ gilt

$$\ell(k, N) \ge \min \left\{ \kappa(\varepsilon) \frac{kN}{B} \log_{M/B} \frac{N}{\max\{k, M\}}, \frac{1}{8} \kappa'(\varepsilon) kN \right\}.$$

Proof.

Ergibt sich aus:

$$\binom{N}{k}^N \le \left(\binom{M+B}{B}\ell\right)^\ell \cdot \max\{3, 2eB/k\}^{kN}$$

Theorem: Column Major Layout

Theorem

Für
$$B > 2$$
, $M \ge 4B$ und $k \le N^{1-\varepsilon}$ gilt

$$\ell(k, N) \ge \min \left\{ \kappa(\varepsilon) \frac{kN}{B} \log_{M/B} \frac{N}{\max\{k, M\}}, \frac{1}{8} \kappa'(\varepsilon) kN \right\}.$$

Proof

Multiplizieren mit dem 1-Vektor ist Zeit invers zum Erzeugen von Matrizen

(Teileummen statt Veriablen)

Technische Universität Müncher

Theorem: Column Major Layout

Theorem

Für B > 2, $M \ge 4B$ und $k \le N^{1-\varepsilon}$ gilt

$$\ell(k, N) \ge \min \left\{ \kappa(\varepsilon) \frac{kN}{B} \log_{M/B} \frac{N}{\max\{k, M\}}, \frac{1}{8} \kappa'(\varepsilon) kN \right\}.$$

Proof.

Multiplizieren mit dem 1-Vektor ist Zeit invers zum Erzeugen von Matrizen

(Teilsummen statt Variablen)

Technische Universität Müncher

Erweiterung zu freiem Layout

Mehr Information nötig, um ein Programm zu beschreiben:

- Verfolge Zeit-vorwärts die Bewegung der Variablen (x_i);
- Verfolge Zeit-rückwärts die Bewegung von Teilsummen;
- Beobachte Multiplikationen (a_{ij}x_i) im Hauptspeicher.
- Dies bestimmt die Gestalt der Matrix.

$$\rightsquigarrow \Omega\left(\min\left\{\frac{kN}{B}\left(1+\log_{M/B}\frac{N}{kM}\right),kN\right\}\right)$$

Erweiterung zu freiem Layout

Mehr Information nötig, um ein Programm zu beschreiben:

- Verfolge Zeit-vorwärts die Bewegung der Variablen (x_i);
- Verfolge Zeit-rückwärts die Bewegung von Teilsummen;
- Beobachte Multiplikationen (a_{ij}x_i) im Hauptspeicher.
- Dies bestimmt die Gestalt der Matrix.

$$ightarrow \Omega\left(\min\left\{\frac{kN}{B}\left(1+\log_{M/B}\frac{N}{kM}\right),kN\right\}\right)$$

Ungleichung für freies Layout

Normalisieren: Elementare Produkte werden sofort erzeugt (ersetzen a_{ii}). Somit:

$$\binom{N}{k}^{N} \leq \left(\binom{M+B}{B} \ell \right)^{2\ell} \cdot \binom{2\ell BM}{kN}.$$

Löse nach ℓ mithilfe von

Lemma

Seien $b \ge 2$ und s, t > 0 mit $s \cdot t > 1$. Dann gilt für alle positiven reellen Zahlen x, dass $x \ge \frac{\log_b(s/x)}{t}$ \Rightarrow $x \ge \frac{1}{2} \frac{\log_b(s \cdot t)}{t}$

Technische Universität München

Aussage der unteren Schranken

$$B > 2$$
, $M \ge 4B$ und $k \le N^{1-\epsilon}$

$$\Theta\left(\min\left\{\frac{kN}{B}\left(1+\log_{M/B}\frac{N}{\max\{k,M\}}\right),kN\right\}\right)$$

Freies Layout

$$B > 6$$
, $M > 3B$ und $k < \sqrt[3]{N}$

$$\Theta\left(\min\left\{\frac{kN}{B}\left(1+\log_{M/B}\frac{N}{kM}\right),kN\right\}\right)$$

Gilt für k > 5 auch wenn Eingabe- und Ausgabe-Vektor in beliebiger Form gespeichert werden können.

- Es gibt dünn besetzte Matrizen, für die das sortierbasierte Programm optimal ist (bis auf eine Konstante)
- Fast alle dünn besetzten Matrizen sind schwierig
- Eine gleichverteilt zufällig gewählte Matrix ist schwierig

Erweiterungen:

- nicht quadratische Matrizen
- Skalarprodukte
- Parallelrechner mit Block-Kommunikation (statt I/O-Modell)

- mit mehreren Vektoren gleichzeitig Multiplizieren
- Gestaltabhängige optimale Algorithmen Technische Universität München

- Es gibt dünn besetzte Matrizen, für die das sortierbasierte Programm optimal ist (bis auf eine Konstante)
- Fast alle dünn besetzten Matrizen sind schwierig
- Eine gleichverteilt zufällig gewählte Matrix ist schwierig

Erweiterungen:

- nicht quadratische Matrizen
- Skalarprodukte
- Parallelrechner mit Block-Kommunikation (statt I/O-Modell)

- mit mehreren Vektoren gleichzeitig Multiplizieren
- Gestaltabhängige optimale Algorithmen Technische Universität München

- Es gibt dünn besetzte Matrizen, für die das sortierbasierte Programm optimal ist (bis auf eine Konstante)
- Fast alle dünn besetzten Matrizen sind schwierig
- Eine gleichverteilt zufällig gewählte Matrix ist schwierig

Erweiterungen:

- nicht quadratische Matrizen
- Skalarprodukte
- Parallelrechner mit Block-Kommunikation (statt I/O-Modell)

- mit mehreren Vektoren gleichzeitig Multiplizieren
- Gestaltabhängige optimale Algorithmen

- Es gibt dünn besetzte Matrizen, für die das sortierbasierte Programm optimal ist (bis auf eine Konstante)
- Fast alle dünn besetzten Matrizen sind schwierig
- Eine gleichverteilt zufällig gewählte Matrix ist schwierig

Erweiterungen:

- nicht quadratische Matrizen
- Skalarprodukte
- Parallelrechner mit Block-Kommunikation (statt I/O-Modell)

- mit mehreren Vektoren gleichzeitig Multiplizieren
- Gestaltabhängige optimale Algorithmen

- Es gibt dünn besetzte Matrizen, für die das sortierbasierte Programm optimal ist (bis auf eine Konstante)
- Fast alle dünn besetzten Matrizen sind schwierig
- Eine gleichverteilt zufällig gewählte Matrix ist schwierig

Erweiterungen:

- nicht quadratische Matrizen
- Skalarprodukte
- Parallelrechner mit Block-Kommunikation (statt I/O-Modell)

Offen:

mit mehreren Vektoren gleichzeitig Multiplizieren

Riko Jacob

Gestaltabhängige optimale Algorithmen Technische Universität München

- Es gibt dünn besetzte Matrizen, für die das sortierbasierte Programm optimal ist (bis auf eine Konstante)
- Fast alle dünn besetzten Matrizen sind schwierig
- Eine gleichverteilt zufällig gewählte Matrix ist schwierig

Erweiterungen:

- nicht quadratische Matrizen
- Skalarprodukte
- Parallelrechner mit Block-Kommunikation (statt I/O-Modell)

- mit mehreren Vektoren gleichzeitig Multiplizieren
 - Gestaltabhängige optimale Algorithmen Technische Universität München

- Es gibt dünn besetzte Matrizen, für die das sortierbasierte Programm optimal ist (bis auf eine Konstante)
- Fast alle dünn besetzten Matrizen sind schwierig
- Eine gleichverteilt zufällig gewählte Matrix ist schwierig

Erweiterungen:

- nicht quadratische Matrizen
- Skalarprodukte
- Parallelrechner mit Block-Kommunikation (statt I/O-Modell)

- mit mehreren Vektoren gleichzeitig Multiplizieren
- Gestaltabhängige optimale Algorithmen



- Es gibt dünn besetzte Matrizen, für die das sortierbasierte Programm optimal ist (bis auf eine Konstante)
- Fast alle dünn besetzten Matrizen sind schwierig
- Eine gleichverteilt zufällig gewählte Matrix ist schwierig

Erweiterungen:

- nicht quadratische Matrizen
- Skalarprodukte
- Parallelrechner mit Block-Kommunikation (statt I/O-Modell)

- mit mehreren Vektoren gleichzeitig Multiplizieren
- Gestaltabhängige optimale Algorithmen

