
WS 2007/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultät für Informatik

TU München

http://www14.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007



1. Application of DFS: topological sort

1.1 Correctness of TopSort

For every vertex v introduce the new variable v.finished as well
as the second global variable counter2:

Topological Sorting:

void TopSort(vertex v){
foreach (v ∈ V ) do v.dfsnum := 0; v.finished := 0; od
while ∃v0 ∈ V : v0.dfsnum = 0 do modified-DFS(v0) od
od }

Modified DFS:
void modified-DFS(vertex v){

v.dfsnum:= counter++;
foreach (w|(v, w) ∈ E) do

if (w.dfsnum=0) then modified-DFS(w); fi
od
v.finished:= counter2++;
push(v) }



1. Application of DFS: topological sort

1.1 Correctness of TopSort

For every vertex v introduce the new variable v.finished as well
as the second global variable counter2:

Topological Sorting:

void TopSort(vertex v){
foreach (v ∈ V ) do v.dfsnum := 0; v.finished := 0; od
while ∃v0 ∈ V : v0.dfsnum = 0 do modified-DFS(v0) od
od }

Modified DFS:
void modified-DFS(vertex v){

v.dfsnum:= counter++;
foreach (w|(v, w) ∈ E) do

if (w.dfsnum=0) then modified-DFS(w); fi
od
v.finished:= counter2++;
push(v) }



modified-DFS performs the partition of edges into four classes:

Tree edges – edge (u, v) is a tree edge if v was first
discovered by exploring edge (u, v) (v.dfsnum = 0).

Back edges – edge (u, v) connecting a vertex u to an
ancestor v in a depth-first tree (v.dfsnum < u.dfsnum, and
DFS(v) is not finished).

Forward edges – non-tree edges (u, v) connecting a vertex u

to a descendant v in a depth-first tree
(v.dfsnum > u.dfsnum).

Cross edges – are all other edges (u.dfsnum > v.dfsnum,
and DFS(v) is finished).



Theorem 1
A G = (V, E) is acyclic if and only if a depth-first search yields no
back edges.

Proof.
⇒:

suppose that there is a back edge (u, v). Then, v is an
ancestor of u in the depth-first forest (why ? prove !) . Thus,
there is a path from v to u, and (u, v) finishes the cycle.

⇐:

Suppose that G contains a cycle c. We show that a depth-first
search of G yields a back edge. Let v be the first vertex to be
discovered in c, and let (u, v) be the preceding edge in c. At
step v.dfsnum, there is a path of unvisited vertices in c.
Thus, u becomes a descedant of v in the depth-first forest.
Therefore, (u, v) is a back edge.



Theorem 2
TopSort(G) produces a topological sort of a directed acyclic graph
G.

Proof.

It suffices to show that for any pair of distinct vertices
u, v ∈ V , if there is an edge (u, v) ∈ E, then
v.finished < u.finished.

When modified-DFS(G) explores (u, v) three cases may occur
(due to Theorem 1 (u, v) may be cross, forward, or tree
edge):

(u, v) is a tree edge: v.finished < u.finished.
(u, v) is a forward edge: v.finished < u.finished

(u, v) is a cross edge: v.finished < u.finished



1.2 Application of Depth First Search: determining

biconnected components

Definition 3
Let G = (V, E) be a connected undirected graph. A vertex a is
said to be an articulation point of G if there exist vertices v and
w, and every path between v and w contains the vertex a.

Stated another way, a is an articulation point of G if removing a

splits G into two or more parts.

Definition 4
The graph G = (V, E) is called biconnected if for every distinct
triple of vertices v, w, and a there exist a path between v and w

not containing a.



Example 5

Consider G = (V, E) such that

V = (v1, v2, v3, v4, v5, v6, v7, v8, v9)

and

E = ({v1, v2}, {v1, v3}, {v2, v3}, {v2, v5}, {v4, v5},
{v4, v6}, {v6, v9}, {v6, v8}, {v6, v7}, {v7, v8}, {v8, v9})

Articulation nodes: v2, v4, v6. Biconnected components:
E1 = ({v4, v6}), V1 = (v4, v6); V2 = (v1, v2, v3),
E2 = ({v1, v2}, {v1, v3}, {v2, v3}); V3 = (v2, v4, v5),
E3 = ({v2, v4}, {v2, v5}, {v4, v5}); V4 = (v6, v7, v8, v9)
E4 = ({v6, v7}, {v6, v8}, {v6, v9}, {v9, v8}, {v7, v8}).



Example 6

Consider the electric power net suppling a city. The failure at the
articulation point of the net leads to power blackout of some parts
of the city. To locate the crash - find the articulated vertices of the
power net graph. To design the safe power supply - check the
biconnectivity of the power net graph.



Theorem 7
If {u, v} is a back edge, then in the DFS forest u is an ancestor of
v or vice versa.

Proof.
Easy. Homework.


	Application of DFS: topological sort
	Correctness of TopSort
	Application of Depth First Search: determining biconnected components


