
WS 2007/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultät für Informatik

TU München

http://www14.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007

Remark: The value of fn grows very fast as a function of n. It can
be shown that

fn ≥ 2⌊
n−1

2
⌋.

For example,

f100 = 3.54 · 1020

f1000 = 4.53 · 10208

· · ·
If one arithmetic operation costs 1µs, computing f1000 by this
algorithm takes 4.3 · 10195 years.

Remark: The value of fn grows very fast as a function of n. It can
be shown that

fn ≥ 2⌊
n−1

2
⌋.

For example,

f100 = 3.54 · 1020

f1000 = 4.53 · 10208

· · ·
If one arithmetic operation costs 1µs, computing f1000 by this
algorithm takes 4.3 · 10195 years.

Remark: The value of fn grows very fast as a function of n. It can
be shown that

fn ≥ 2⌊
n−1

2
⌋.

For example,

f100 = 3.54 · 1020

f1000 = 4.53 · 10208

· · ·
If one arithmetic operation costs 1µs, computing f1000 by this
algorithm takes 4.3 · 10195 years.

Remark: The value of fn grows very fast as a function of n. It can
be shown that

fn ≥ 2⌊
n−1

2
⌋.

For example,

f100 = 3.54 · 1020

f1000 = 4.53 · 10208

· · ·
If one arithmetic operation costs 1µs, computing f1000 by this
algorithm takes 4.3 · 10195 years.

Remark: The value of fn grows very fast as a function of n. It can
be shown that

fn ≥ 2⌊
n−1

2
⌋.

For example,

f100 = 3.54 · 1020

f1000 = 4.53 · 10208

· · ·
If one arithmetic operation costs 1µs, computing f1000 by this
algorithm takes 4.3 · 10195 years.

Remark: The value of fn grows very fast as a function of n. It can
be shown that

fn ≥ 2⌊
n−1

2
⌋.

For example,

f100 = 3.54 · 1020

f1000 = 4.53 · 10208

· · ·
If one arithmetic operation costs 1µs, computing f1000 by this
algorithm takes 4.3 · 10195 years.

Wy is this simple “top-down” algorithm so inefficient?

The reason lies in the repeated identical calls of the function f .

Example 1

f(6) calls f(5) and f(4).

In f(5), the call f(2) occurs 3 times

In f(4), the call f(2) occurs twice

Ideally, identical calls should not be repeated. This suggests that a
“bottom-up” approach which memorizes previously computed
results might be more efficient.

Wy is this simple “top-down” algorithm so inefficient?

The reason lies in the repeated identical calls of the function f .

Example 1

f(6) calls f(5) and f(4).

In f(5), the call f(2) occurs 3 times

In f(4), the call f(2) occurs twice

Ideally, identical calls should not be repeated. This suggests that a
“bottom-up” approach which memorizes previously computed
results might be more efficient.

Wy is this simple “top-down” algorithm so inefficient?

The reason lies in the repeated identical calls of the function f .

Example 1

f(6) calls f(5) and f(4).

In f(5), the call f(2) occurs 3 times

In f(4), the call f(2) occurs twice

Ideally, identical calls should not be repeated. This suggests that a
“bottom-up” approach which memorizes previously computed
results might be more efficient.

Wy is this simple “top-down” algorithm so inefficient?

The reason lies in the repeated identical calls of the function f .

Example 1

f(6) calls f(5) and f(4).

In f(5), the call f(2) occurs 3 times

In f(4), the call f(2) occurs twice

Ideally, identical calls should not be repeated. This suggests that a
“bottom-up” approach which memorizes previously computed
results might be more efficient.

Wy is this simple “top-down” algorithm so inefficient?

The reason lies in the repeated identical calls of the function f .

Example 1

f(6) calls f(5) and f(4).

In f(5), the call f(2) occurs 3 times

In f(4), the call f(2) occurs twice

Ideally, identical calls should not be repeated. This suggests that a
“bottom-up” approach which memorizes previously computed
results might be more efficient.

Wy is this simple “top-down” algorithm so inefficient?

The reason lies in the repeated identical calls of the function f .

Example 1

f(6) calls f(5) and f(4).

In f(5), the call f(2) occurs 3 times

In f(4), the call f(2) occurs twice

Ideally, identical calls should not be repeated. This suggests that a
“bottom-up” approach which memorizes previously computed
results might be more efficient.

Wy is this simple “top-down” algorithm so inefficient?

The reason lies in the repeated identical calls of the function f .

Example 1

f(6) calls f(5) and f(4).

In f(5), the call f(2) occurs 3 times

In f(4), the call f(2) occurs twice

Ideally, identical calls should not be repeated. This suggests that a
“bottom-up” approach which memorizes previously computed
results might be more efficient.

0.1 2nd Algorithm for Computing Fibonacci Numbers

In this algorithm we compute the sequence f1, f2, f3, . . . , fn−1, fn

in this ascending order.

At each point in time, we store those previous results that are
still needed to compute the next element of the sequence.

For step k (where f1, f2, . . . , fk−1 are already known), we
should have the values fk−2 and fk−1 in memory. Let us call
these values x and y, respectively.

To compute z := fk, all we need to do is z := x + y.

For the next step, we set x := y and y := z and start over.

0.1 2nd Algorithm for Computing Fibonacci Numbers

In this algorithm we compute the sequence f1, f2, f3, . . . , fn−1, fn

in this ascending order.

At each point in time, we store those previous results that are
still needed to compute the next element of the sequence.

For step k (where f1, f2, . . . , fk−1 are already known), we
should have the values fk−2 and fk−1 in memory. Let us call
these values x and y, respectively.

To compute z := fk, all we need to do is z := x + y.

For the next step, we set x := y and y := z and start over.

0.1 2nd Algorithm for Computing Fibonacci Numbers

In this algorithm we compute the sequence f1, f2, f3, . . . , fn−1, fn

in this ascending order.

At each point in time, we store those previous results that are
still needed to compute the next element of the sequence.

For step k (where f1, f2, . . . , fk−1 are already known), we
should have the values fk−2 and fk−1 in memory. Let us call
these values x and y, respectively.

To compute z := fk, all we need to do is z := x + y.

For the next step, we set x := y and y := z and start over.

0.1 2nd Algorithm for Computing Fibonacci Numbers

In this algorithm we compute the sequence f1, f2, f3, . . . , fn−1, fn

in this ascending order.

At each point in time, we store those previous results that are
still needed to compute the next element of the sequence.

For step k (where f1, f2, . . . , fk−1 are already known), we
should have the values fk−2 and fk−1 in memory. Let us call
these values x and y, respectively.

To compute z := fk, all we need to do is z := x + y.

For the next step, we set x := y and y := z and start over.

0.1 2nd Algorithm for Computing Fibonacci Numbers

In this algorithm we compute the sequence f1, f2, f3, . . . , fn−1, fn

in this ascending order.

At each point in time, we store those previous results that are
still needed to compute the next element of the sequence.

For step k (where f1, f2, . . . , fk−1 are already known), we
should have the values fk−2 and fk−1 in memory. Let us call
these values x and y, respectively.

To compute z := fk, all we need to do is z := x + y.

For the next step, we set x := y and y := z and start over.

Algorithm:

unsigned f(unsigned n){
if (n ≤ 2) then return 1
else{

x := 1
y := 1
for i := 3 to n do

z := x + y

x := y

y := z

od
return z
}

fi
}

The complexity of this algorithm is easy to see. Let titer(n) be the
number of arithmetic operations performed as a function of the
input value n. Then it holds that

titer(1) = 0

titer(2) = 0

titer(n) = n − 2 for n ≥ 3.

Assuming again that one operation takes 1µs, it now takes
0.001sec. to compute f1000.
Remark: This iterative algorithm uses a very restricted form of
dynamic programming. We will see more of this later in this course.

The complexity of this algorithm is easy to see. Let titer(n) be the
number of arithmetic operations performed as a function of the
input value n. Then it holds that

titer(1) = 0

titer(2) = 0

titer(n) = n − 2 for n ≥ 3.

Assuming again that one operation takes 1µs, it now takes
0.001sec. to compute f1000.
Remark: This iterative algorithm uses a very restricted form of
dynamic programming. We will see more of this later in this course.

The complexity of this algorithm is easy to see. Let titer(n) be the
number of arithmetic operations performed as a function of the
input value n. Then it holds that

titer(1) = 0

titer(2) = 0

titer(n) = n − 2 for n ≥ 3.

Assuming again that one operation takes 1µs, it now takes
0.001sec. to compute f1000.
Remark: This iterative algorithm uses a very restricted form of
dynamic programming. We will see more of this later in this course.

The complexity of this algorithm is easy to see. Let titer(n) be the
number of arithmetic operations performed as a function of the
input value n. Then it holds that

titer(1) = 0

titer(2) = 0

titer(n) = n − 2 for n ≥ 3.

Assuming again that one operation takes 1µs, it now takes
0.001sec. to compute f1000.
Remark: This iterative algorithm uses a very restricted form of
dynamic programming. We will see more of this later in this course.

The complexity of this algorithm is easy to see. Let titer(n) be the
number of arithmetic operations performed as a function of the
input value n. Then it holds that

titer(1) = 0

titer(2) = 0

titer(n) = n − 2 for n ≥ 3.

Assuming again that one operation takes 1µs, it now takes
0.001sec. to compute f1000.
Remark: This iterative algorithm uses a very restricted form of
dynamic programming. We will see more of this later in this course.

The complexity of this algorithm is easy to see. Let titer(n) be the
number of arithmetic operations performed as a function of the
input value n. Then it holds that

titer(1) = 0

titer(2) = 0

titer(n) = n − 2 for n ≥ 3.

Assuming again that one operation takes 1µs, it now takes
0.001sec. to compute f1000.
Remark: This iterative algorithm uses a very restricted form of
dynamic programming. We will see more of this later in this course.

The complexity of this algorithm is easy to see. Let titer(n) be the
number of arithmetic operations performed as a function of the
input value n. Then it holds that

titer(1) = 0

titer(2) = 0

titer(n) = n − 2 for n ≥ 3.

Assuming again that one operation takes 1µs, it now takes
0.001sec. to compute f1000.
Remark: This iterative algorithm uses a very restricted form of
dynamic programming. We will see more of this later in this course.

0.2 3rd Algorithm for Computing Fibonacci Numbers

For completeness, let us mention another way of computing fn for
n ≥ 1. The recurrence relation defining fn can be solved, and an
explicit representation can be obtained. It holds that

fn =
1√
5
·
[(

1 +
√

5

2

)n

−
(

1 −
√

5

2

)n]

However, this would require us to work with fractional values at a
sufficient level of precision and analyzing the complexity
accordingly.

0.2 3rd Algorithm for Computing Fibonacci Numbers

For completeness, let us mention another way of computing fn for
n ≥ 1. The recurrence relation defining fn can be solved, and an
explicit representation can be obtained. It holds that

fn =
1√
5
·
[(

1 +
√

5

2

)n

−
(

1 −
√

5

2

)n]

However, this would require us to work with fractional values at a
sufficient level of precision and analyzing the complexity
accordingly.

0.2 3rd Algorithm for Computing Fibonacci Numbers

For completeness, let us mention another way of computing fn for
n ≥ 1. The recurrence relation defining fn can be solved, and an
explicit representation can be obtained. It holds that

fn =
1√
5
·
[(

1 +
√

5

2

)n

−
(

1 −
√

5

2

)n]

However, this would require us to work with fractional values at a
sufficient level of precision and analyzing the complexity
accordingly.

1. Time and Space Complexity

The resource usage of an algorithm is measured as a function of its
input size (or, as in the previous example, of one of its input
values).

Definition 2
Let x := (x1, x2, . . . , xm) be some input. The uniform input size
||x||u is defined as

||x||u := m.

Definition 3
The uniform time complexity tu(x) of an algorithm for input x is
the number of operations performed by the algorithm upon input x.

More realistically, the actual size of input x in bits, rather than its
length as a vector, should be taken into account.

1. Time and Space Complexity

The resource usage of an algorithm is measured as a function of its
input size (or, as in the previous example, of one of its input
values).

Definition 2
Let x := (x1, x2, . . . , xm) be some input. The uniform input size
||x||u is defined as

||x||u := m.

Definition 3
The uniform time complexity tu(x) of an algorithm for input x is
the number of operations performed by the algorithm upon input x.

More realistically, the actual size of input x in bits, rather than its
length as a vector, should be taken into account.

1. Time and Space Complexity

The resource usage of an algorithm is measured as a function of its
input size (or, as in the previous example, of one of its input
values).

Definition 2
Let x := (x1, x2, . . . , xm) be some input. The uniform input size
||x||u is defined as

||x||u := m.

Definition 3
The uniform time complexity tu(x) of an algorithm for input x is
the number of operations performed by the algorithm upon input x.

More realistically, the actual size of input x in bits, rather than its
length as a vector, should be taken into account.

Lemma 2
For some value x ∈ N0, the length ℓ(x) of the representation of x

as a binary number is

ℓ(x) = ⌊log x⌋ + 1.

This immediately follows from the fact that 2ℓ(x)−1 ≤ x < 2ℓ(x).

Definition 4
The logarithmic size ||x||log of input x = (x1, x2, . . . , xm) is

||x||log =

m
∑

i=1

ℓ(xi) = m +

m
∑

i=1

⌊log xi⌋.

Lemma 2
For some value x ∈ N0, the length ℓ(x) of the representation of x

as a binary number is

ℓ(x) = ⌊log x⌋ + 1.

This immediately follows from the fact that 2ℓ(x)−1 ≤ x < 2ℓ(x).

Definition 4
The logarithmic size ||x||log of input x = (x1, x2, . . . , xm) is

||x||log =

m
∑

i=1

ℓ(xi) = m +

m
∑

i=1

⌊log xi⌋.

Definition 5
The logarithmic time complexity tlog(x) of an algorithm for input x

is the total of the logarithmic costs of all operations carried out by
the algorithm, given input x. The logarithmic cost of an operation
is the total size of all arguments of this operation (in binary
representation). See example.

Example 6

The logarithmic cost of the operation ”a := a + c[d[i]]” is

ℓ(a) + ℓ(i) + ℓ(c[i]) + ℓ(c[d[i]]).

Definition 5
The logarithmic time complexity tlog(x) of an algorithm for input x

is the total of the logarithmic costs of all operations carried out by
the algorithm, given input x. The logarithmic cost of an operation
is the total size of all arguments of this operation (in binary
representation). See example.

Example 6

The logarithmic cost of the operation ”a := a + c[d[i]]” is

ℓ(a) + ℓ(i) + ℓ(c[i]) + ℓ(c[d[i]]).

Remark: Statements on the resource usage of a given algorithm
upon specific inputs x are hardly useful. Rather, we need some way
to argue over all inputs of a given length. This calls for a
worst-case consideration.

Definition 7
Let t : N −→ N be some function. An algorithm is said to have
uniform (logarithmic) time complexity t(n) if and only if

tu(n) := max{tu(x) : ||x||u = n} ≤ t(n)
(tlog(n) := max{tlog(x) : ||x||log = n} ≤ t(n)),

respectively.

This means that worst-case inputs of size n are considered when
bounding the running time from above by function t(n).

Remark: Statements on the resource usage of a given algorithm
upon specific inputs x are hardly useful. Rather, we need some way
to argue over all inputs of a given length. This calls for a
worst-case consideration.

Definition 7
Let t : N −→ N be some function. An algorithm is said to have
uniform (logarithmic) time complexity t(n) if and only if

tu(n) := max{tu(x) : ||x||u = n} ≤ t(n)
(tlog(n) := max{tlog(x) : ||x||log = n} ≤ t(n)),

respectively.

This means that worst-case inputs of size n are considered when
bounding the running time from above by function t(n).

Yet more realism can be achieved by considering average case time
complexity. This requires that, for each value of n, a probability
distribution over all possible inputs x of length n be known. Using
this information, the uniform or logarithmic time complexities
tu(x) (or tlog(x)) can be considered.

In this lecture we will not cover average case analysis.

Definition 8
The uniform space complexity su(x) of an algorithm for input x is
the number of storage locations used by the algorithm, given x.

Definition 9
The logarithmic space complexity slog(x) of an algorithm for inptu
x is the sum of the maximum lengths (in binary form) of the values
written to the storage registers by the algorithm upon input x.

Yet more realism can be achieved by considering average case time
complexity. This requires that, for each value of n, a probability
distribution over all possible inputs x of length n be known. Using
this information, the uniform or logarithmic time complexities
tu(x) (or tlog(x)) can be considered.

In this lecture we will not cover average case analysis.

Definition 8
The uniform space complexity su(x) of an algorithm for input x is
the number of storage locations used by the algorithm, given x.

Definition 9
The logarithmic space complexity slog(x) of an algorithm for inptu
x is the sum of the maximum lengths (in binary form) of the values
written to the storage registers by the algorithm upon input x.

Yet more realism can be achieved by considering average case time
complexity. This requires that, for each value of n, a probability
distribution over all possible inputs x of length n be known. Using
this information, the uniform or logarithmic time complexities
tu(x) (or tlog(x)) can be considered.

In this lecture we will not cover average case analysis.

Definition 8
The uniform space complexity su(x) of an algorithm for input x is
the number of storage locations used by the algorithm, given x.

Definition 9
The logarithmic space complexity slog(x) of an algorithm for inptu
x is the sum of the maximum lengths (in binary form) of the values
written to the storage registers by the algorithm upon input x.

Definition 10
Let s : N −→ N be some function. An algorithm is said to have
uniform (logarithmic) space complexity if and only if

su(n) := max{su(x) : ||x||u = n} ≤ s(n)
(slog(n) := max{slog(x) : ||x||log = n} ≤ s(n)),

respectively.

Like in the case of time complexity, average case analysis can be
applied to space complexity. This will not be covered in this course.

Definition 10
Let s : N −→ N be some function. An algorithm is said to have
uniform (logarithmic) space complexity if and only if

su(n) := max{su(x) : ||x||u = n} ≤ s(n)
(slog(n) := max{slog(x) : ||x||log = n} ≤ s(n)),

respectively.

Like in the case of time complexity, average case analysis can be
applied to space complexity. This will not be covered in this course.

	2nd Algorithm for Computing Fibonacci Numbers
	3rd Algorithm for Computing Fibonacci Numbers
	Time and Space Complexity

