
WS 2007/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakult•at f •ur Informatik
TU M •unchen

http://www14.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007

Heapsort Algorithm:
void HeapSort(keyA[], unsignedn)f

for k := n downto 1 do // create heap
reheap(A; n; k)

od
for k := n downto 1 do // n� deletemin

swapA[1] and A[k]
reheap(A; k; 1)

od
for k := 1 to bn=2c do // reverse sorted array

swapA[k] and A[n � k + 1]
od

g

Animation of Heapsort: Create Heap

Animation of Heapsort: Create Heap

Animation of Heapsort: Create Heap

Animation of Heapsort: Create Heap

Animation of Heapsort: Create Heap

Animation of Heapsort: Create Heap

Animation of Heapsort: Create Heap

Animation of Heapsort: Create Heap

Animation of Heapsort: Create Heap

Heapsort Algorithm:
void HeapSort(keyA[], unsignedn)f

for k := n downto 1 do // create heap
reheap(A; n; k)

od
for k := n downto 1 do // n� deletemin

swapA[1] and A[k]
reheap(A; k; 1)

od
for k := 1 to bn=2c do // reverse sorted array

swapA[k] and A[n � k + 1]
od

g

For createheap() we de�ne
Vcreate(n) := # comparisons for createheap()

Here it holds that

Vcreate(n) �
nP

i =1
Vreheap(n; i)

� 2
nP

i =1
(blognc � b log ic)

� 2
nP

i =1
(log n � log i + 1)

= 2n logn + 2n � 2
nP

i =2
log i

� � 2n logn + 2n � 2n logn � 2=ln 2(n � 1)
� 5n

This shows that our upper bound on the complexity of createheap
was too pessimistic.� It holds that

2
nP

i =2
log i � 2n logn � 2=ln 2(n � 1)

For createheap() we de�ne
Vcreate(n) := # comparisons for createheap()

Here it holds that

Vcreate(n) �
nP

i =1
Vreheap(n; i)

� 2
nP

i =1
(blognc � b log ic)

� 2
nP

i =1
(log n � log i + 1)

= 2n logn + 2n � 2
nP

i =2
log i

� � 2n logn + 2n � 2n logn � 2=ln 2(n � 1)
� 5n

This shows that our upper bound on the complexity of createheap
was too pessimistic.� It holds that

2
nP

i =2
log i � 2n logn � 2=ln 2(n � 1)

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Animation of Heapsort: Sorting

Heapsort Algorithm:
void HeapSort(keyA[], unsignedn)f

for k := n downto 1 do // create heap
reheap(A; n; k)

od
for k := n downto 1 do // n� deletemin

swapA[1] and A[k]
reheap(A; k; 1)

od
for k := 1 to bn=2c do // reverse sorted array

swapA[k] and A[n � k + 1]
od

g

1. Quick Sort

To inductively derive the Quicksort algorithm, we merely need
a di�erent way of strengthening the induction hypothesis, as
compared to the other sorting algorithms.

Suppose for the time being that all keys are unique.

Base case (n � 1): trivial
Inductive step:

Rearrange the array containing the keys as follows: Apivot
elementp is selected among the keys. All keys< p in the array
are moved to the left, all keys> p are moved to the right.
Sort the two subarrays recursively
Recombination is trivial { the sorted subarrays only need to be
joined to yield the sorted array.

< p p > p

1. Quick Sort

To inductively derive the Quicksort algorithm, we merely need
a di�erent way of strengthening the induction hypothesis, as
compared to the other sorting algorithms.

Suppose for the time being that all keys are unique.

Base case (n � 1): trivial
Inductive step:

Rearrange the array containing the keys as follows: Apivot
elementp is selected among the keys. All keys< p in the array
are moved to the left, all keys> p are moved to the right.
Sort the two subarrays recursively
Recombination is trivial { the sorted subarrays only need to be
joined to yield the sorted array.

< p p > p

1. Quick Sort

To inductively derive the Quicksort algorithm, we merely need
a di�erent way of strengthening the induction hypothesis, as
compared to the other sorting algorithms.

Suppose for the time being that all keys are unique.

Base case (n � 1): trivial
Inductive step:

Rearrange the array containing the keys as follows: Apivot
elementp is selected among the keys. All keys< p in the array
are moved to the left, all keys> p are moved to the right.
Sort the two subarrays recursively
Recombination is trivial { the sorted subarrays only need to be
joined to yield the sorted array.

< p p > p

1. Quick Sort

To inductively derive the Quicksort algorithm, we merely need
a di�erent way of strengthening the induction hypothesis, as
compared to the other sorting algorithms.

Suppose for the time being that all keys are unique.

Base case (n � 1): trivial
Inductive step:

Rearrange the array containing the keys as follows: Apivot
elementp is selected among the keys. All keys< p in the array
are moved to the left, all keys> p are moved to the right.
Sort the two subarrays recursively
Recombination is trivial { the sorted subarrays only need to be
joined to yield the sorted array.

< p p > p

1. Quick Sort

To inductively derive the Quicksort algorithm, we merely need
a di�erent way of strengthening the induction hypothesis, as
compared to the other sorting algorithms.

Suppose for the time being that all keys are unique.

Base case (n � 1): trivial
Inductive step:

Rearrange the array containing the keys as follows: Apivot
elementp is selected among the keys. All keys< p in the array
are moved to the left, all keys> p are moved to the right.
Sort the two subarrays recursively
Recombination is trivial { the sorted subarrays only need to be
joined to yield the sorted array.

< p p > p

1. Quick Sort

To inductively derive the Quicksort algorithm, we merely need
a di�erent way of strengthening the induction hypothesis, as
compared to the other sorting algorithms.

Suppose for the time being that all keys are unique.

Base case (n � 1): trivial
Inductive step:

Rearrange the array containing the keys as follows: Apivot
elementp is selected among the keys. All keys< p in the array
are moved to the left, all keys> p are moved to the right.
Sort the two subarrays recursively
Recombination is trivial { the sorted subarrays only need to be
joined to yield the sorted array.

< p p > p

1. Quick Sort

To inductively derive the Quicksort algorithm, we merely need
a di�erent way of strengthening the induction hypothesis, as
compared to the other sorting algorithms.

Suppose for the time being that all keys are unique.

Base case (n � 1): trivial
Inductive step:

Rearrange the array containing the keys as follows: Apivot
elementp is selected among the keys. All keys< p in the array
are moved to the left, all keys> p are moved to the right.
Sort the two subarrays recursively
Recombination is trivial { the sorted subarrays only need to be
joined to yield the sorted array.

< p p > p

1. Quick Sort

To inductively derive the Quicksort algorithm, we merely need
a di�erent way of strengthening the induction hypothesis, as
compared to the other sorting algorithms.

Suppose for the time being that all keys are unique.

Base case (n � 1): trivial
Inductive step:

Rearrange the array containing the keys as follows: Apivot
elementp is selected among the keys. All keys< p in the array
are moved to the left, all keys> p are moved to the right.
Sort the two subarrays recursively
Recombination is trivial { the sorted subarrays only need to be
joined to yield the sorted array.

< p p > p

1. Quick Sort

To inductively derive the Quicksort algorithm, we merely need
a di�erent way of strengthening the induction hypothesis, as
compared to the other sorting algorithms.

Suppose for the time being that all keys are unique.

Base case (n � 1): trivial
Inductive step:

Rearrange the array containing the keys as follows: Apivot
elementp is selected among the keys. All keys< p in the array
are moved to the left, all keys> p are moved to the right.
Sort the two subarrays recursively
Recombination is trivial { the sorted subarrays only need to be
joined to yield the sorted array.

< p p > p

The main degree of freedom in the Quicksort algorithm is the
choice of the pivot. The median would be ideal in the sense
that it would lead to a perfect divide-and-conquer algorithm.

To save the cost of �nding the median we choose the
rightmost key in the array as our pivot.
The rearrangement can be carried out as follows: Suppose we
are to rearrange arrayA[] between the indices̀ and r , with
respect to pivotp = A[r].

We use two pointeri and j moving from` to the right, and
from r � 1 to the left, respectively.
When A[i] > p and A[j] < p then we swapA[i] and A[j].
When i � j we move the pivot to the right position.

The main degree of freedom in the Quicksort algorithm is the
choice of the pivot. The median would be ideal in the sense
that it would lead to a perfect divide-and-conquer algorithm.

To save the cost of �nding the median we choose the
rightmost key in the array as our pivot.
The rearrangement can be carried out as follows: Suppose we
are to rearrange arrayA[] between the indices̀ and r , with
respect to pivotp = A[r].

We use two pointeri and j moving from` to the right, and
from r � 1 to the left, respectively.
When A[i] > p and A[j] < p then we swapA[i] and A[j].
When i � j we move the pivot to the right position.

The main degree of freedom in the Quicksort algorithm is the
choice of the pivot. The median would be ideal in the sense
that it would lead to a perfect divide-and-conquer algorithm.

To save the cost of �nding the median we choose the
rightmost key in the array as our pivot.
The rearrangement can be carried out as follows: Suppose we
are to rearrange arrayA[] between the indices̀ and r , with
respect to pivotp = A[r].

We use two pointeri and j moving from` to the right, and
from r � 1 to the left, respectively.
When A[i] > p and A[j] < p then we swapA[i] and A[j].
When i � j we move the pivot to the right position.

The main degree of freedom in the Quicksort algorithm is the
choice of the pivot. The median would be ideal in the sense
that it would lead to a perfect divide-and-conquer algorithm.

To save the cost of �nding the median we choose the
rightmost key in the array as our pivot.
The rearrangement can be carried out as follows: Suppose we
are to rearrange arrayA[] between the indices̀ and r , with
respect to pivotp = A[r].

We use two pointeri and j moving from` to the right, and
from r � 1 to the left, respectively.
When A[i] > p and A[j] < p then we swapA[i] and A[j].
When i � j we move the pivot to the right position.

The main degree of freedom in the Quicksort algorithm is the
choice of the pivot. The median would be ideal in the sense
that it would lead to a perfect divide-and-conquer algorithm.

To save the cost of �nding the median we choose the
rightmost key in the array as our pivot.
The rearrangement can be carried out as follows: Suppose we
are to rearrange arrayA[] between the indices̀ and r , with
respect to pivotp = A[r].

We use two pointeri and j moving from` to the right, and
from r � 1 to the left, respectively.
When A[i] > p and A[j] < p then we swapA[i] and A[j].
When i � j we move the pivot to the right position.

The main degree of freedom in the Quicksort algorithm is the
choice of the pivot. The median would be ideal in the sense
that it would lead to a perfect divide-and-conquer algorithm.

To save the cost of �nding the median we choose the
rightmost key in the array as our pivot.
The rearrangement can be carried out as follows: Suppose we
are to rearrange arrayA[] between the indices̀ and r , with
respect to pivotp = A[r].

We use two pointeri and j moving from` to the right, and
from r � 1 to the left, respectively.
When A[i] > p and A[j] < p then we swapA[i] and A[j].
When i � j we move the pivot to the right position.

Rearrangement algorithm:
unsigned partition(keyA[], unsigned̀ ; r)f

unsignedi := `
unsignedj := r � 1
unsignedpiv := r
while (i < j) do

while (A[i] < A [piv] ^ i < j) do i + + od
while (A[j] > A [piv] ^ i < j) do j � � od
if (i < j) then

swapA[i] and A[j]
else

swapA[i] and A[piv]
�

od
return i

g

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Animation of Quicksrot

Sorting algorithm:
void QuickSort(keyA[], unsigned̀ ; r)f

if (` > r) then return
elsepiv := partition(A; `; r)

QuickSort(A; `; piv � 1)
QuickSort(A; piv + 1 ; r)

�
g

Complexity:
De�nition 1
Let M be a totally ordered set, and letx 2 M . Then the rank
Rank(x) of elementx is equal tok if and only if
jf x0 2 M : x0 < x gj = k � 1, i.e. if x is the k-th smallest element
of M with respect to the ordering.
Elementx is the median of setM if Rank(x)= djM j+1

2 e.

The number of comparisons in QuickSort depends on the rank
of the pivot.
All comparisons take place in the partition() function.
Each call partition(A[]; `; r) costs r � ` comparisons
Thus, the numberc(n) of comparisons in QuickSort can be
informally described as

" c(n) = (n � 1) + c(k � 1) + c(n � k)" ;

wherek is the rank of the pivot in theoriginal call of
quicksort. Forc(k � 1) and c(n � k), di�erent ranks apply.

Complexity:
De�nition 1
Let M be a totally ordered set, and letx 2 M . Then the rank
Rank(x) of elementx is equal tok if and only if
jf x0 2 M : x0 < x gj = k � 1, i.e. if x is the k-th smallest element
of M with respect to the ordering.
Elementx is the median of setM if Rank(x)= djM j+1

2 e.

The number of comparisons in QuickSort depends on the rank
of the pivot.
All comparisons take place in the partition() function.
Each call partition(A[]; `; r) costs r � ` comparisons
Thus, the numberc(n) of comparisons in QuickSort can be
informally described as

" c(n) = (n � 1) + c(k � 1) + c(n � k)" ;

wherek is the rank of the pivot in theoriginal call of
quicksort. Forc(k � 1) and c(n � k), di�erent ranks apply.

Complexity:
De�nition 1
Let M be a totally ordered set, and letx 2 M . Then the rank
Rank(x) of elementx is equal tok if and only if
jf x0 2 M : x0 < x gj = k � 1, i.e. if x is the k-th smallest element
of M with respect to the ordering.
Elementx is the median of setM if Rank(x)= djM j+1

2 e.

The number of comparisons in QuickSort depends on the rank
of the pivot.
All comparisons take place in the partition() function.
Each call partition(A[]; `; r) costs r � ` comparisons
Thus, the numberc(n) of comparisons in QuickSort can be
informally described as

" c(n) = (n � 1) + c(k � 1) + c(n � k)" ;

wherek is the rank of the pivot in theoriginal call of
quicksort. Forc(k � 1) and c(n � k), di�erent ranks apply.

Complexity:
De�nition 1
Let M be a totally ordered set, and letx 2 M . Then the rank
Rank(x) of elementx is equal tok if and only if
jf x0 2 M : x0 < x gj = k � 1, i.e. if x is the k-th smallest element
of M with respect to the ordering.
Elementx is the median of setM if Rank(x)= djM j+1

2 e.

The number of comparisons in QuickSort depends on the rank
of the pivot.
All comparisons take place in the partition() function.
Each call partition(A[]; `; r) costs r � ` comparisons
Thus, the numberc(n) of comparisons in QuickSort can be
informally described as

" c(n) = (n � 1) + c(k � 1) + c(n � k)" ;

wherek is the rank of the pivot in theoriginal call of
quicksort. Forc(k � 1) and c(n � k), di�erent ranks apply.

How to �nd the worst case scenario for the above recurrence
relation?

Consider the tree of recursive calls within QuickSort. Eachcall
QuickSort(A; `; r) gives rise to two new calls
QuickSort(A; `; piv � 1) and QuickSort(A; piv + 1 ; r).
The total number of comparisons executed in the partition()
steps of these two calls (i.e. excluding their recursive sub-calls)
is r � ` and thus independent of the rank of the pivot.
Hence, the total number of comparisons is only dependent on
the depth of the call tree.
The depth of the call tree is maximized if, in each sub-call,
the pivot is either the minimum or the maximum of the
elements to be sorted.
If this is the case all the time, we get the following recurrence
relation:

c(n) =
�

1 if n = 0 ; 1
(n � 1) + c(n � 1) + 0 if n � 2

How to �nd the worst case scenario for the above recurrence
relation?

Consider the tree of recursive calls within QuickSort. Eachcall
QuickSort(A; `; r) gives rise to two new calls
QuickSort(A; `; piv � 1) and QuickSort(A; piv + 1 ; r).
The total number of comparisons executed in the partition()
steps of these two calls (i.e. excluding their recursive sub-calls)
is r � ` and thus independent of the rank of the pivot.
Hence, the total number of comparisons is only dependent on
the depth of the call tree.
The depth of the call tree is maximized if, in each sub-call,
the pivot is either the minimum or the maximum of the
elements to be sorted.
If this is the case all the time, we get the following recurrence
relation:

c(n) =
�

1 if n = 0 ; 1
(n � 1) + c(n � 1) + 0 if n � 2

How to �nd the worst case scenario for the above recurrence
relation?

Consider the tree of recursive calls within QuickSort. Eachcall
QuickSort(A; `; r) gives rise to two new calls
QuickSort(A; `; piv � 1) and QuickSort(A; piv + 1 ; r).
The total number of comparisons executed in the partition()
steps of these two calls (i.e. excluding their recursive sub-calls)
is r � ` and thus independent of the rank of the pivot.
Hence, the total number of comparisons is only dependent on
the depth of the call tree.
The depth of the call tree is maximized if, in each sub-call,
the pivot is either the minimum or the maximum of the
elements to be sorted.
If this is the case all the time, we get the following recurrence
relation:

c(n) =
�

1 if n = 0 ; 1
(n � 1) + c(n � 1) + 0 if n � 2

How to �nd the worst case scenario for the above recurrence
relation?

Consider the tree of recursive calls within QuickSort. Eachcall
QuickSort(A; `; r) gives rise to two new calls
QuickSort(A; `; piv � 1) and QuickSort(A; piv + 1 ; r).
The total number of comparisons executed in the partition()
steps of these two calls (i.e. excluding their recursive sub-calls)
is r � ` and thus independent of the rank of the pivot.
Hence, the total number of comparisons is only dependent on
the depth of the call tree.
The depth of the call tree is maximized if, in each sub-call,
the pivot is either the minimum or the maximum of the
elements to be sorted.
If this is the case all the time, we get the following recurrence
relation:

c(n) =
�

1 if n = 0 ; 1
(n � 1) + c(n � 1) + 0 if n � 2

How to �nd the worst case scenario for the above recurrence
relation?

Consider the tree of recursive calls within QuickSort. Eachcall
QuickSort(A; `; r) gives rise to two new calls
QuickSort(A; `; piv � 1) and QuickSort(A; piv + 1 ; r).
The total number of comparisons executed in the partition()
steps of these two calls (i.e. excluding their recursive sub-calls)
is r � ` and thus independent of the rank of the pivot.
Hence, the total number of comparisons is only dependent on
the depth of the call tree.
The depth of the call tree is maximized if, in each sub-call,
the pivot is either the minimum or the maximum of the
elements to be sorted.
If this is the case all the time, we get the following recurrence
relation:

c(n) =
�

1 if n = 0 ; 1
(n � 1) + c(n � 1) + 0 if n � 2

Expanding this recurrence relation, we see that

c(n) =
n� 1X

i =1

i � 1 = �(n2)

In the worst case QuickSort is a quadratic-time procedure.
In the best case in which the pivot always is the median and
QuickSort is an ideal divide-and-conquer algorithm, we have

c(n) =
�

1 if n = 0 ; 1
(n � 1) + c

�
bn� 1

2 c
�

+ c
�
dn� 1

2 e
�

if n � 2

This recurrence should remind us of MergeSort. Its solution is

c(n) = �(n logn):

QuickSort is one of the most popular algorithms for
average-case analysis. Even though we won't do this here, we
will mention that, if the pivot ranks are random, independent
and uniformly distributed, the expected number of
comparisons coincides with the best case.

Expanding this recurrence relation, we see that

c(n) =
n� 1X

i =1

i � 1 = �(n2)

In the worst case QuickSort is a quadratic-time procedure.
In the best case in which the pivot always is the median and
QuickSort is an ideal divide-and-conquer algorithm, we have

c(n) =
�

1 if n = 0 ; 1
(n � 1) + c

�
bn� 1

2 c
�

+ c
�
dn� 1

2 e
�

if n � 2

This recurrence should remind us of MergeSort. Its solution is

c(n) = �(n logn):

QuickSort is one of the most popular algorithms for
average-case analysis. Even though we won't do this here, we
will mention that, if the pivot ranks are random, independent
and uniformly distributed, the expected number of
comparisons coincides with the best case.

Expanding this recurrence relation, we see that

c(n) =
n� 1X

i =1

i � 1 = �(n2)

In the worst case QuickSort is a quadratic-time procedure.
In the best case in which the pivot always is the median and
QuickSort is an ideal divide-and-conquer algorithm, we have

c(n) =
�

1 if n = 0 ; 1
(n � 1) + c

�
bn� 1

2 c
�

+ c
�
dn� 1

2 e
�

if n � 2

This recurrence should remind us of MergeSort. Its solution is

c(n) = �(n logn):

QuickSort is one of the most popular algorithms for
average-case analysis. Even though we won't do this here, we
will mention that, if the pivot ranks are random, independent
and uniformly distributed, the expected number of
comparisons coincides with the best case.

Expanding this recurrence relation, we see that

c(n) =
n� 1X

i =1

i � 1 = �(n2)

In the worst case QuickSort is a quadratic-time procedure.
In the best case in which the pivot always is the median and
QuickSort is an ideal divide-and-conquer algorithm, we have

c(n) =
�

1 if n = 0 ; 1
(n � 1) + c

�
bn� 1

2 c
�

+ c
�
dn� 1

2 e
�

if n � 2

This recurrence should remind us of MergeSort. Its solution is

c(n) = �(n logn):

QuickSort is one of the most popular algorithms for
average-case analysis. Even though we won't do this here, we
will mention that, if the pivot ranks are random, independent
and uniformly distributed, the expected number of
comparisons coincides with the best case.

Expanding this recurrence relation, we see that

c(n) =
n� 1X

i =1

i � 1 = �(n2)

In the worst case QuickSort is a quadratic-time procedure.
In the best case in which the pivot always is the median and
QuickSort is an ideal divide-and-conquer algorithm, we have

c(n) =
�

1 if n = 0 ; 1
(n � 1) + c

�
bn� 1

2 c
�

+ c
�
dn� 1

2 e
�

if n � 2

This recurrence should remind us of MergeSort. Its solution is

c(n) = �(n logn):

QuickSort is one of the most popular algorithms for
average-case analysis. Even though we won't do this here, we
will mention that, if the pivot ranks are random, independent
and uniformly distributed, the expected number of
comparisons coincides with the best case.

2. Conclusion

SelectionSort (O(n2))

InsertionSort (O(n2) using linear search,O(n log(n)) using
binary search)

MergeSort (O(n log(n)) using binary search)

QuickSrot (O(n log(n)) using binary search)

Are there more e�cient algorithms for sorting ???

2. Conclusion

SelectionSort (O(n2))

InsertionSort (O(n2) using linear search,O(n log(n)) using
binary search)

MergeSort (O(n log(n)) using binary search)

QuickSrot (O(n log(n)) using binary search)

Are there more e�cient algorithms for sorting ???

2. Conclusion

SelectionSort (O(n2))

InsertionSort (O(n2) using linear search,O(n log(n)) using
binary search)

MergeSort (O(n log(n)) using binary search)

QuickSrot (O(n log(n)) using binary search)

Are there more e�cient algorithms for sorting ???

2. Conclusion

SelectionSort (O(n2))

InsertionSort (O(n2) using linear search,O(n log(n)) using
binary search)

MergeSort (O(n log(n)) using binary search)

QuickSrot (O(n log(n)) using binary search)

Are there more e�cient algorithms for sorting ???

2. Conclusion

SelectionSort (O(n2))

InsertionSort (O(n2) using linear search,O(n log(n)) using
binary search)

MergeSort (O(n log(n)) using binary search)

QuickSrot (O(n log(n)) using binary search)

Are there more e�cient algorithms for sorting ???

3. Lower Bounds for Decision Trees

De�nition 2
A decision treeis a binary tree in which each internal node is
annotated by a comparison of two elements. The leaves of the
decision tree are annotated by the respective permutations that
will put an input sequence into sorted order.

Example 3

Theorem 4
Any decision tree that sortsn elements has height
(n log(n)) .

Proof.

To sort n elements a decision tree needsn! leaves.

For the height of the decision tree holds:h � log(n!).

Sincen! � (n
2)n=2, we obtain:

h � log(n!) � log
� � n

2

� n=2
�

=
n
2

(log(n) � 1) �
n
4

log(n)

for n � 4.

Thus, we need at leastn4 log(n) comparsions, in other words:

h =
(n log(n))

Theorem 5
MergeSort and HeapSort are asymptotically optimal comparison

Theorem 4
Any decision tree that sortsn elements has height
(n log(n)) .

Proof.

To sort n elements a decision tree needsn! leaves.

For the height of the decision tree holds:h � log(n!).

Sincen! � (n
2)n=2, we obtain:

h � log(n!) � log
� � n

2

� n=2
�

=
n
2

(log(n) � 1) �
n
4

log(n)

for n � 4.

Thus, we need at leastn4 log(n) comparsions, in other words:

h =
(n log(n))

Theorem 5
MergeSort and HeapSort are asymptotically optimal comparison

Theorem 4
Any decision tree that sortsn elements has height
(n log(n)) .

Proof.

To sort n elements a decision tree needsn! leaves.

For the height of the decision tree holds:h � log(n!).

Sincen! � (n
2)n=2, we obtain:

h � log(n!) � log
� � n

2

� n=2
�

=
n
2

(log(n) � 1) �
n
4

log(n)

for n � 4.

Thus, we need at leastn4 log(n) comparsions, in other words:

h =
(n log(n))

Theorem 5
MergeSort and HeapSort are asymptotically optimal comparison

Theorem 4
Any decision tree that sortsn elements has height
(n log(n)) .

Proof.

To sort n elements a decision tree needsn! leaves.

For the height of the decision tree holds:h � log(n!).

Sincen! � (n
2)n=2, we obtain:

h � log(n!) � log
� � n

2

� n=2
�

=
n
2

(log(n) � 1) �
n
4

log(n)

for n � 4.

Thus, we need at leastn4 log(n) comparsions, in other words:

h =
(n log(n))

Theorem 5
MergeSort and HeapSort are asymptotically optimal comparison

Chapter III Data Structures
Remember from the chapter on sorting that we are dealing
with a set ofdata elements. Each data element is uniquely
de�ned by akey valueof type 'key'. Additionally, it has a data
contents of type 'data'

The key values are contained in a (typically large)universeU.

For the sake of representational simplicity we pretend that
U = f 1; 2; : : : ; N g.

Let n be the maximum number of keys in a data set, and let
m be the current size of the set. Hence:

m � n � N

Chapter III Data Structures
Remember from the chapter on sorting that we are dealing
with a set ofdata elements. Each data element is uniquely
de�ned by akey valueof type 'key'. Additionally, it has a data
contents of type 'data'

The key values are contained in a (typically large)universeU.

For the sake of representational simplicity we pretend that
U = f 1; 2; : : : ; N g.

Let n be the maximum number of keys in a data set, and let
m be the current size of the set. Hence:

m � n � N

Chapter III Data Structures
Remember from the chapter on sorting that we are dealing
with a set ofdata elements. Each data element is uniquely
de�ned by akey valueof type 'key'. Additionally, it has a data
contents of type 'data'

The key values are contained in a (typically large)universeU.

For the sake of representational simplicity we pretend that
U = f 1; 2; : : : ; N g.

Let n be the maximum number of keys in a data set, and let
m be the current size of the set. Hence:

m � n � N

Chapter III Data Structures
Remember from the chapter on sorting that we are dealing
with a set ofdata elements. Each data element is uniquely
de�ned by akey valueof type 'key'. Additionally, it has a data
contents of type 'data'

The key values are contained in a (typically large)universeU.

For the sake of representational simplicity we pretend that
U = f 1; 2; : : : ; N g.

Let n be the maximum number of keys in a data set, and let
m be the current size of the set. Hence:

m � n � N

De�nition 6
A dictionary is a data structure for storing a data set that is
equipped with the following operations:

1 data is delement(keyk)
2 insert(datax, key k)
3 delete(keyk)

We have already seen several basic methods of storing data sets of
the mentioned type:

Linear storage in an array, in random order (advantage:
random access in constant time)

Linear storage in an array, in sorted order (additional
advantage: search in logarithmic time)

Linear storage in a linked list (advantage: deletion of
individual elements in constant time)

Heap (disadvantage: search takes linear time)

De�nition 6
A dictionary is a data structure for storing a data set that is
equipped with the following operations:

1 data is delement(keyk)
2 insert(datax, key k)
3 delete(keyk)

We have already seen several basic methods of storing data sets of
the mentioned type:

Linear storage in an array, in random order (advantage:
random access in constant time)

Linear storage in an array, in sorted order (additional
advantage: search in logarithmic time)

Linear storage in a linked list (advantage: deletion of
individual elements in constant time)

Heap (disadvantage: search takes linear time)

De�nition 6
A dictionary is a data structure for storing a data set that is
equipped with the following operations:

1 data is delement(keyk)
2 insert(datax, key k)
3 delete(keyk)

We have already seen several basic methods of storing data sets of
the mentioned type:

Linear storage in an array, in random order (advantage:
random access in constant time)

Linear storage in an array, in sorted order (additional
advantage: search in logarithmic time)

Linear storage in a linked list (advantage: deletion of
individual elements in constant time)

Heap (disadvantage: search takes linear time)

De�nition 6
A dictionary is a data structure for storing a data set that is
equipped with the following operations:

1 data is delement(keyk)
2 insert(datax, key k)
3 delete(keyk)

We have already seen several basic methods of storing data sets of
the mentioned type:

Linear storage in an array, in random order (advantage:
random access in constant time)

Linear storage in an array, in sorted order (additional
advantage: search in logarithmic time)

Linear storage in a linked list (advantage: deletion of
individual elements in constant time)

Heap (disadvantage: search takes linear time)

De�nition 6
A dictionary is a data structure for storing a data set that is
equipped with the following operations:

1 data is delement(keyk)
2 insert(datax, key k)
3 delete(keyk)

We have already seen several basic methods of storing data sets of
the mentioned type:

Linear storage in an array, in random order (advantage:
random access in constant time)

Linear storage in an array, in sorted order (additional
advantage: search in logarithmic time)

Linear storage in a linked list (advantage: deletion of
individual elements in constant time)

Heap (disadvantage: search takes linear time)

De�nition 6
A dictionary is a data structure for storing a data set that is
equipped with the following operations:

1 data is delement(keyk)
2 insert(datax, key k)
3 delete(keyk)

We have already seen several basic methods of storing data sets of
the mentioned type:

Linear storage in an array, in random order (advantage:
random access in constant time)

Linear storage in an array, in sorted order (additional
advantage: search in logarithmic time)

Linear storage in a linked list (advantage: deletion of
individual elements in constant time)

Heap (disadvantage: search takes linear time)

De�nition 6
A dictionary is a data structure for storing a data set that is
equipped with the following operations:

1 data is delement(keyk)
2 insert(datax, key k)
3 delete(keyk)

We have already seen several basic methods of storing data sets of
the mentioned type:

Linear storage in an array, in random order (advantage:
random access in constant time)

Linear storage in an array, in sorted order (additional
advantage: search in logarithmic time)

Linear storage in a linked list (advantage: deletion of
individual elements in constant time)

Heap (disadvantage: search takes linear time)

De�nition 6
A dictionary is a data structure for storing a data set that is
equipped with the following operations:

1 data is delement(keyk)
2 insert(datax, key k)
3 delete(keyk)

We have already seen several basic methods of storing data sets of
the mentioned type:

Linear storage in an array, in random order (advantage:
random access in constant time)

Linear storage in an array, in sorted order (additional
advantage: search in logarithmic time)

Linear storage in a linked list (advantage: deletion of
individual elements in constant time)

Heap (disadvantage: search takes linear time)

1. Binary Search Trees

In this section we will, once again, use trees to store data elements.
Heaps are not too well suited as dictionary structures because
searching arbitrary key values cannot be done e�ciently. Imagine
searching for the maximum key value. Starting at the root, we do
not know which branch to follow. So in the worst case the entire
tree has to be traversed.
This problem shall now be addressed. Suppose again that all key
values are unique.

De�nition 7
A binary tree whose vertices are annotated with key values satis�es
the search tree conditioni�, for every vertex v, the key stored inv
is greater than all keys stored inv's left subtree and less than all
keys stored inv's right subtree.

1. Binary Search Trees

In this section we will, once again, use trees to store data elements.
Heaps are not too well suited as dictionary structures because
searching arbitrary key values cannot be done e�ciently. Imagine
searching for the maximum key value. Starting at the root, we do
not know which branch to follow. So in the worst case the entire
tree has to be traversed.
This problem shall now be addressed. Suppose again that all key
values are unique.

De�nition 7
A binary tree whose vertices are annotated with key values satis�es
the search tree conditioni�, for every vertex v, the key stored inv
is greater than all keys stored inv's left subtree and less than all
keys stored inv's right subtree.

De�nition 8
A binary search treeis an undirected, rooted binary tree whose
vertices are annotated with key values in such a way that the
search tree condition is satis�ed.
The tree is stored based on records: Each vertexv is associated to
a record with the �eldsv:key (key value),v:data (data contents),
v:lef t (left child) and v:right (right child).
Example:

1.1 Operations on Binary Search Trees

The main operations de�ned for binary search trees are

is element() (aka "�nd")

insert()

delete()

1.1.1 is element

A key k is given. Ifk is contained in the tree then its associated
data contents is output and the global variablelocation is set to
point to the vertex annotated withk. Otherwise "NULL" is emitted
and location is set to the node at which the search has ended.
The procedure is essentially a binary search, thanks to the search
tree condition.

1.1 Operations on Binary Search Trees

The main operations de�ned for binary search trees are

is element() (aka "�nd")

insert()

delete()

1.1.1 is element

A key k is given. Ifk is contained in the tree then its associated
data contents is output and the global variablelocation is set to
point to the vertex annotated withk. Otherwise "NULL" is emitted
and location is set to the node at which the search has ended.
The procedure is essentially a binary search, thanks to the search
tree condition.

1.1 Operations on Binary Search Trees

The main operations de�ned for binary search trees are

is element() (aka "�nd")

insert()

delete()

1.1.1 is element

A key k is given. Ifk is contained in the tree then its associated
data contents is output and the global variablelocation is set to
point to the vertex annotated withk. Otherwise "NULL" is emitted
and location is set to the node at which the search has ended.
The procedure is essentially a binary search, thanks to the search
tree condition.

1.1 Operations on Binary Search Trees

The main operations de�ned for binary search trees are

is element() (aka "�nd")

insert()

delete()

1.1.1 is element

A key k is given. Ifk is contained in the tree then its associated
data contents is output and the global variablelocation is set to
point to the vertex annotated withk. Otherwise "NULL" is emitted
and location is set to the node at which the search has ended.
The procedure is essentially a binary search, thanks to the search
tree condition.

1.1 Operations on Binary Search Trees

The main operations de�ned for binary search trees are

is element() (aka "�nd")

insert()

delete()

1.1.1 is element

A key k is given. Ifk is contained in the tree then its associated
data contents is output and the global variablelocation is set to
point to the vertex annotated withk. Otherwise "NULL" is emitted
and location is set to the node at which the search has ended.
The procedure is essentially a binary search, thanks to the search
tree condition.

Algorithm:
data is element(keyk)f

v:=root of the tree
while (v is not a leaf) do

if (v:key = k) then location:= v; return v:data
elsif (v:key > k) then

if (v:lef t 6= NULL) then v := v:lef t
elselocation := NULL; return NULL;

else
if (v:right 6= NULL) then v := v:right
elselocation := NULL; return NULL;

�
od
location := v
if (v:key = k) then return v:data
else return NULL
�

g

1.1.2 insert

First, is element() is executed. Suppose, the key valuek to be
inserted is not yet contained in the tree. Then the search ends a
vertex (leaf or vertex with only one child) which is stored in
location. This is the position where a new leaf containingk should
be added.

Algorithm
void insert(keyk, data d)f

if (is element(k)=NULL) then
v:=new vertex
v:key := k; v:data := d
if (location:key > k) then location:lef t := v
elselocation:right := v
�

�
g

1.1.3 delete

First, is element is executed. Suppose it leads to a vertex
v := location containingk. There are three possible cases for the
result:

1 v is a leaf. In this case it can simply be removed.
2 v has exactly one child. Then we can replacev by its child

and are done.
3 v has two children. Removingv will disconnect the tree. We

perform the following steps to take care of this case:
i We search for vertexw with the minimal key inv's right

subtree.
ii We swapv and w.
iii We deletev in its new position. There it has at most one child

(see cases 1. and 2. above).

1.1.3 delete

First, is element is executed. Suppose it leads to a vertex
v := location containingk. There are three possible cases for the
result:

1 v is a leaf. In this case it can simply be removed.
2 v has exactly one child. Then we can replacev by its child

and are done.
3 v has two children. Removingv will disconnect the tree. We

perform the following steps to take care of this case:
i We search for vertexw with the minimal key inv's right

subtree.
ii We swapv and w.
iii We deletev in its new position. There it has at most one child

(see cases 1. and 2. above).

1.1.3 delete

First, is element is executed. Suppose it leads to a vertex
v := location containingk. There are three possible cases for the
result:

1 v is a leaf. In this case it can simply be removed.
2 v has exactly one child. Then we can replacev by its child

and are done.
3 v has two children. Removingv will disconnect the tree. We

perform the following steps to take care of this case:
i We search for vertexw with the minimal key inv's right

subtree.
ii We swapv and w.
iii We deletev in its new position. There it has at most one child

(see cases 1. and 2. above).

1.1.3 delete

First, is element is executed. Suppose it leads to a vertex
v := location containingk. There are three possible cases for the
result:

1 v is a leaf. In this case it can simply be removed.
2 v has exactly one child. Then we can replacev by its child

and are done.
3 v has two children. Removingv will disconnect the tree. We

perform the following steps to take care of this case:
i We search for vertexw with the minimal key inv's right

subtree.
ii We swapv and w.
iii We deletev in its new position. There it has at most one child

(see cases 1. and 2. above).

1.1.3 delete

First, is element is executed. Suppose it leads to a vertex
v := location containingk. There are three possible cases for the
result:

1 v is a leaf. In this case it can simply be removed.
2 v has exactly one child. Then we can replacev by its child

and are done.
3 v has two children. Removingv will disconnect the tree. We

perform the following steps to take care of this case:
i We search for vertexw with the minimal key inv's right

subtree.
ii We swapv and w.
iii We deletev in its new position. There it has at most one child

(see cases 1. and 2. above).

1.1.3 delete

First, is element is executed. Suppose it leads to a vertex
v := location containingk. There are three possible cases for the
result:

1 v is a leaf. In this case it can simply be removed.
2 v has exactly one child. Then we can replacev by its child

and are done.
3 v has two children. Removingv will disconnect the tree. We

perform the following steps to take care of this case:
i We search for vertexw with the minimal key inv's right

subtree.
ii We swapv and w.
iii We deletev in its new position. There it has at most one child

(see cases 1. and 2. above).

Algorithm
void delete(keyk)f

if (is element(k)=NULL) then return
v := location
if (v is a leaf) then removev
elsif (v:lef t =NULL od v:right =NULL) then

replacev by its child
else

w := v:right
while (w:lef t 6= NULL) do w := w:lef t od
swapv and w
deletev at its new position

�
g

1.1.4 Complexities

In all three algorithms the complexity is governed by the numberof
steps taken by the top-down traversal of the tree. In the worst
case, a longest path from the root to a leaf has to be traversed.
This means, the time complexity isO(h), whereh is the height of
the tree.
If the tree is degenerate (i.e. consists of one long path),h = �(n).
In the good case of abalanced search tree, we haveh = O(log n).
In the following sections we will see how to force search trees into
a balanced shape.
Some trivia:

If the search tree was generated byn insert-operations in
random order (with all possible permutations equally likely),
the expected height is�(log n).

If all possible tree shapes are equally likely, the expected
height is�(

p
n).

1.1.4 Complexities

In all three algorithms the complexity is governed by the numberof
steps taken by the top-down traversal of the tree. In the worst
case, a longest path from the root to a leaf has to be traversed.
This means, the time complexity isO(h), whereh is the height of
the tree.
If the tree is degenerate (i.e. consists of one long path),h = �(n).
In the good case of abalanced search tree, we haveh = O(log n).
In the following sections we will see how to force search trees into
a balanced shape.
Some trivia:

If the search tree was generated byn insert-operations in
random order (with all possible permutations equally likely),
the expected height is�(log n).

If all possible tree shapes are equally likely, the expected
height is�(

p
n).

1.1.4 Complexities

In all three algorithms the complexity is governed by the numberof
steps taken by the top-down traversal of the tree. In the worst
case, a longest path from the root to a leaf has to be traversed.
This means, the time complexity isO(h), whereh is the height of
the tree.
If the tree is degenerate (i.e. consists of one long path),h = �(n).
In the good case of abalanced search tree, we haveh = O(log n).
In the following sections we will see how to force search trees into
a balanced shape.
Some trivia:

If the search tree was generated byn insert-operations in
random order (with all possible permutations equally likely),
the expected height is�(log n).

If all possible tree shapes are equally likely, the expected
height is�(

p
n).

1.1.4 Complexities

In all three algorithms the complexity is governed by the numberof
steps taken by the top-down traversal of the tree. In the worst
case, a longest path from the root to a leaf has to be traversed.
This means, the time complexity isO(h), whereh is the height of
the tree.
If the tree is degenerate (i.e. consists of one long path),h = �(n).
In the good case of abalanced search tree, we haveh = O(log n).
In the following sections we will see how to force search trees into
a balanced shape.
Some trivia:

If the search tree was generated byn insert-operations in
random order (with all possible permutations equally likely),
the expected height is�(log n).

If all possible tree shapes are equally likely, the expected
height is�(

p
n).

	Quick Sort
	Conclusion
	Lower Bounds for Decision Trees

