
Technische Universität München
Fakultät für Informatik
Lehrstuhl für Effiziente Algorithmen
Dmytro Chibisov
Sandeep Sadanandan

Winter Semester 2007/08
Solution Sheet Model Test

January 16, 2008

Fundamental Algorithms - Surprise Test

Name:
Email:

Problem 1 (20 Points)

Design iterative and recursive algorithms to compute Factorial(n). Compare the comple-
xities.

Solution

Iterative algorithm

Algorithm Factorial(n)
(∗ The iterative algorithm for Factorial(n) ∗)
1. returnval← 1
2. i← 1
3. while i ≤ n

4. returnval = returnval ∗ i

5. i = i + 1
6. return returnval

It is easily seen that the number of operations needed for this algorithm is 2 · n.

Recursive Algorithm

Algorithm Factorial(n)
(∗ The recursive algorithm for Factorial(n) ∗)
1. if n = 0
2. then
3. return 1
4. else
5. return n ∗ Factorial(n− 1)

It is clear that the number of recursive calls will be n. Each call does two operations.
Hence the cost is 2 · n.



Analysis

Both the methods give a complexity of O(n).

Problem 2 (10 Points)

1. Rank the following functions by order of growth (non-decreasing order)

n2, n!, ln ln n, 22n

, en, n3, n lg n

2. Give an example of a single nonnegative function f(n) such that for all functions in
part 1, f(n) has no relation.

Solution

1. ln ln n < n ln n < n2 < n3 < n! = en < 22n

2. (1 + sin n)Πigi(n), where gi are the functions in part 1

Problem 3 (10 Points)

Write down the contents of Any One of the following arrays after every step of selection
sort until the array is completely sorted.

Assume that the arrays given represent their initial arrangement of the numbers. Also
compute the number of operations needed. (Comparison and Swapping are the operations)

1. 12 8 -2 23 5 0

2. 31 17 29 11 7 5 3

Solution
Selection Sort: In selection sort, one finds out the smallest element of the array and
swaps that one with the first element of the array. After this step, as the smallest is already
in it’s correct position, one focuses on the rest of the array. The next smallest element is
found out and then swapped with the second element of the array. Now, as the second
element is in it’s correct postion, the process continues with the rest of the array. And so
on, until the whole array is sorted.

For finding out the smallest element, we need to do O(n) comparisons, and we need to do
this n times, which gives us a total complexity of O(n2).

1. 12 8 -2 23 5 0

The steps are

(a) Initial State 12 8 -2 23 5 0

2



(b) After 5 comparisons and 1 swap -2 8 12 23 5 0

(c) After 4 comparisons and 1 swap -2 0 12 23 5 8

(d) After 3 comparisons and 1 swap -2 0 5 23 12 8

(e) After 2 comparisons and 1 swap -2 0 5 8 12 23

(f) After 1 comparison and 0 swaps -2 0 5 8 12 23

2. 31 17 29 11 7 5 3

The steps are

1. Initial State 31 17 29 11 7 5 3

2. After 6 comparisons and 1 swap 3 17 29 11 7 5 31

3. After 5 comparisons and 1 swap 3 5 29 11 7 17 31

4. After 4 comparisons and 1 swap 3 5 7 11 29 17 31

5. After 3 comparisons and 0 swap 3 5 7 11 29 17 31

6. After 2 comparisons and 1 swap 3 5 7 11 17 29 31

7. After 1 comparison and 0 swaps 3 5 7 11 17 29 31

Problem 4 (10 Points)

What is Divide and Conquer?.

Give an example for a Divide and Conquer algorithm.

Solution
The divide-and-conquer strategy solves a problem by:

1. Breaking it into subproblems that are themselves smaller instances of the same type
of problem

2. Recursively solving these subproblems

3. Appropriately combining their answers

Example: Binary search

The ultimate divide-and-conquer algorithm is, of course, binary search: to find a key k in
a large file containing keys A[1, . . . , n] in sorted order, we first compare k with A[n

2
], and

3



depending on the result we recurse either on the first half of the file, A[1, . . . , n

2
] , or on

the second half, A[n

2
+ 1, . . . , n] . The recurrence now is T (n) = T (n

2
) + O(1).

Example: Multiplication

This is something which we do daily in our lives. Without taking a paper and pen, calculate
the value of 82× 76?

Can we do it as 82×76 = 82×(75+1) = (80×75)+(2×75)+(82×1) = 6000+150+82 = 6232

What we did was using the formula (a + b) · (c + d) = ac + ad + bc + bd

Problem 5 (10 Points)

A Binary Tree is a rooted tree in which every node has at most two children. The root
node is said to be in level one. The children of the noded at level n are in level n + 1.

Calculate

1. The maximum number of nodes in level h of a binary tree

2. The maximum number of nodes in a binary tree of h levels.

3. How many nodes does a complete1 binary tree with n leaves have?

Solution

1. The maximum number of nodes in level h of a binary tree

A level will have maximum number of nodes iff the level above it has maximum
nodes and all the nodes have maximum (2) children. So the maximum nodes which
can occur in level h is 2 times the maximum of level h− 1.

The maximum of level 1 is 1 which is 20

The maximum of level 2 is 2 which is 21

The maximum of level 3 is 4 which is 22

Hence, the maximum of level h will be 2h−1.

2. The maximum number of nodes in a binary tree of h levels.

A tree of h levels will have maximum nodes iff all the h levels have maximum nodes
in each of them. So the total number of nodes will be 1 + 2 + . . . + 2h−1 which is
equal to 2h − 1.

1A binary tree is complete if all of its vertices have either zero or two children and all the leaves are

at levels l and l − 1

4



3. How many nodes does a complete binary tree with n leaves have?

If the tree has maximum number of nodes, it’s last level has to have maximum
number of leaves. If we assume that the last level is h, then from the first part, we
know that the maximum number of leaves at level h is 2h−1. So in this case 2h−1

equals n.

And from the part two, we know that the maximum number of nodes in a tree of
levels h is 2h − 1.

We can see that 2h − 1 = 2(2h−1)− 1 = 2 · n− 1. So the solution is 2 · n− 1.

A different and more mathematical approach is given below. If the complete binary
tree is of height h, the number of leaves will be between 2h−2 and 2h−1. Hence the
height could be calculated to be ⌈lg n⌉ + 1. The maximum number of nodes a tree
of height h is 2h − 1.

So in this case, it is 2⌈lg n⌉+1 − 1 = 2⌈lg n⌉ · 2− 1

Problem 6 (10 Points)

Review all the sort algorithms taken in the class. Compare their complexities.

Prove that the lower bound for sorting is n lg n

Solution
Sort Average Best Worst Remarks
Bubble sort n2 n2 n2

Selection sort n2 n2 n2

Insertion sort n2 n n2 In best case, insert requires constant time
Merge sort n lg n n lg n n lg n

Heap sort n lg n n lg n n lg n

Quick sort n lg n n lg n n2

Proof:

For an input of size n, the decision tree has n! leaves. Which leaves the tree with a height
h ≥ lg(n!)

h ≥ lg(n!)

≥ lg

(

(n

2

)
n

2

)

=
n

2
(lg(n)− 1)

≥
(n

4

)

lg n

5



Problem 7

Given is an AVL tree. Perform the operation insert(11) on it. Balance the tree.

5

2

1 4

3 b

12

7

6 9

8 10

13

b 14

Solution
The operation insert(11) is shown in the figure - step by step.

5

2

1 4

3 b

12

7

6 9

8 10

b 11

13

b 14

5

2

1 4

3 b

12

9

7

6 8

10

b 11

13

b 14

6



Problem 8

For an ab-tree of height h (root node is at level zero) and n leaves, prove:

1. 2ah−1 ≤ n ≤ bh

2. lg
b
(n) ≤ h ≤ lg

a
(n

2
) + 1

Solution

1. 2ah−1 ≤ n ≤ bh

An ab-tree will have minimum number of nodes for a given height, when

• the root node has only two children and

• all the other nodes have the minimum number of children (i.e, a children)

So, at height = 1 the number of nodes = 2, and at height = 2, the number of nodes
is = 2a. Likewise, at height = h, the number of nodes is 2ah−1. Since this is the
minimum possible, the first part of the inequality is satisfied.

The tree will have maximum number of nodes at a given height, when all the nodes
above that level has the maximum number of childres (i.e, b children). It is clear that
the value is bh for height h. Since this is the maximum possible value, the second
part of the inequality also is satisfied.

2. lg
b
(n) ≤ h ≤ lg

a
(n

2
) + 1

The inequalities can be derived from the first part of the problem.

Problem 9

Show that the tree defined by the edges traversed in a BFS (starting at v0) is a shortest
paths tree rooted at v0.

Solution
A complete mathematical proof based on induction is available on many texts and also
available online. But that appears to be out of the scope of our course. The following
proof give a more verbal treatment.

BFS lists all the vertices at level k− 1 before those at level k. Therefore, it will place into
the queue all vertices at level k before all those of level k + 1 and therefore list the ones
at k before those in level k +1. It is not possible for two vertices which are connected and
have a difference of levels to be more than 1. ie, if a node is at level i and a connected
node cannot be in level i + 2. Because if they are connected, then that node should be

7



added at level i + 1.

So BFS actually gives a shortest path tree starting at root.

• Every vertex has a path from/to root.

• The path length is equal to the level

• No path can skip a level hence the level will be always the minimum possible.

Hence the available path will be minimum path - hence the shortest paths tree.

8


