Sommersemester 2008 Übungsblatt 9 13. Juni 2008

Effiziente Algorithmen und Datenstrukturen II

Abgabetermin: 20.06.2008 vor der Vorlesung

Aufgabe 1 (10 Punkte)

Geben Sie für alle Werte $n \geq m > 1$ einen Text t der Länge n und ein Suchmuster s der Länge m an, so dass der KMP-Algorithmus mindestens 2n-m Vergleiche ausführt, wobei die Vergleiche zum Berechnen der Border-Tabelle hier nicht zu berücksichtigen sind.

Aufgabe 2 (10 Punkte)

Erklären Sie, wie man die Vorkommen eines Suchwortes $s \in \Sigma^m$ in einem Text $t \in \Sigma^n$ anhand der Border-Tabelle des Wortes st (s und t konkateniert) erkennen kann.

Aufgabe 3 (10 Punkte)

Bestimmen Sie für das Wort abrakadabra die Shift-Tabelle des Boyer-Moore-Algorithmus.

Aufgabe 4 (10 Punkte)

Die Spiegelung eines Wortes $s = s_1 \dots s_n \in \Sigma^*$ ist definiert als das Wort $s^R =_{\text{def}} s_n \dots s_1$.

- (a) Ein Wort $s' \in \Sigma^*$ ist eine zyklische Rotation des Wortes $s \in \Sigma^*$, falls es $u, v \in \Sigma^*$ gibt, so dass s = uv und s' = vu gilt. Geben Sie einen Algorithmus an, der für zwei Wörter s und s' in linearer Zeit testet, ob s' eine zyklische Rotation von s ist.
- (b) Ein Wort $s' \in \Sigma^*$ ist eine *Doppelspiegelung* des Wortes $s \in \Sigma^*$, falls es zwei Worte $u, v \in \Sigma^*$ gibt, so dass s = uv und $s' = u^R v^R$ gilt. Geben Sie einen Algorithmus an, der für zwei Wörter s und s' in linearer Zeit testet, ob s' eine Doppelspiegelung von s ist.