
Network Algorithms

Prof. Dr. Christian Scheideler

Technische Universität München, April 8 2008

1 Introduction
The goal of this course is to give an introduction to the state of the art in the theory of network al-
gorithms. By ”network algorithms” we mean algorithms for the design and management of logical
networks (and their applications) as opposed to applications for physical networks like the Internet,
though most of the applications we give in this course are actually for the Internet. Why are algo-
rithms for the design and maintenance of logical networks (which we will also call overlay networks)
important? Certainly, every distributed system must be based on some kind of logical interconnection
structure allowing its sites to exchange information. Thus, in order to design efficient and scalable
distributed systems, we first have to understand how to design efficient and scalable logical intercon-
nection networks. Once a distributed system exceeds a certain size, one has to take into account that
sites continuously enter and leave the system. This is because, for example, new sites may have to
be added to maintain a certain service level or old sites may fail. Also, once a distributed system
becomes very large, attacks on it by insiders and outsiders become more and more likely. Thus, be-
sides addressing the problem of how to maintain an overlay network under a changing set of sites,
one also has to address the problem of how to protect an overlay network against adversarial sites.
We will investigate these issues in this course and present solutions that are based on state-of-the-art
knowledge in this area. The first half of the course will focus on fundamental results in the area of
networking, scheduling and data management, and the second half of the course will use these results
to design efficient, scalable and robust overlay networks for particular applications including a shared
file system and systems for anycasting, multicasting, and searching and sorting.

Before we start talking about algorithms and networks, we need a proper computational model,
very much like mathematics needs axioms. It is a widely accepted fact that algorithmic advances in the
area of computer science are only useful to society if they are based on models that truthfully reflect the
restrictions and requirements of the corresponding applications. But what is a useful model for network
algorithms, or distributed algorithms in general? We will start in this section with the discussion
of properties such a paradigm should have, which is followed by the specification of a paradigm
that we will use throughout the course. To understand the effects of this paradigm, a simulation
environment will be provided so that algorithms can be implemented and tested within that paradigm.
The only prerequisite to run this simulation environment is a PC that can compile C++ programs. For
an introduction to C++ and C++ compilers see the web page of the course.

For the rest of this section, we first give some motivation and background information for the
paradigm used in this course (Sections 1.1 and 1.2), and then we present the formal framework (Sec-

1

tion 1.3) and the programming environment we will use in this course (Section 1.4). Finally, we give
a simple example (Section 1.5) illustrating the use of this environment.

1.1 Towards a useful paradigm for distributed computing
Any paradigm that claims to be useful for distributed computing must be acceptable to all groups
involved: users, developers, and scientists. This means that it has to satisfy three central demands:

• It must be easy to apply,

• it must allow the development of efficient and robust distributed programs, and

• it must be simple and precise to allow a verification and formal analysis of these programs.

Though in the academic world, ease of use may not be the most important issue, it should be clear
that no matter how good a paradigm is, if it requires an expert to apply, it will not gain wide-spread
acceptance. Also, a paradigm that does not allow the development of efficient distributed programs will
most likely not be used for anything else than prototyping, and will therefore not make the transition
from academia to industrial applications.

On the other hand, any programming paradigm that claims to allow the development of efficient
and robust distributed programs must take the following issues into account:

• Sites operate in an asynchronous environment,

• sites may join and leave the system, or may simply fail,

• sites have different resources (processing cycles, memory, bandwidth), and

• messages have varying delays, or may simply get lost.

Thus, distributed programs should be given a high degree of freedom to manage their resources, which
seems to forbid a paradigm which is easy to apply and precise. On the other hand, the freedom given to
the developer should not be so high that it is tempting to produce inefficient code rather than efficient
code. Thus, besides the paradox of achieving ease of use and preciseness together with a high degree of
freedom at the same time, we also have to fight with the paradox of offering a high degree of freedom
and restricting the development of inefficient code at the same time. Can there possibly be a paradigm
that resolves these paradoxes?

Even if there is such a paradigm, would it be sufficient for distributed computing? Most prob-
ably not because besides simplicity and efficiency, robustness has become an increasingly pressing
issue. Some attacks such as denial-of-service attacks cannot be solved in the algorithmic domain and
therefore have to be addressed by a suitable paradigm. Also, basic security primitives such as secure
communication channels should be built into the paradigm to prevent standard attacks like eavesdrop-
ping. However, approaches should be chosen here that do not endanger simplicity and efficiency. Is
that possible?

2

1.2 Central demands
In order to investigate possible solutions, we need to structure our thoughts above and make them a bit
more formal. What we are searching for is a universal paradigm that can address the following three
central issues: simplicity, efficiency and robustness. Interestingly, these issues are highly dependent.
Major challenges are to make the paradigm simple without losing universality, efficient without losing
simplicity, robust without losing efficiency, and finally, universal without losing robustness. We discuss
one by one the consequences of these requirements.

Simplicity

For a paradigm to be simple, it should be easy to state, realize and apply. The Turing machine, for
example, does not satisfy these properties because although it is easy to state and realize, it is not easy
to apply. A possible candidate for distributed computing could be a distributed version of the von
Neumann machine: there are many processing units acting on a single shared memory. This is easy to
state but not easy to realize because who should be responsible for maintaining the shared memory in
a distributed environment? A more natural candidate is the way distributed tasks are often handled in
real life: there are subjects with private, non-overlapping resources that exchange information. In this
case, responsibilities are clear: every subject is responsible for the resources owned by it.

For a predictable execution of tasks within a subject, a subject should be an atomic entity residing
at a single, fixed site. In order for the subject-based approach to be easy to apply, one has to take
into account that concurrency is a difficult matter. Hence, concurrency should only happen between
subjects but not within a subject. As a consequence, tasks should be executed by a subject in a strictly
sequential manner, which implies that every execution of a task must be guaranteed to terminate in a
finite amount of time. Since no finite time bound can be given for the interaction between subjects
without losing the universality of the paradigm, this means that the execution of a task should not
depend on the interaction with other subjects. Hence, no primitives should be allowed that require
information from another subject for the execution of a task to proceed.

Another aspect for the subject-based approach to be easy to apply is that subjects should be im-
mutable once created. That is, subjects cannot modify, add or delete variables or methods, though they
can certainly modify the contents of their variables. This tremendously simplifies correctness proofs.
Thus, if new variables or methods are needed, new subjects have to be spawned. If a subject A spawns
a subject B, A is called the parent of B and B is called the child of A. For simplicity and transparency
reasons, a child should be bound to the same site as its parent. Like in real life, a parent should be
responsible for its child. In particular, a parent should be responsible for controlling the resources used
by its child. In this way, resource responsibilities are well defined. This, in turn, implies that the parent
relationship should not change because if it could, a parent may obtain the right to decide on the use
of resources of a child at a remote site, which is not acceptable as it would introduce severe security
and robustness risks.

Efficiency

For a paradigm to be efficient, no primitive should involve a large hidden overhead. Moreover, for
simplicity and efficiency reasons, primitives should be selected so that the subjects are decoupled in
space, time, and flow. Space decoupling means that the interacting subjects do not need to know
their physical locations, time decoupling means that the interacting subjects do not need to be actively

3

participating in an interaction at the same time, and flow decoupling means that the code execution
inside subjects is not blocked by outside interactions. The space and time decoupling issues require an
intermediate layer for the interaction between the subjects that can run concurrently with the subjects
(in fact, we may treat it as another subject) that we will specify more precisely below.

Robustness

In order to allow the development of robust distributed algorithms, two central demands have to be
met (see also [2, 3]):

1. Owner consent and control: All resources granted to a subject (such as time, space and band-
width) should be under its control. For simplicity, it is best if subjects can only grant resources
to their children. In this way, a subject only needs to control the resources of its children. Notice
that these resources always belong to the same site since we do not allow subjects to migrate.
Since, in addition, subjects cannot access anything outside of their realm directly, owner consent
and control is assured.

2. Minimal exposure: The exposure of any information and resource due to the interaction with
other subjects should be kept at a minimum, which includes the owner consent and control issue.
Ideally, subjects should not be inspectable from outside and no information should be obtainable
from a subject that can be used to take over its identity, even if the subject would want this. Only
information that has been explicitly sent by the subject should be obtainable from that subject.
Furthermore, a subject should be able to control the type and amount of information sent to it,
which implies that a subject A should not be able to introduce a subject B to a subject C without
B’s consent. To minimize exposure in a parent-child relationship, initially there should only be
a connection from the child to its parent, and not vice versa. This makes sure that subjects can,
in principle, act independent of their environment so that subjects may just be verified once and
then run anywhere with the same guaranteed outcome.

Simplicity is also important for robustness because it is a universal fact that every additional primitive
increases the vulnerability of a paradigm. With respect to robustness, less is therefore more, though
the universality and efficiency may suffer if this principle is exaggerated.

1.3 Formal framework
In order to establish a formal framework satisfying all of our demands above, we need to address two
critical issues: primitives for a robust communication environment and primitives for a robust com-
putational environment. The latter issue includes the problem of robust code migration and resource
management.

Communication

We need the following ingredients to establish a robust communication infrastructure.

• subjects: active, static entities

• objects: passive, dynamic entities

4

• relay points: the only entities with identities

There are special objects called clones and identities. Clones and identities are so-called dark objects.
That is, the information in them is not accessible to the subjects but only to the subjects environment.
Let S denote the set of all subjects, I denote the set of all identities and R denote the set of all relay
points. Identities can only be created for relay points but never for subjects.

Given a subject s, p(s) ∈ S denotes the parent of s (i.e. the subject that created s). For an identity i,
s(i) ∈ R denotes the source of i (i.e., the relay point for which i was created), d(i) ∈ R∪{∞} denotes
the destination of i (i.e., the relay point i is meant for) and b(i) ∈ R denotes the base of i (which we
explain later in more detail). If d(i) = ∞, we call i a public identity and otherwise a private identity.
Given a relay point r, h(r) ∈ S denotes the home of r (i.e., the subject that created r) and b(r) ∈ R
denotes the base of r (to be explained later). b(), s(), h() and r() are not accessible to the subjects.
Finally, let E ⊆ R×R denote the set of directed connections between the relay points.

Subjects, identities and relay points can be created or deleted. In the following, by s.op(o1 |
o2, o3, . . .) we mean that subject s applies method op to object o1 using as parameters objects o2, o3, . . .
First, we consider the case that a subject is created or deleted. When a subject s is created, it will have
two relay points. Relay point ∗s is an internal relay point through which s receives tasks to be executed
by s, but ∗s is not accessible by s, and relay point ↑s is the starting point of a connection from s to its
parent. ↑s is accessible but cannot be deleted (without deleting s).

• s.create(s′): S = S ∪ {s′}, p(s′) = s, R = R ∪ {∗s′ , ↑s′}, h(∗s′) = b(∗s′) = s′, h(↑s′) = s′,
b(↑s′) = ∗s and E = E ∪ {(↑s′ , ∗s)}.

• s.delete(s′): if s = p(s′) then S = S \ {s′}, R = R \ {r | h(r) = s′}, E = E \ {(r, r′) | h(r) =
s′ ∨ h(r′) = s′}, and execute delete(s′′) for all s′′ ∈ S with p(s′′) = s′.

Next, we consider the case that a relay point is created or deleted.

• s.create(r): R = R ∪ {r}, h(r) = s, b(r) = ∗s, and E = E ∪ {(r, ∗s)}.

• s.create(r | i): if h(d(i)) = s or d(i) = ∞ then R = R ∪ {r}, h(r) = s, b(r) = b(i),
E = E ∪ {(r, s(i))} and I = I \ {i} (i.e., the identity i is invalidated so that it cannot be used
again).

• s.delete(r): R = R \ {r} and E = E \ {(r′, r′′) | r′ = r ∨ r′′ = r}.

Finally, we consider the case that an identity is created or deleted.

• s.create(i | r): if h(r) = s then I = I ∪ {i}, s(i) = r, d(i) = ∞ and b(i) = b(r).

• s.create(i | r, r′): if h(r) = s then I = I ∪ {i}, s(i) = r, d(i) = b(r′) and b(i) = b(r).

• s.delete(i): I = I \ {i}.

When looking carefully at these rules, the following important properties can be extracted:

• If a new subject is created, then initially there is only a link from that subject to its parent but not
vice versa. In this way, the create operation can be implemented in a non-blocking way. Also,
as we will see, all incoming information is under full control of the subject.

5

• A subject can only be deleted by the subject that created it. It cannot delete itself. Whenever a
subject is deleted, also all of its descendants are deleted. In this way, there is always a connected
tree of parent-child relationships.

• Any identity can only be used once. This limits the abuse of identities in order to start denial-of-
service attacks, for example.

• Identities are necessary in order to establish links between relay points, but only to a relay point
that created it. Thus, links can only be created to a subject by its explicit consent.

• An identity cannot be created for ∗s. This makes sure that a subject can kill any connection to it
at any time (by deleting either one of its relay points or a child subject).

• Relay points can establish linked lists. The destination of any such list is the base of all of its
relay points. An identity created for any of the relay points in such a list is meant for the base of
this list. In this way, lists can be shortcut. This is important to allow direct connections between
any two subjects that may initially just be in the same connected component.

Due to the last two properties, we also call our approach introduction by proxy, connection by base.
Subjects communicate by exchanging objects along their connections. This is done by the follow-

ing commands:

• s.verb(o): This generates a task for relay point ∗s to execute method ”verb” with object o (o may
also be NULL).

• s.r.verb(o): This generates a task for the base of relay point r of s to execute ”verb” with object
o (o may also be NULL).

Notice that for a robust and secure communication environment, communication links should be cryp-
tographically secured so that they cannot be forged by anyone, and objects sent along a relay path
should be encoded using the base of that path so that no intermediate node can read it. However, since
in this course we will not address security issues, we will not discuss this issue further here.

Code migration

In order to allow the safe migration of subjects from one site to another, we use the concept of clones.
Let C be the set of clones. For any clone c, let s(c) ∈ S be the source of the clone and d(c) ∈ S be the
destination of the clone. A clone is created and deleted by the following operations:

• s.create(c): C = C ∪ {c}, c = s, s(c) = s and d(c) = ∞.

• s.create(c | r): C = C ∪ {c}, s(c) = s and d(c) = b(r)

• s.create(s′ | c): if c ∈ C and d(c) ∈ {s,∞} then execute s.create(s′), set s′ = c and C = C \{c}
(i.e., c can only be used once).

A clone c only contains s itself, which means that c only contains the current state of the variables
and methods in s as well as the requests that are currently queued in s but none of the relay points or

6

connections established by s. Note that a clone can only be unwrapped once and only by the subject it
is meant for.

For safe cloning, clones should be cryptographically secured so that they cannot be altered on a
user level. It should only be possible to unwrap a clone by a secure platform within the site so that its
code and data cannot be inspected or altered by the user. Though these are important issues, we will
not address these issues further in this course since we want to focus more on robustness than security.

Resource management

Recall that the resources used by a subject should be under the control of its parent. We realize this
with the help of the following operations:

• s.freeze(s′): if s = p(s′) then s′ is frozen by s, which means that no requests will be executed
for s′ and its descendants.

• s.wakeup(s′): if s = p(s′) then s′ is woken up by s, which means that now requests will again
be executed by s′ and its descendants (given that no ancestor of s gets frozen)

By default, a new subject is awake. A subject may also control which of its relay points is currently
active. This is realized by the following operations:

• s.freeze(r): if s = h(r) then r is frozen by s, which means that no requests will be processed
(i.e., received and sent) by r.

• s.wakeup(r): if s = h(r) then r is woken up by s, which means that now requests will again be
processed by r.

By default, a new relay point is awake.

1.4 The subject-oriented programming framework
Now we are ready to describe our subject-oriented programming environment which will be used
throughout the course. The basic ideas behind this framework date back to the actors model developed
by Carl Hewitt at the MIT in the area of artificial intelligence [1], at a time when distributed computing
was still in its infancy. His ideas have long been neglected and only recently saw a revival in program-
ming languages such as E (see www.erights.org or [4]). However, all of the approaches based on his
ideas only address efficiency and security issues but not robustness issues.

Layers of the framework

The subjects framework consists of three layers:

• Network layer: this is the lowest layer. It handles the exchange of messages between the sites.

• Relay layer: this handles the identity management and the exchange of messages between the
subjects.

• Subjects layer: this is the layer for subject-oriented programs.

7

In the network layer, any given communication mechanism may be used, such as TCP/IP, Ethernet, or
802.11. Its management is entirely an internal matter of the relay layer. Hence, the relay layer allows
to hide networking issues from the subjects so that subject-oriented programs can be written in a clean
way. Thus, it remains to specify the subjects layer, the relay layer, and the interface between them.

The subject layer

All computation and storage in the subjects layer is organized into subjects and objects. A subject is
an atomic thread with its own, private resources that are only accessible to the subject itself. “Atomic
thread” means that a subject must be completely stored within a single site and that operations within
a subject are executed in a strictly sequential, non-preemptive way. A prerequisite for this approach to
work is that all elementary operations must be strictly non-blocking so that a subject will never freeze
in the middle of a computation. A subject cannot access any of the resources outside of its private
resources and the objects currently owned by it. The only way a subject can interact with the outside
world is by sending objects to other subjects. A subject is bound to the site and the subject that created
it.

The relay layer

All communication in the relay layer is handled via so-called relay points. Relay points can be thought
of as ports but are much more general than that. A relay point is an atomic object that is bound to the
subject that created it. The following demands have to be satisfied for the relay points:

• All calls to the same relay point are executed in FIFO order, i.e. in the order they were invoked
by its subject.

• All objects sent from a relay point r to some relay point r′ arrive at r′ in the same order they
were sent out by r (if they arrive).

• Objects are delivered in an at-most-once fashion. (Notice that exactly-once delivery cannot be
guaranteed in a potentially unreliable network.)

Formal specification

There are three basic classes:

• Subject: base class for subjects.

• Relay: class for relay points, which are needed to interconnect the subjects.

• Object: base class for objects. There are two predefined subclasses of objects: Identity and
Clone.

User-defined objects should be defined as follows:

class 〈UserObject〉: public Object
{
public:

8

〈user-defined variables〉
};

User-defined subjects should be defined as follows:

class 〈UserSubject〉: public Subject
{
protected:
〈user-defined variables〉
〈internal user-defined methods〉

public:
〈UserSubject〉() and/or 〈UserSubject〉(〈UserObject〉 ∗o)
{
The only subject primitive that can be used here is "call".

}

〈callable user-defined methods〉
};

All remotely callable user-defined methods must be of the form ”void 〈method〉()” or ”void 〈method〉
(〈UserObject〉 ∗o)”. More details can be found in the file Subjects1-4.h that can be downloaded from
the course webpage (and might be given here later).

1.5 A simple example
In order to demonstrate our subjects framework, two examples can be found on the course webpage.
See ”pingpong1-4.cpp” and ”intro1-4.cpp”. More details may be given here later.

References
[1] P. B. C. Hewitt and R. Stieger. A universal modular actor formalism for artificial intelligence. In Proc. of

the 1973 International Joint Conference on Artificial Intelligence, pages 235–246, 1973.

[2] K. Cameron. The laws of identity. http://www.identityblog.com/stories/2004/12/09/thelaws.html, 2004.

[3] D. Epp. The eight rules of security. http://silverstr.ufies.org/blog/archives/000468.html, 2003.

[4] C. M. M.S. Miller and B. Frantz. Capability-based financial instruments. Financial Cryptography 2000,
2000. See also http://www.erights.org/elib/capability/ode/.

9

