
Lecture Notes Class 1 and 2

Navketan Verma

Technical University of Munich

Randomised Algorithm

A randomised algorithm is an algorithm is an algorithm which employs a degree
of randomness as part of its logic. The algorithm typically uses random bits as
additional input along with the regular inputs with the hope of achieving good
performance in the average case over all possible choices of random bits or in
simple terms Randomness is another resource that we use along with regular
resources to solve any problem.

Examples of Random Sources

Coin tossing, Radioactivity etc...(more to be added). In common usage, ran-
domised algorithms are approximated using a pseudo random generator in place
of true random bits. Such an implementation may deviate from the expected
theoritical behaviour .

Reason

Helps in fooling the adversary.
There are broadly two categories of Randomised Algorithm :- a) The algo-

rithms that use random input to reduce the expected running and memory or
any other resource but always terminate with correct or expected result in a
bounded amount of time b) The probabilistic algorithms, which depending on
random input have a chance to produce incorrect result (one way or two way
error reffered to as false positive or false negative). These algorithms usually
fail to terminate in case of incorrect input (e.g Las Vegas Algorithm) or give an
incorrect result (Monte Carlo Algorithm). Error part of the results are usually
reduced with successive re-runs but only with a polynomal number of re-runs.

In this part of the course, we are deailing with category of the algorithm.
Some of the algorithms discussed in the class :-

a. Leader Election problem

Its used to designate a single process (or node in a distributed system) as a
leader among several nodes, and its made known to all other nodes quickly. The
nodes in the Distributed system need some method to break the symmetry and
annoint one as the leader ( either highest or lowest UID or any other means).



2

b) Fermat’s Primality theory

Fermat theorem is normally used to create a large prime number with high
probability (could be used either in crytography or for credit card number). A
Fermat’s number is typically of the form Fn = 22n + 1, where n must be non-
negative. The first few Fermat numbers are:
3, 5, 17, 257, 65537, 4294967297, 18446744073709551617...............
But like composite numbers of the form 2p - 1, every composite number Fermat
number is a strong pseudoprime to base 2. As a result we only presume that
we can generate large prime numbers with only high probability but there is a
chance that such a number might turn out to be a pseudo prime.

Formally, a composite number n = d.2s+ 1 with d being odd is called a strong
pseudoprime to a relatively prime base a when one of the following conditions
hold: The definition of a strong pseudoprime depends on the base used; different
bases have different strong pseudoprimes. The definition is trivially met if a ≡ ±1
mod n so these base choices are often excluded.

If we try to find deterministically primality of a number, it will be of the
order of O((logn)4).

Paradigms of Randomized Algorithm (Abstract
models/Notions)

1. oiling/Fooling the adversary - Examples :- a) Finger Printing and Hasing
b) Random Re-ordering. A Randomised Quick Sort’s overall runing time is
O(nlogn) which is same as the deterministic Quick Sort’s average case (try-
ing to make bad permutations really small).
2. Load-Balancing - (to be clarified)
3. Markov chains - walking through a collection of objects
4. Isolation and Symetry Breaking e.g Leader selection problem (each single
node pick one random number look for smallest or largest , should be non-
identical for two or more, then elect that as the basis isolating the number
basically)

Probabilistic Methods in existence proofs

Doing Combinatorial counting, we can construct such a proof. E.g Using Prob-
ability theory, at each step we throw away atleast half the possible outcomes,
then after k-steps as are left with 1/(2k) items (proof of existence).
Probabilistic analysis of algorithms
Randomized Quick Sort : S be the set of n numbers. Let pivot →y. Let us
partition the set S\{y} into two sets S1 and S2, where S1 consists of elements
smaller than y and S2 consists of elements larger than y. We recursively sort
S1 and S2 such that S1 is in ascending order followed by y followed by S2 (in
ascending order as well).



3

If we find y in c*n steps for some c¿0, we can partition S\{y} into S1 and
S2 in (n-1) steps by comparing each remaining element of S\{y} with y. The
recurrence relation is as follows :-
T (n) ≤ 2T (n/2) + cn+ (n− 1)
T (n) ≤ 2T (n/2) + (c+ 1)n
and its solution gives us T (n) ≤ dn log n for some constant d, where T(k) is
the time taken to sort k elements in the worst case. This running time holds
even if the partition of S\{y} into S1 and S2 doesn’t have more than 3n/4
(or 3-quarters) of the elements. This gives a chance since we know that n/2
candidate element ’y’ will possess this property. Big question :- How to find one
such element (pivot)?
RandQS :- An algorithm with random choices for pivot during its execution
(at every step during recursion) can be obtained in unit time. But this will not
succeed 100

Input is a set S of n numbers.
Output is the same set in sorted order (increasing/decreasing).

1) Pick element y from set S randomly (pivot element Random bits are bernoulli
distributed).
2) Compare S\{y} to y . Determine S1 < y < S2 (1st split of S into S1,S2 and
y).
3) Recursively sort S1 and S2 and put solutions together by first wirting sorted
version of S1 followed by ’y’ followed by sorted version of S2.

In any sorting algorithm, normally we measure running time in terms of num-
ber of comparisons it performs, since this is the dominant cost in any reasonable
implementation. Here our goal is to analyze expected number of compararions
in the execution of RandQS.
For 1 ≤ i ≤ n, let S(i) denote the element of rank i/the ith smallest element
in the set. S(1) denote the smallest and S(n) the largest. S(1) < S(2) < S(3) <
........ < S(n).

Define a random variable Xij such that
Xij = 1 if algorithm compares S(i) and S(j)

= 0 otherwise.
Xij = Count of number of comparasions between S(i) and S(j)

Total number of comparasions =

n∑
i=1

n∑
j>1

Xij

Expected value of the total number of comparisons =

E[

n∑
i=1

n∑
j>1

Xij ] =

n∑
i=1

n∑
j>1

E[Xij ]

[ due to the property of linearity of expectation] .
Let Pij denote the probability tha S(i) and S(j) are compared in an execu-

tion. Since Xij only assumes values of 0’s and 1’s, therefore
E[Xij ] = 1 ∗ Pij + 0 ∗ (1− Pij) = Pij .
Now Compute Pij .



4

Now for i < j, S(i), Si+1, Si+2, ....Sj

For execution of RandQS , we view it in the form of binary tree T, with each
node carrying an element of S. The root of the tree is labeled by ’y’ → Pivot
element. The left subtree contains elements of S1 smaller than ’y’ and right
subtree contains elements of S2 larger than ’y’. The root element is compared
with elements in the two sub-trees, but no comparasion is performed between
elements in the two sub-trees (i.e. Element from left sub-tree with element from
right sub-tree). Therefore there is a comparasion between S(i) and S(j) only if
one is the ancestor of other. The output will will be an in-order traversal if T. For
analysis, we are interested in level order traversal of the nodes. The permutation
π is obtained be visiting nodes of T in the increasing order of the level numbers,
from left-to-right and top-to-bottom. The ith level of the tree is the set of all
nodes at a distance i from the root.

Two Observations

1) There is a comparasion between S(i) and S(j) if and only if S(i) and S(j)

occurs earlier in the permutation π than any element S(l) such that i < l < j. i.e
for comparasion to happen, S(i), S(l) and S(j) have to be in ancestor dependent
relationship with each other by RandQS algorithm.
2) Any element S(i), S(i+1), S(i+2).......... S(j) is equally likely to be chosen as
the partitioning element (or Pivot), appearing as the 1st element in ∈. Therefore
, probability that the element is either S(i) or S(j) is 1st element (Mutually

exclusive) is exactly = 2
(j−i+1) .

Expected no of comparisons = E [

n∑
i=0

n∑
j>i

Xij ] =

n∑
i=1

n∑
j>i

E[Xij ]

=

n∑
i=1

n∑
j>i

Pij

=

n∑
i=1

n∑
j>i

2

(j − i+ 1)

=

n∑
i=1

n−i+1∑
k=1

2

k
= 2nHn = 2nlogn

Hn =

n∑
i=1

2

k

Min-Cut Algorithm

Two events ε1 and ε2 are independent if the probability that they both occur is
given by Pr[ε1 ∧ ε2] = Pr[ε1] * Pr[ε2] In more general case where ε1 and ε2 are
not necessarily independent.
Pr[ε1 ∧ ε2] = Pr[ε1]* Pr[ε2]



5

Pr[ ε1ε2 ] = Conditional probability of ε1 given ε2 .

Pr[ε1] = Pr[ε1] *Pr[ ε1ε2 ]* Pr[ ε3ε2
ε1

]*......... Pr[ εi
ε1∩ε2∩ε3......∩εi−1 ]

Min-Cut Algorithm:-

A cut in a multigraph G is the set of edges whose removal results in G being
broken into two or more components. A min-cut is a cut of minimum cardinality.

Another Definition :-

Dividing the graph into two non-trivial graphs. Number of edges crossing the
cut is the number of that cut. The Cut with minimal links is called the Min-Cut.
Algorithm :- Pick an edge uniformly at random and merge the two vertices at
its end-points. If as a result there are several edges between some pairs of newly
formed vertices, retain them all. Edges between vertices that are merged are re-
moved, so that there are never any self loops into a single vertex as contraction
of that edge. The crucial observation is that an edge contraction does not reduce
the min-cut size in G.
The algorithm continues till only two vertices remain in the graph, at this point
, the set of edges between these two vertices is a cut in G and output is a can-
didate min-cut.
d(v) = degree of v = number of edges incident on v.
Let k = min-cut size if a particular min-cut ’C’of graph G.

Therefore number of edges of G ≥ k∗n
2 . we execute a sequence of (n-2) edge

contractions. i.e pick an edge randomly, then collapse the two ends of the edge.
Keep repeating this many times and remember the smallest cut. If the number
of edges in the graph is less than k ∗ (n/2), then degree of the last two vertices in
the graph (after (n-2) contractions) is less than k, and therefore size of min-cut
will be less than k. Let denote the event of not picking an edge of C at the ith

step.

Pr[if edge is in the cut ] ≤ (numberofedgesofMin−Cut′C ′)
totalnumberofedges

Pr[if edge is in the cut ] ≤ k
kn/2 ≤

2
n

Pr[ε1] ≥ 1- Pr[if edge is in Min-cut≥ 1− 2
n

If ε occurs, in second step , number of edges to be considered ≥ k(n−1)
2

Pr[ ε2ε1 ] ≥ 1− k
l∗((n−1)/2) ≥ 1− 2

(n−1)

Pr[ εi
ε1∩ε2∩ε3......∩εi−1 ] ≥ 1− 2

n−i+1

Pr[ε1 ∩ ε2 ∩ ε3...... ∩ εi− 1] = (1− 2
n−i+1 ) ≥ 2

n∗(n−1) ≥
2
n∗n

The probability of discovering a particular min cut (which may in fact be the
unique min cut in G) is larger then 2/(n2). If we repeat the algorithm (n2)/2



6

times, making independent random choices each time, the probability the min cut
is not found in any of the (n2)/2 attempts is at most.

(1 − 2
n∗n ) ≤ 1/e. By (n2)/2 re-runs, we have managed to reduce the proba-

bility of failure from (1− 2
n∗n ) to 1/e

Binary planar partition :-

E[

n∑
i=1

Xi] =

n∑
i=1

E[Xi]

Ex 1.1

E[

40∑
i=1

Xi] =

40∑
i=1

E[Xi] =

40∑
i=1

1/40

Since the probability that ith sailor chooses its own cabin = 1/40.
Binary planar partition of a set of n disjoint line segments in the planes BPP
(Binary planar partition) consists of a binary tree . Every internal node of tree
has two children. For every node, there exists a region r(v) of the plane. Region
corresponding to root is the entire plane. Region corresponding r(v) is parti-
tioned by l(v) into two regions, r1(v) and r2(v) . Any region ’r’ of the partition
is bounded by the partition lines on the path from root to the node corresponding
to r in the tree. Given the set S = S1, S2...Sn of non intersecting line segments
in the plane, we wish to find binary planar partition, such that every region in
the partition contains at most one line segment (or one portion of line segment).
As a result an input line segment Si will be divided into separate line segments
Si1, Si2.... where each one of them will be lying in different region.

Painters Algorithm :-

First draw the objects that are farthest behind and then progressively draw the
objects that are in front.
Recursive implementation of binary partition tree with painters algo-
rithm :-
At the root of the BPP tree, determine which side of the partitioning line ’L1’ is
behind from the viewpoint and render all objects in that sub-tree (recursively).
Once done with the back portion of ’L1’, do it again for the portion in front of
’L1’, painting over objects already drawn.

Time to render is directly proportional on the size of the binary planar par-
tition tree, therefore its good to construct as small BP partition as possible.
The tree needs to be traversed completely, but its depth is not exactly that is
meaningful, because the construction of the new partition will break a segment
Si into smaller pieces, the size of the partition need not be n or O(n).



7

For a segment S, let L(s) be the line segment obtained by extending (if neces-
sary) S on both sides to infinity. For S = S1, S2....Sn a simple class of partition
is the set of autopartition, formed by only using lines L(S1), L(S2)...L(Sn) in
constructing the partition. Here we will consider randomized auto partition.

Partition Tree :- Start with whole thing and divide into two parts and then
recursion. Partition tree is of the order of O(n log n). Line segment of infinite
length L(s) in both direction.

Input: Set S = S1, S2...Sn of non intersecting line segments. Output: A bi-
nary antipartition P π of S.

1. Pick a permutation π of 1,2,...n uniformly at random from n! Possible permu-
tations.
2. While a region contains more than one segment (sub-segment), cut it with
l(Si), where i is first in the ordering permutation π such that Si cuts that region.
[while there exists a region with > 1 sub − segment, pick the first segment in
the region as a new partitioning line.]

Theorem

The expected size of autopartition output by the algorithm is O(n log n).

Proof: u,v be two segments.

index(u,v) = if u intersected v at ith position i.e. Before v, u has already
intersected (i-1) segments.

index(u,v) = 3(or k say) = index(u,w), where u is not equal to w i.e we can
have only two intersections with same index for one segment (say u → on two
sides of its infinte length). (u → on two sides of its infinte length)

u intersects v => l(u) intersects v, index (u,v) = i =>
u → u1, u→ u2.............u → ui-1, u→ v
index(u,v)=i if u is picked by randomiyed algorithm before any of u1, u2...ui−1, v
Probability of this happening = 1

i+1 in current region.
Random variable :

Cuv =

{
1 if u intersects v

0 if u intersects v

E[Cuv] = Pr[u ∩ v] ≤ ( 1
index(u,v)+1 )

E[size of partition tree] = n+ E[

n∑
u=1

n∑
v 6=u

Cuv]

E[

n∑
u=1

n∑
v 6=u

Cuv] =

n∑
u=1

n∑
v 6=u

E[Cuv] =

n∑
u=1

n−1∑
v 6=u

2

i+ 1
= 2nHn

this is due to linearity of expectation.



8

E[ size of patition tree] ≤ (n+2nHn) ≤ n(1+2Hn) ≤ n(1+2 log n)⇒ O(n log n)

Our randomized algorithm actually provides a proof of existence of the in-
tersection of line segments by other segments. Here again RA analysis is around
same as the average case anlysis of Deterministic algorithms. [Andy Yao’s prin-
ciple]

Another way of interpreting the above theorem:-

Since the expected size of the binary planar partition constructed by the algo-
rithm is O(n log n) on any input, there must exist a binary auto partition of size
O(n log n) for every input.

Hiring a new secretary/employee:-

Proof: M needs a new secretary. n candidates Ci, for i=1....n are in the fray for
interview.
Decision right after the interview. Cost of relinquishing the contract = b. If
number of candidates selected = k, then total cost of relinquishing = (k-1)b, as
(k-1) removed. Worst case (deterministic) = (n-1)b ← every one hired and then
(n-1) removed.

Randomized algorithm:-

randomized order of input. Random variable Xi

Xi =

{
1 if the candidate is picked or selected

0 i otherwise

E[ Total Cost] = [
∑
E[Xi]− 1] ⊂ b = [

∑
E[Xi]− 1] ⊂ b

Pr(Xi = 1) = Probability of the firing of iit candidate chosen randomly at a
time = 1/i.
E[ Total Cost ] = [

∑
E[Xi]− 1] ⊂ b ≤ [Hn+1 − 1] ⊂ b⇒ O(log n)

Here randomized algorithm is used to escape adversary/worst case probability.

Matrix Multiplication or finger printing:

Let 3 matrices be A,B,C 0, 1nxn, we need to find A.B = C ?
Matrix multiplication MM: O(nw ) w = 2.376 is the fastest result possible.
Randomized algorithm: choose r 0, 1n at random. Compute Br = x
Compute Ax = y
Compute Cr = z
accept if y =z O(n2)
Observation if A.B = C, we get accepted with O(n2) otherwise O(n2) with
probability ≥ 1/2
Proof:- D = A.B −C! = 0, repeat the alogorithm k-times (independent random
choices).
Errorprobability ≤ 2−k



9

Game Tree Evaluation :-

Motivation→ Two person zero sum game. For every configuration, finite number
of moves are possible. Configuration tree formation has to be done, leaves of the
configuration tree as final or non-final state. My Move’s layers → 0,2,4,6....(also
called as min layers as i will try to minimize the cost layers which are at even
distance from the root).
Opponent’s Move’s layers→ 1,3,5,7....(also called as max layers layers which are
odd distance from the root). Associated with each leaf is a real number which
we call its value. The evaluation of game tree is as follows: each leaf returns
the value associated with it. Each max node returns the largest value returned
by its children whereas each min node return the smallest value returned by its
children. Given a tree with value at its leaves, we have to determine the value
at its root. The children of a node can be directly associated with the options
available to any player at any point in the game. The value returned by the leaves
represent the value of the game for either player. One seeks to minimize the cost
whereas the other to maximize. In our discussion, value if leaves is limited to
the bits 0 and 1. Thus each min node can be thought of as the boolean AND
operation and each max node can be thought of as the boolean OR operation.
Let Td,k denote a uniform tree in which root and every internal node has ’d’
children and every leaf is at a distance 2k from the root.Thus any root to leaf
path passes through exactly k-AND nodes (including the root) and k OR nodes
and there are d2k leaves. Number of layers in such a tree = 2k+1, numbered
0,1,2,3...2k.Values at the nodes are 0,1.
T2,k → each step has two possible moves (two states of non-determinism). And
every leaf is at a distance 2k from the root. There are a total of 22k leaves =4k

leaves. Number of layers in such a tree = 2k+1, numbered 0,1,2,3...2k. Values
at the nodes are 0,1.
To evaluate an AND internal node v, the algorithm chooses one of its children (a
sub-tree rooted at an OR node) at random and evaluates it recursively invoking
the algorithm. If 1 is returned by the sub-tree, the algorithm proceeds to the
other child (again recursively). If 0 is returned, the algorithm returns 0 for v.
To evaluate an OR node, the same procedure applies with roles of 0 and 1
interchanged. We now argue by induction on k that expected cost of evaluating
any instance of T2,k is at most 3k. The above problem of the Game tree evaluation
can be viewed as a Quantified Boolean Formula or QBF where the quantifiers
in the expression are alternated as Universals and existential, depending on the
scenario.
∀X1∃X2∀X3∃X4....P (X1, X2, X3, X2k) ⊆2 π
The only difference is that QBF starts from existential and then universal, here
its the opposite, 1st universal then existential. Both PSPACE complete problems
and are contained in polynomial heirarchy-PH.

Randomized Algorithm for evaluating T2,k :-

AND node :- Choose one of its two child randomly and evaluate recursively if
its 0, then output 0(no need to evaluate the other child), else if the output is



10

1 yes then also evaluate (recursively) the other child. If output 1, then give the
output 1 else output 0.
OR node :- Same procedure but exchange the role of 0 and 1. Here if 1st output
is 1, output 1 else recursively check for the other one. If one of them is 1, output
1 else output 0.
Theorem:- Expected number of leaves to be evaluated in T2,k tree is leaves ≤ 3k

instead of leaves ≤ 4k as in deterministic algorithm.
Proof by Induction :- Induction over k. If the whole layer is 2k then OR layer is
T2,k−1. If value(OR) = 0 : both children needs to be evaluated cost ≤ 2.3k−1

If value(OR) = 1 : with probability atleast 1/2 algorithm picks a child of OR
with value 1.
: with probability 1/2, algorithm picks a child of OR with value 0, so both chil-
dren needs to be evaluated.
cost ≤ (1/2).3(k−1) + (1/2).2.3k−1 ≤ (3/2).3k−1 Now consider the next root of
the T2,k tree which is an AND node. Since its an AND case so it will return a 1
if both its sub-trees return 1 (which are infact OR rooted as shown above).

cost ≤ (1/2 ).2 .3 k−1+(1/2 ).[(3/2 ).3 k−1+2 .3 k−1 ] ≤ 3 k−1 .[1+1+(3/4 )] ≤ 3 k−1 .(11/4 ) ≤ 3 k

LAS VEGAS Vs MONTE CARLO:-

LAS VEGAS :- Here algorithm always gives the correct solution. Only thing
that varies from one execution to the other is the running time. e.g. for this type
of algorithm is Randomized Quick Sort.

MONTE CARLO:- In this algorithm errors can happen. Error’s may be
of one sided or both sided. Also they can be of the type false positive or false
negative. e.g. of such an algorithm is min-cut algorithm. Here results sometime
may be in correct. With a number of re-runs we try to bound the probability
of the error. What we do basically is to minimize the error probability by a
substantial number of re-runs with gaining accuracy at the expense of time.
Here in this case we get basically a geometric distribution = P (1− P )y , where
r is the number of re-runs. P = probability of success and 1-P = probability of
failure of the algorithm. As you can see since 1-p is less than one, as we increase
the number of re-runs, the probability of failure will go down significantly. As a
result the probability of failure becomes substantially smaller.

P [Success Probability ] = 1− P [Failure Probability] = 1− (1− P )y

Probabilistic Recurrence:-

This section basically deals with finding of the kth smallest element from a set S
of n elements. We pick a random element y from the set S divide the remaining
Sy into two sets S1 smaller than and S2 larger than y as in RandQS. Suppose if
(S1) = k − 1, then y is the desired element. Otherwise if we recursively find the
kth smallest element in S1 else we find k − S1 − 1 smallest element in S2. Now



11

suppose we have to find the expected number of times we pick a random vari-
able or expected number of times we make recursive calls. While this question
may not be important for the find algorithm but its important for the analysis
of parallel or geometric algorithms. Intuitively we expect that the size of the
residual problem is divided by a constant factor at each recursive level, so that
the expected number of recursive invocations is O(log n). Lets generalize this
Situation:-
Consider a particle whose position is a positive integer from 1 to n and whose
position changes at discreet time steps randomly independently of the past. The
process stops only when the particle reaches position 1. If the particle is cur-
rently at position m > 1, then it jumps to m-X where X is the random variable
ranging over 1 to (m-1). All that is known about X is that
E[X] ≥ g(m) ∈ R , g : R+ → R+ is a monotone positive non-decreasing func-
tion . If the particle starts at n, what is the expected number of jumps before it
reaches position 1 and stop ?

Theorem :- Let T(n) be the random variable denoting the number of steps(jumps)

in which the particle reaches position 1. Then, E[T ] ≤
n∫
1

dx
g(x)

Proof:- Inducation on n: n = 1.

Let f(n) =
n∫
1

dx
g(x) , for n ≥ 1.

First Jump: position changes from n to n-X (X taken random variable from 1 to
(n-1)).
E[T (n)] ≤ 1 + E[f(n−X)]

E[f(n−X)] = E[
n∫
1

dx
g(x) −

n∫
n−X

dx
g(x) = f(n)− E[

n∫
n−X

dx
g(x) ]

E[T (n)] ≤ (1 + f(n)− E[
n∫

n−X

dx
g(x) ]) ≤ (1 + f(n)− [X]

g(n) ) ≤ f(n)

Machine Model :- Turing Machine Model will be used to discuss complexity
theory issues. For describing and analysing algorithms, however we will use RAM
(Random Access Machine Models)

Turing Machine Model :- A Deterministic Turing Machine is a quadruple
M = (Q,Σ, δ, q) . Here Q is the finite set of states and q ∈ Q is the initial
state of the machine. The machine uses finite set if symbols denoted by Σ , this
includes special symbols of START and BLANK. Symbol δ in the quadruple M
defines the transition function also called as the partial function

δ : (QXΣ)→ (Q ∪ (HALT, Y ES,NO)XΣX(←,→, STAY )).
The Machine has three halting states namely HALT(halting state),YES (accept-
ing state) and NO (rejecting state). The input to the machine is written on a
tape, unless otherwise specified, machine may read from and write to this tape.
If its a single tape machine, then we presume that the read head cannot move
to the left. Left end of the tape is fixed, but right end is not (infinite length).



12

δ(Partial function): Deterministic Turing machine → One state possible for one
transaction.
δ(Multivariate partial function):Nondeterministic Turing machine→ More than
one state possible for one transaction .
A Turing Machine (shortly abriviated as TM) M accepts x ∈ Σstar iff(if and
only if) on input on x ,after finitely many steps M stops and accepts the input
(M ends in one of the accepting state/states) . A Turing Machine M rejects
x ∈ Σstar iff on input x, after finite number of steps M stops in a non final
state/non accepting state.

Variations of Turing Machine:- Usually there are many variations of tur-
ing machine that can be found, but all of them can be proved to be equivalent
of the one we discussed above with a max of quadratic overhead. Some of them
have been discussed below.

Off line K-tape Turing Machine:- Writes output once computation is over.
Usually have seperate tapes for computation (also know as work tapes), perhaps
the most common dipiction of Turing Machines. K-tape indicates K work tapes.
This type of TM models are a must if we are talking about logarithmic languages
or logarithmic complexity classes (L and NL).

Online Turing Machine:- When turing machine has to write its output im-
mediately after reading every character on the input tape.
Later we are going to read about another type of turing machines specifically for
Randomized algorithms, they are called as Probabilistic Turing Machines.
But in practise its very hard to program and work with Turing Machine Mod-
els. Whatever is possible to do via Turing Machine can be done via RAM and
vice-versa (with just polynomial time overhead).

RAM Model:- In RAM Model we have a machine that can perform follow-
ing operations involving registers and main-memory: input-output operations,
memory-register transfers, direct and indirect addressing of memory,branching
and arithematic operations. In RAM Models, the input tape is read just once
but it has an infinite memory to hold the information.

Language and Decision Problems :-
if Σ denotes the set of alphabets of finite length, with
1 ≤ (Σ) <∞ , L is a langauge, L ⊆ Σstar then A Deterministic Turing Machine
M (or RAM) , recognizes Langauge L, iff
i) ∀x ∈ L : M accepts x and
ii) ∀x /∈ L : M rejects x

Deterministic Turing Machine :-



13

Fig. 1: TMs illustrated Image

k-tape Turing Machines

– K scratchpad tapes, infinitely long, contain cells
– One input tape, read-only
– One output tape, write-only
– Working tapes : k heads positioned on individual cells for reading and writing
– Finite control (finite set of rules)
– Vocabulary, alphabet to write in cells
– Actions: depending on symbols under heads, control state. One can move

heads (right, left, stay) write symbols into current cells.

Non-deterministic Turing Machines (NDTM):-

Definition (NDTM)
A non-deterministic TM (NDTM) is a quadruple M = (Q,Σ, δ, q) like a deter-
ministic TM except Q contains a distinguished accepting state qaccept .δ is a pair
(δ1, δ2 ) of transition functions.
At each step, NDTM non-deterministically chooses to apply either δ1 or δ2 . A
NDTM M accepts x, M(x) = 1 if there exists a sequence of choices s.t. M reaches
qaccept and M(x) = 0 if every sequence of choices makes M halt without reaching
qaccept.

Probabilistic Turing Machine (PTM):-

Definition (PTM)
We obtain from an NDTM M = (Γ ;Q; δ1; δ2 ) a probabilistic TM (PTM) by



14

choosing in every computation step the transition function uniformly at random,
i.e., any given run of M on x of length exactly ’l’ occurs with probability 2−l .
A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if M
halts on x within at most T(|x|) steps regardless of the random choices it makes.

Definition (DTIME):-

Let T : N → N be a function.L ⊆ [0, 1]star is in DTIME(T) if there exists a
Turing Machine M deciding L in time T’ for T ′ ⊆ O(T ) . Here D refers to deter-
ministic. Constants are ignored since TM can be sped up by arbitrary constants.

Definition (SPACE):-

Let S : N → N and L ⊆ [0, 1]star. Define L ⊆ SPACE(S) iff there exists a TM
M deciding L in no more than S’(n) locations on Ms work tapes ever visited
during computations on every input of length n for S′ ⊆ O(S).

Complexity Classes :-

P (Polynomial Time):-

Set of class of polynomial time Problems/Algorithms that can be solved in de-
terministic polynomial time , polynomial being a function of the input length.
For every L ⊆ [0, 1]star holds: L ∈ P if and only if there exists a polynomial P :
N→N and a polynomial-time TM M such that for every
∀x ∈ [0, 1]star, x ∈ L , M(x) = 1 and x ∈ L, M(x) = 0.

NP (Non-Deterministic Polynomial Time) :

Non-Deterministic polynomial time algorithm NP computable with Non-Deterministic
Turing Machine in polynomial time. For every L ∀L ⊆ [0, 1]star holds: L ∈ NP
if and only if there exists a polynomial p : N→ N and a polynomial-time Turing
Machine M such that for every ∀x ∈ [0, 1]star, x ∈ L iff ∃u ∈ [0, 1]p(x) : M(x; u)
= 1 where M is called verifier and u is called certificate.

EXP (Deterministic Exponential time) :-

EXPTIME (also called EXP) is the set of decision problems solvable be deter-
ministic turing machine in O(2p|n|) time and denoted as EXP.

NEXP (Non Deterministic Exponential time) :-

The complexity class NEXPTIME (sometimes called NEXP) is the set of
decision problems that can be solved by a non-deterministic Turing machine
using time O(2p|n|) for some polynomial p(n), and unlimited space.In terms of
NTIME.



15

coNP :-

A language L ⊂ [0, 1]star is in coNP iff there exists a polynomial p and a
polynomial time TM M such that ∀x ∈ [0, 1]star, x ∈ L implies ∀u ∈ [0, 1]p|n| ,
M(x; u) = 1

PSPACE(Polynomial Space):-

In computational complexity theory,PSPACE is the set of all decision problems
which can be solved by a Turing machine using a polynomial amount of space.
Its denoted as ????????????

NSPACE(Non Deterministic Polynomial Space) :-

In computational complexity theory, the complexity class NSPACE(f(n)) is
the set of decision problems that can be solved by a non-deterministic Turing
machine using space O(f(n)), and unlimited time. It is the non-deterministic
counterpart of DSPACE. Its denoted as NPSPACE = ?????????????

Space Hierarchy Theorem:-

Theorem (Space Hierarchy)
Let f ; g : N→N be space-constructible such that f ∈ o(g) . Then SPACE(f(n)) ⊂
SPACE(g(n)) inclusion is strict, stronger theorem than corresponding time the-
orem only constant space overhead. f ; g can be logarithmic too.

Time vs. Space :-

Let s : N → N be space-constructible. Then
DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n)))

Theorem (Savitch) :-

For every space-constructible S : N → N with S(n) . Savitch: non-deterministic
space can be simulated by deterministic space with quadratic overhead (by path
enumeration in configuration graph).

Read-once Certificates (Special case for NL):- Similar to NP, also NL
has a characterization using certificates.

Theorem (read-once certificates)
L ⊂ [0, 1]star is in NL iff there exists a deterministic logspace TM M (verifier)
and a polynomial p : N → N such that for every
∀x ∈ [0, 1]star iff ∃u ∈ [0, 1]p(|n|) :M(x; u) = 1.
Certificate u is written on an additional read-once input tape of M.

example: path in a graph is a read-once certificate.



16

Configuration Graphs :-

Let M be a deterministic or non-deterministic TM using s(n) space. Let x be
some input. This induces a configuration graph G(M; x) with

– nodes are configurations:
– state
– content of work tapes
– edges are transitions (steps) that M can take.

Properties of configuration graph

Outdegree of G(M;x) is 1 if M is deterministic; 2 if M is non-deterministic.
G(M;x) has at most ((Q)) ∗ Γ c∗S(n) nodes (c some constant) which is in 2s(n) .
G(M; x) can be made to have unique source and sink with existence of accep-
tance of path from source to sink which can be checked in time O(G(M; x)).
NSPACE(S(n)) ⊆ DTIME(2S(n))(usingBFS).
Footnote :- This argument holds good as long as SPACE(n) = ω(log n) , if
we are below logn, then the situation becomes more complicated.
if NSPACE ≤ 3.5n7.3, then PSPACE is at most (NSPACE)2.
Result NSPACE = PSPACE
Logarithmic Space :- Deterministic logarithmic space normally denoted as L and
non-deterministic logarithmic space denoted as NL. Its an open question weather
L = NL ? (log)2 Or (log)n are called polylog space.
NSPACE and NL are closed under complement. For deterministic classes its
easy, since we can flip the output. i.e. NL = coNL and NSPACE = coNSPACE .

Theorem (Immerman-Szelepcsnyi):
For reasonable s(n) ≥ log n,NSPACE(s(n)) = co−NSPACE(s(n)).

Proof:- Let M be a nondeterministic machine using s(n) space. We will cre-
ate a nondeterministic machine N such that for all inputs x, N(x) accepts if and
only if M(x) rejects.
Fix an input x and let s=s(|x|). The total number of configurations of M(x) can
be at most cs for some constant c. Let t=cs. We can also bound the running
time of M(x) by t because any computation path of length more than t must
repeat a configuration and thus could be shortened.
Let I be the initial configuration of M(x). Let m be the number of possible con-
figurations reachable from I on some nondeterministic path. Suppose we knew
the value of m. We now show how N(x) can correctly determine that M(x) does
not accept.
Let r=0, For all nonaccepting configurations C of M(x). Try to guess a compu-
tation path from I to C.
If found let r=r+1.
If r=m then accept o.w. reject. If M(x) accepts then there is some accepting
configuration reachable from I so there must be less than m non-accepting con-
figurations reachable from I so N(x) cannot accept. If M(x) rejects then there



17

is no accepting configurations reachable from I so N(x) on some nondetermin-
istic path will find all m nonaccepting paths and accept. The total space is at
most O(s) since we are looking only at one configuration at a time. Of course
we cannot assume that we know m. To get m we use an idea called inductive
counting. Let mi be the number of configurations reachable from I in at most
i steps. We have m0=1 and mt=m. We show how to compute mi+1 from mi.
Then starting at m0 we compute m1 then m2 all the way up to mt=m and then
run the algorithm above. Here is the algorithm to nondeterministically compute
mi+1 from mi. Let mi+1=0
For all configurations C
Let b=0, r=0
For all configurations D
Guess a path from I to D in at most i steps
If found
Let r=r+1
If D=C or D goes to C in 1 step
Let b=1
If r < mi halt and reject
Let mi+1=mi+1+b
The test that r < mi guarantees that we have looked at all of the configurations
D reachable from I in i steps. If we pass the test each time then we will have
correctly computed b to be equal to 1 if C is reachable from I in at most i+1
steps and b equals 0 otherwise.
We are only remembering a constant number of configurations and variables so
again the space is bounded by O(s). Since we only need to remember mi to get
mi+1 we can run the whole algorithm in space O(s).

Open and known problems

OPEN/UNKNOWN :-

P = NP?
NP = coNP?

KNOWN

– if an NP-complete problem is in P, then P = NP P ⊆ coNP ∩NP
– if L ∈ coNP and L is NP-complete then NP = coNP

– if P = NP then P=NP=coNP

– if NP 6= coNP then P 6= NP

– if exp 6= NEXP then P 6= NP (equalities scale up, inequalities scale down)



18

Reductions :-

Instead of tight bounds say which problem is harder we use reductions . IF there
is an efficient procedure for problem A and an efficient procedure for B using
the procedure for A
THEN B cannot be radically harder than A
notation: B ≤ A , the important point to note is that, reductions cannot
be more powerful than the problem class itself. Therefore for NP complete or
PSPACE complete problems, only poly time reductions should be applied. For
L and NL problems logrithmic reductions should be applied as polynomial re-
ductions are too powerful for that class of problems.

Logspace reductions:-

Definition (logspace reduction) Let L′, L ⊆ [0, 1]star be languages. We say
that L is logspace-reducible to L’, written L ≤ logL′ if there is a function f :
[0, 1]star → [0, 1]star computed by a deterministic TM using logarithmic space
such that x ∈ L implies f(x) ∈ L′ and ((f(x))) ∈ O((((x)))c) for some constant
c > 1 for every x ∈ [0, 1]star.
L logspace reduction is transitive. If C is logspace reducible to B C ∈ L this
imples B ∈ L NL-hardness and NL-completeness can be defined in terms of
logspace reductions.

Many-One Reductions:-

In computability theory or computational complexity theory, a many-one re-
duction is a reduction which converts instances of one decision problem into
instances of another decision problem. Reductions are thus used to measure
the relative computational complexity/difficulty of the two problems. We apply
translation function to a problem A to take it to another problem B assuming
we know a procedure to solve problem B.Many-One reductions are also called
as karp-reduction.
Many-one reductions are special case and a stronger form of Turing Reductions.
With many-one reductions the oracle can be invoked only once at the end and
the answer cannot be modified.

Oracle:- Questions can be asked in polytime and all answers can be obtained
in polytime. All membership questions can be asked in a single step. This is
also called as Turing reduction where many questions can be asked(all in single
step). Its like a sub-routine call. Turing reductions are also called cook-reduction
(Inventor of NP).

Ex 1:- CVP or Circuit Value Problem→ Given the description of the circuit with
(x1, x2, ...xn) ∈ [0, 1]n ,determine the output of the problem. Its a P-Complete
problem in logspace.
Ex 2:- 3-SAT or SAT is a NP-Complete problem (3-CNF).



19

Ex 3:- QBF is a PSAPCE complete problem.

Proof:-
Definition (QBF)
A quantified Boolean formula is a formula of the formQ1x1Q2x2....Qnxnψ(x1, x2, ...xn)

– where each Qi ∈ [∀,∃]
– each xi ranges over [0,1]
– ψ is quantifier-free.
– wlog we can assume prenex form.Formulas are closed, ie. each QBF is true

or false.
– if all Qi = ∃ , we obtain SAT as a special case
– if all Qi = ∀ , we obtain Tautology as a special case

QBF is in PSPACE

Polynomial space algorithm to decide QBF with n variables and size m.
qbfsolve(Ψ) if Ψ is quantifier-free
return evaluation of Ψ
if Ψ = Qx.Ψ ′

if Q = ∃
if qbfsolve(Ψ ′[X → 0]) return true
if qbfsolve(Ψ ′[X → 1]) return true
if Q = ∀
b1 = qbfsolve(Ψ ′[X → 0])
b2 = qbfsolve(Ψ ′[X → 1])
return b1b2
return false Each recursive call can re-use same space,therefore qbsolve uses at
most O(n + m) space This proves QBF ∈ PSPACE
Now we need to show that every problem L ∈ PSPACE is polynomial-time
reducible to QBF.
Proof:-
Let L ∈ PSPACE arbitrary. L ∈ SPACE(S(n)) for polynomial s. m ∈ O(S(n))
bits needed to encode configuration C.
There exists Boolean formula ψM,x with size O(m) such that ψM,x(C,C ′) = 1
iff C,C ′ ∈ [0, 1]m encode adjacent configurations; see Cook-Levin Define QBF
Ψ such that Ψ(C,C ′) is true iff there is a path in G(M, x) from C to C’.
Ψ(Cstart, Caccept) is true iff M accepts x.
Define Ψ inductively !.
Ψi(C,C ′) : there is a path of length at most 2i from C to C’.
Ψ = Ψm and Ψ0 = ψM,x
Ψi(C,C ′) = ∃C ′′.Ψi− 1(C,C ′′) ∧ Ψi− 1(C ′′, C ′)
might be exponential size, therefore use equivalent
Ψ(C,C ′′) = ∃C ′′.∀D1.∀D2.((D1 = C ∧D2 = C ′′) ∨ (D1 = C ′′ ∧D2 = C ′))



20

⇒ Ψi− 1(D1, D2)

C” stands for m variables ⇒ (Ψi) = (Ψi− 1) +O(m)⇒ (Ψ) ∈ (m2)

Property of reduction :-

If a problem is complete for lower notion, then it will always be complete for
higher notion. There are also languages between two classes(not always). e.g.
GI(Graph Isomorphism). its not NP-Complete but it is also not in P.

We define NP normally in terms of non-deterministic computation tree, which
is a perfect ninary tree and whose height is P (|X|) which is polynomial in the
length of the input .
Details of computation tree (Configuration graph) has already been provided
above. If atleast one computation path gives an accepting path, then its accept-
ing else rejecting.

SATISFIABILITY(SAT):-

Input is a prepositional formula (CNF). Can we get a satisfying assignment?
Its a mother problem for NP-Complete class. We get the certificate from oracle
and plugging in the values to check if its a one ’1’, we have satisfying assignment.

SAT = {∃C1∃C2......∃Cm ∈ 0, 1m : F (C1, C2, ...Cm) = 1 where F is the preposi-
tional formula .
CV P = {∃X1∃X2......∃Xm ∈ 0, 1m : P (X1, X2, ...Xm) where the values of in-
puts X1, X2..Xm have been provided as well as the description of the circuit,
find the ouput value of P .

→ For Non-deterministic problem paradigm is guess and proof.
→ For Deterministic problem paradigm is create and proof.

Probabilistic Complexity Classes:-

Probabilistic complexity classes includes problems which uses random bits for
its execution along with regular problem description and the input. Random-
ness can make possible computation tasks that are probably impossible without
it. Cryptography is a good example: if the adversary can predict the way you
generate your keys, you cannot encrypt messages. Randomness is also good for
breaking symmetry and making arbitrary choices. For solving or analysing or
even sometimes putting the definition of Probabilistic Complexty classes we use
the notion Probabilistic Turing Machine or PTM (defined above).



21

Recap NP:-

Lets have one more look at NP and then we move to towards Probabilistic classes
taking Randomized NP as the basis.
For everyL∀L ⊆ 0, 1star holds: L ∈ NP if and only if there exists a polynomial
p : N → N and a polynomial-time Turing Machine M such that for every ∀x ⊆
0, 1star, c ∈ L iff ∃u ∈ 0, 1p((x)) : M(x; u) = 1 where M is called verifier and u is
called certificate.

NP captures the class of possibly (not) tractable computations:

– Certificate ’u’ is a satisfying assignment
– Dont know how to compute u in poly-time, but
– If there is a u, then is polynomial in , and
– We can check in poly-time if a u is a certificate/solution.
– Deemed untractable. Conjecture: P 6= NP .

Randomizing NP :- Obtain from NP a more realistic class by randomization
→ Choose u uniformly at random from 0, 1P (X) .

Definition (Accept/Reject certificates and probabilities) :-

Fix some L ∈ NP decided by M using certificates u of length
P (|x|) :AM,x = u ∈ 0, 1P ((x)) : M(X,u) = 1 andRM , x = u ∈ 0, 1P ((X)) : M(X,u) = 0 :
If we choose uniformly at random:

– AM,x is the event that u says accept x.
– RM,x is the event that u says reject x.

Definition (Accept/Reject certificates and probabilities (contd)):-

Pr[AM,x] =
AM,x
2P (|x|) 2p(jxj) and Pr[RM,x] = Pr[RM,x] =

RM,x
2P (|x|) = 1− Pr[AM,x]

L ∈ NPiff∀x ∈ 0, 1star

x ∈ L⇒ §Pr[AM,x] ≥ 2−P (|X|) and x ∗ LPr[AM,x] = 0

Examples of randomized algorithms :-

– Randomized poly-time with one-sided error: RP; coRP; ZPP
– Power of randomization with two-sided error: PP; BPP



22

Definition (Randomized P (RP)) :-

L ∈ RP if there exists a polynomial p : N→ N and a polynomial-time TM M(x,u)
using certificates u of length (u) = p(|x|) such that for every x ∈ [0, 1]star

x ∈ L⇒ Pr[AM,x] ≥ 1/2 and x ∗ LPr[AM,x] = 0
→ P ⊆ RP ⊆ NP
→ coRP = L : L ∈ RP
→ RP remains unchanged if we replace (1/2)byn−k or §(3/4)

One-sided error probabiliy for RP:

→ False negatives: if x ∈ L, then Pr[RM,x] ≤ (1/2) or (1/4) (depending on
acceptance probability is (1/2) or (3/4).
→ If M(x, u) = 1, output x ∈ L; else output probably, x*L
→ Error reduction by rerunning a polynomial number of times.
Given input x , Choose u ∈ [0, 1]p(|x|) uniformly at random.
→ Run M(x, u).
→ If M(x, u) = 1, output: yes, x ∈ L .
→ If M(x, u) = 0, output: probably, x*L , Called Monte Carlo algorithm.

Definition(coRP) :-

L ∈ coRP if and only if there exists a polynomial P: N→N and a polynomial-
time TM M(x,u) using certificates u of length
(u) = p(|c|) such that for every x ∈ [0, 1]star, x ∈ L
x ∈ L ⇒ Pr[AM,x]= 1 and x ∗ L ⇒ Pr[AM,x] ≤ (1/2) or (1/4) ( depending on
which value we choose for RP acceptance and rejection):

One-sided error probability for coRP:

→ False postives: if x ∗ L, then Pr[AM,x] ≤ (1/4) → If M(x, u) = 1, output
probably,x ∈ L ; else output x ∗ L The class RP (for Randomized Polynomial
time) consists of all languages L that have a randomized algorithm A with worst
case polynomial running time such that for any input x ∈

∑star
,

→ x ∈ L⇒ Pr[A(x)accepts] ≥ (1/2)
→ x ∈ L⇒ Pr[A(x)accepts] = 0
An RP algorithm is Monte Carlo, but the mistake can only be if x ∈ L . coRP is
all the languages that have a Monte Carlo algorithm that make a mistake only
if x.L . A problem which is in RP\coRP has an algorithm that does not make a
mistake, namely a Las Vegas algorithm.

Definition (Zero Probability of Error-P (ZPP)) :-

→ ZPP = RP ∧ coRP . If L ∈ ZPP , then we have both an RP-TM and a
coRP-TM for L.



23

The class ZPP ( for Zero-error Probabilistic Polynomial time) is the class of
languages that have Las Vegas algorithms in expected polynomial time.
Assume L ∈ ZPP
Then we have Monte Carlo algorithms for both x ∈ L and x ∈ L̄ .
Given x: -
→ Run both algorithms once.
→ If both reply probably, then output dont know.
→ Otherwise forward the (unique) yes-reply.
→ Called Las Vegas algorithm.
Till Now we have seen algorithms (or class of problems) where we have allowed
only one sided error. But now we will consider algorithms which has two sided
error i.e Probability of error for both x ∈ L and x ∗ L

RP obtained from NP by
→ choosing certificate u uniformly at random
→ requiring a fixed fraction of accept-certificates if x ∈ L
x ∈ L⇒ Pr[AM,x] ≥ (1/2) and x ∗ L⇒ Pr[AM,x] = 0
RP-algorithms can only make errors for x ∈ L
By allowing both errors for both cases, can we obtain a class that is larger than
RP,
but still more realistic than NP?
Assume we change the definition of RP to:

x ∈ L⇒ Pr[AM,x](1/2) :

Two-sided error probabilities:
→ False negatives: If x ∈ L : Pr[RM,x] ≤ (1/2)
→ False negatives: If x ∗ L : Pr[AM,x] ≤ (1/2)
Outputs: probably, x ∈ L and x ∗ L probably,

Probabilistic Polynomial Time (PP):-

L ∈ PP if there exists a polynomial P:N→N and a polynomial-time TM M(x,u)
using certificates u of length u = P (|x|) such that for every x ∈ 0, 1star

x ∈ L⇔ Pr[AM,x] ≥ (1/2) :
RP ⊆ PP ⊆ exp
→ One May replace ⊥ ”greater than or equal to” by ”strictly greater than” and
vice-versa.
→ One May replace probability (1/2) by (3/4) .
→ PP = coPP
→ PP: x ∈ L iff x is accepted by a majority
→ x ∗ L, then x is not accepted by a majority (which is not same as majority
rejects x!)



24

Randomness and Non Uniformity

A basic issue in the study of randomized algorithms is the extent to which ran-
domized is necessary for solving a problem. When is it possible to remove the
randomization in a randomized algorithm? The answer depens on aspects of
problem being solved. The goal of this section is to show that the question is
more subtle then it appears at first, and touches on the issue of uniformity algo-
rithms. We now study the notion of a randomized circuit, and a general technique
by which randomization can be removed in polynomial sized randomized circuits.

A boolean circuit with n inputs is a directed acyclic graph with the following
properties:

– There are n vertices of in degree 0; These are called the inputs to the circuit
and labeled x1, x2, ...xn. There is one vertex with out degree 0; this is called
output of the circuit.

– Every vertex v that is not an input or the output is labeled with one boolean
funtion b(v) from the set AND,OR,NOT. A vertx labeled NOT has in degree
1.

– Every input to the circuit is assigned b boolean value. Under such an as-
signment of input values, each vertex v computes the Boolean function b(v)
of the values on incoming edges, and assign the value to its outgoing edges.
The value of the outpu is thus a Boolean function of x1, x2, ...xn; the circuit
is said to compute this function.

– The size of circuit is the number of vertised in it.

Except that there may be more than n vertices of in degree() and these are
partitioned into two classes;
(1) Randomised inputs, an independent rnadom value 0,1 and
(2) The n circuit inputs, x1, x2, ...xn.

fn the function f restricted to inputs from 0, 1n; A sequence C = C1, C2..
of circuit family. If Cn has inputs and computes f(x1, x2, ...xn) at its output
for all inputs x1, x2, ...xn. The family C is said to be Plolynomial sized if the
size of Cn is bounded above by p(n) for every n, where p(.) is a polynomial. A
randomized circuit family for f is circuit family for f that, in addtion to the n
inputs x1, x2, ...xn, takes m randon bits r1, .....rm reach of the equiprobability 0
or 1. In addition for every n, circuit Cn must satisfy two properties:

– If fn(x1, x2, ...xn) = 0, then the output of the circuit is 0 regardless of the
values of random inputs r1...rm.



25

– If fn(x1, ..., xn) = 1, then the outpur of the circuit is 1 with the probabil-
ity at least 1/2. In other words, at least one of the 2m choices of the bits
r1, ...rm will result in circuit evaluation to 1. We will refer to such -tuplets
r1, ....rm as witness for (x1, x2, ...xn) in that they testify to the correct value
of fn(x1, x2, ...xn), when it is 1.

Adleman’s Theorem

From a matrix M with rows 2n rows, one for each possible input from 0, 1n. The
matrix has 2m columns, one for each of the possible m-tuples from 0, 1m that tha
ri can assume. The entry Mij is 1 if the settiong of the r1, ....rm corresponding to
column k is a witness for the x1, x2, ...xn corresponding to the row j; otherwise
the entry is 0. Eliminate all rows of M corresponding to inputs for which fn
evaluates 0.

By definition, at least half the entries of every surviving row of the M equal
1. Therefore, there must be a column with at least half its entries 1. Therefore,
there must be a column with at least half its entries 1; in other words 1; in other
words. there is an assignement of 0s and 1s to the ri that serves as witness to at
least half of the possible inputs. Let this witness be r1(1), .....rm(1). Delete the
column in M corresponding to r1(1), .....rm(1), and all rows 1s in this column.
Thus T1 computs the correct value of fn(x1, x2, ...xn) whenevr the input corre-
sponds to one od the rows we have just eliminated. W have delete all the rows
of M while building at most n circuits T1, .....Tn.

Above mentioned is the first example we have seen of derandomization, where
we take a Randomized algorith or compuatition, or computation and diminish
or entierly remove the randomness in it. This is often a useful technique for the
design of deterministic algorithms. Does theorem mean that randomization is
dispensible in all polynomial-time computation? The answer is no, and has to
do with the issue of non-uniformity in computation. The deterministic circuit-
generated by the above procees is one that works for a particular value of n.
Indeed, the circout it produces for n inputs may have very little rsemblance to
the circuit it produces for n+1 inputs, even if the original randomized circuit
were similar. Any ”practical” algorithm of circuit will in face exhibit this prop-
erty of similarity, which is formalized in the literature under the name uniformity.

Adviced class

Complexity theory formalizes this intuition by classifying algorithms as being
uniform or non-uniform as follows. Let a(n) be a function from the positive in-
tegres to string in

∑
*. An algorithm A is said to use advice a if on an input of

length n it is given the string a(n) on a read only tape. We say that A decides
a language L with advice a if on an input x it uses the read onle string a(|x|)
to decide the membership of x in L. In other words, a single advise string a(n)



26

enable the algorithm A to decide the membership of x in L for all inputs x having
length n. Uniform algorithms are those that use no advice strings at all, whereas
non-uniform algorithms are those that use advice. For the complexity class P,
we define the class P/ poly to consist of all languages L that have non uniform
polynomial time algorithm A such that the length of the advice string a(n) is
bounded by a polynomial in n. Likewise, we may define the RP/ poly.

1 Moments and Derivation

In analysing the performance of a randomized algorithm, we often like to show
that the behavious of the algorithm is good almost all the time. e.g. is more im-
portnant (desirable) to show that the running time is small with high probability
, not just that it has a small expectation. In the study of occupancy problems,
the motivation is to study general bounds on probability that a Random variable
diviates fas from its expectation, enabling it to avoid such custom node analysis.
The probability that a random variable deviates by a margine n amount from
its expectation is suffered to as a fail probability for derivation.

Occupancy Problems

Family of stochastic processes that is fundamental to the analysis of many ran-
domized algorithms are called occupancy problems. It provides for the general
bounds on the probability that a random variable deviates far from its expecta-
tion, enabling us to avoid such a custom mode analysis.
The probability that a random variable deviates by a given amount from its
expectation is suffered to a fail probability for the derivation.

Occupancy Problems*****

We anvision each of m is distinguishable objects (”balls”) is being randomly
assigned to one of n distinct classes (”bins”), i.e each ball is placed in a bin cho-
sen independently and uniformly at random. Our discussions of the occupancy
problem will illustrate ***** in the analysis of randomized algorithms. ”The
probability of the union of ***** is no more than the sum of their probabili-
ties.” For arbitary elements k1, k2, ....kn not necessarily independent.

Pr[

n⋃
i=1

hi] ≤
n∑
i=1

Pr[hi]

Note that this principle is extremely useful because it assumes nothing about
dependencies between the units. Thus, it enables us to analyze phenomenon in-
volving ends with very complicated interactions, without having to ***** the
variables.



27

Consider the first case m=n for 1 ≤ i ≤ n, let Xi be the number of balls in
the ith bin. We have E[Xi] = 1 for all i, yet we do not expect that during a
typical experiemnt every bin receives exactly one ball. Rather, we expect some
bins to have many balls than one and some bins to have no balls at all.
Let us now try to make a statement of the form, ”with very high probability, no
of bins receives more than k balls” for a suitably chosen k.let εj(k) denote the
**** the bin j has k or more balls in it. We concentrate on εj(k). The probability
that bin 1 has exactly i balls(

n

i

)
(1/n)i(1− 1/n)n−i ≤

(
n

i

)
(1/n)i ≤ (ne/i)i(1/n)i ≤ (e/i)i

Probability that bin 1, has k or more balls

Pr[ε1(k)] ≤
n∑
i=k

(e/i)i

≤ (e/k)k[1 + (e/k) + (e/k)2 + ......]

≤ (e/k)k[
1

1− (e/k)
]

let k’ be k′ = d 3ln(n)
lnln(n)e

let the swiftly chosen L ( defined by k*) is K = (k*) = [ 3lnn
lnln(n) ]

Pr[ε1(k∗)] ≤ (e/k∗)k∗[ 1
1−(e/k∗) ]

e/k∗ = e
3ln(n)
lnln(n)

,since e = 2.73 ≤ 3, ln(n) ≤ lnln(n) [grows much slower]

0 < (e/k∗) < 1⇒ 0 < 1− r/k∗ < 1
1/(1− e/k∗) > 1, Lets consider worst case value to be 2.

Pr[ε1(k∗)] ≤ 2.(e/k∗)k∗

≤ 2.[
e

3ln(n)
lnln(n)

]k∗

≤ 2.[
e.elnlnln(n)

eln(3lnln)
]k∗

≤ 2.[e1−ln(3lnln)+lnlnln(n)]k∗

≤ 2.[e1−ln(3)+lnln(n)+lnlnln(n)]k∗

ln(3) > 1(= lne)

≤ 2.[e−lnln(n)+lnlnln(n)]k∗, for sufficiently large nlnlnln(n)/lnln(n) < 1/3

≤ 2.exp[−lnln(n) + lnlnln(n)].d 3ln(n)

lnln(n)
e

≤ 2.exp[3ln(n) +
3ln(n)

lnln(n)
.ln(n)]

≤ 2.exp[−2ln(n)] ≤ 2.(n− 2) ≤ 2/n2



28

This is the probability that ε1(k) = bin 1 for k or more balls in it Pr[ε1(k)] ≤
2/n2 ≤ n−2

The same equation tells us that the upper bound applies to Pr[εi(k∗)] for all i

Pr[

n⋃
i=1

εi(k∗)] ≤
n∑
i=1

Pr[εi(k∗)] ≤
n∑
i=1

n−2 ≤ (1/n)

The probability that no bin has more thank∗ = d 3ln(n)
lnln(n)e balls

Pr[ no bin contains more than k∗ = d 3ln(n)
lnln(n)e] = Pr[

⋃n
i=1 εi(k∗)]

≥ 1− n/n2 = 1− 1/n [can also be given as 1 -2/n].

Additional info

Suppose that m balls one randomly assigned to n bins. We study the probability
of the event that all th balls have been assigned to distinct bins. The special case
n = 365 is called as birthday problem, with 365 days of the year (no leap year)
corresponds to 365 bins. How long must m be before two people in the group
are likely to share their birthdays?

Consider the assignement of the balls to the bins as a sequential process we
throw first ball into a random bin, then second and so on. for 2 ≤ i ≤ m, ler ε1

be the event that ith ball gets in a bin, not containing any of first i ball.

Pr[ε1 |
i−1⋂
j=2

= [n− (i− 1)/n].[left over balls]/ [total no of balls] = [1− (i− 1)/n]

Pr[

m⋂
i=2

εi] = Pr[ε2

m∏
i=3

Pr[εi |
i−1⋂
j=3

εj ]

⇒ Pr[
⋂m
i=2 εi] ≤

∏m
i=2(1− (i− 1)/n)

It is easy to compute Pr[εi |
⋂i−1
j=2 εj ], since this is simply the probability that

the ith ball lands in an empty bin given that the first (i-1) all fell into distinct
bins and it is easy to see,

Pr[
⋂m
i=2 εi] = [n−(i−1)

n ] = [1− (i− 1)/n]
Pr[
⋂m
i=2 εi] ≤

∏m
i=2[1− (i− 1)/n] ,use identity 1- x ≤ e−x.



29

Pr[

m⋂
i=2

εi] ≤
m∏
i=2

e−(i−1)/n

≤ e−
∑m
i=2(i−1)/n ≤ e−1/n

∑
i=1m−1i

≤ e−1/n.m(m−1)/2 ≤ e−m(m−1)/2n,

Let the value of m = d
√

2n+ 1e, the probability that all the m balls fall in n different bins

≤ e(−m2+2m)/2n

≤ exp[(−(2n+ 1 + 2
√

2n) + 2(
√

2n+ 1))/2n]

≤ exp[(−2n− 1 + 2)/2n] = exp[(−2n+ 1)/2n]

≤ exp(−1) ≤ 1/e

As m increases, the probability drops drastically.

Markov and Chebyshev inequalities:

Expectation: Let X be a discrete random variable and f(x) be any valued func-
tion. Thus the explanantion of f(x) is given by
E[f(x)] =

∑
x f(x).Pr[X = x]

E[X] =
∑
x x.Pr[X = x]

σx = standard derivation
Variance = E[X2]− (E[X])2

Variance of X = σX
2 = E[(X − E[X])2]

= E[X2 + E(X)2 − 2XE(X)]
= E[X2] + E[X]2 − 2E[X]E[X] = E[X2]− E[(X)]2

Theorem:- let X be a random variable assuming only non-negative values (≥ 0),
Therefore all t ∈ IR+, Pr[X ≥ t] ≤ E[X]/t
Proof:-

f(X) =

{
0 for x < t

1 otherwise (i.e.x ≥ t)

E[f(x)] =
∑
x f(x).Pr[X = x]∑

x≥t f(x).Pr[X = x] +
∑
x<t .Pr[X = x] [Definition off(x)]

E[f(x)] =
∑
x≥t Pr[X = x] = Pr[X ≥ t]

Since f(x) ≥ x/t
Pr[X ≥ t] ≤ E[E/t] ≤ E[X]/t
This is the highest possible bound when we know only that X is non negative
and has a given expectation. Unfortunately, the Markov inequallity by itself is
often too weak to yield good results.
k ∈ N
Pr[X ≥ k.E[X]]⇒ k.E[X] = 1⇒ E[X] = 1/k
Pr[X ≥ 1] = Pr[X = 1] = E[X] = 1/k
⇒ t ∈ IR+, Pr[h(y) ≥ t] ≤ E[R(y)]/t......X = h(y)



30

Pr[X ≥ t] ≤ E[X]/t
⇒ Pr[h(y) ≥ t] ≤ E[h(y)]/t. We now show that the Markov inequality can be
used to drive better bounds on the said probability by using more information
about the distribution of the random variable.

Chebyshev Bound

Based on the knowledge of the variance of distribution for a random variable X,
µX = E[X] ( expectation) . variance = σX

2 = E[(x− µX)2]
σX = Std. deviation of X Chebyshev inequality :- let X be the random variable
with
µX = E[X], σX

2 = E[(x− µX)2], σX = S.D
Pr[|X − µX | ≥ tσX ] ≤ 1/t2

Proof :-Pr[|X − µX | ≥ tσX ] = Pr[|X − µX |2 ≥ t2σX2]
Y (random variable) = (|X − µX |)2

E[Y ] = E[(|X − µX |)2] = (σX)2

from Markov’s inequality
Pr[Y ≥ t2σX2] ≤ E[Y ]/(t2σX

2) ≤ σX2/(t2σX
2) ≤ 1/t2

⇒ E[|X − µX | ≥ t] ≤ σX2/(t2)
E[Xk] = kth normal of X.
µ = E[X] = 1st moment of X.
E[(|X − µ|)k] = kth central moment.

pg 6

Let X and Y be the random variable and f(x,y) be a function of two variables x
and y. Then
E[f(X,Y )] =

∑
x,y f(x, y).P (x, y)

if x and y are val independent random variable. P (x, y) = P (x∩y) = P (x).P (y)
f(x, y) = f(x ∩ y) = f(x).f(y)
E[f(x, y)] =

∑
x,y f(x, y).P (x, y) =

∑
x

∑
y f(x).f(y).P (x).P (y)

=
∑
x f(x).P (x)

∑
y f(y).P (y) = E[X].E[Y ]

X =
∑m
i=1Xithen σX

2 =
∑m
i=1 σxi

2

σX
2 = E[X − µX2] = E[X2 + µX

2 − 2µXX]
= E[(X2)] + E[µx

2]− 2E[X]µX
= E[(X2)]− µX2 = E[(X2)]− E[(X)]2

µX =
∑m
i=1 µxi [Linearity of expectation]

X =
∑m
i=1Xi ⇒ E[X] =

∑m
i=1E[Xi]

µX = E[X], µxi = E[Xi]

X2 = (
∑m
i=1Xi)

2

⇒ σX
2 = E[X − µX2] = E[(

∑m
i=1Xi −

∑m
i=1 µxi)

2]



31

= E[(
∑m
i=1(Xi − µi))2]

E[
∑m
i=1(Xi − µi)2] + 2

∑m
i=1

∑
j>i(Xi − µj)(Xi − µj)

= E[
∑m
i=1(Xi − µi)2] + 2

∑m
i=1

∑n
j>iE[(Xi − µj)(Xi − µj)]

Since ∀Xi, Yi are independent variables, so is (Xi, µi) and (Xj , µj)
σxi

2 = E[X − µX2] =
∑m
i=1E[Xi − µi2] + 2E[Xi − µi]E[Xj − µj ]

=
∑m
i=1E[Xi − µi2]....E[Xi − µi] = 0, E[Xj − µj ] = 0.

=
∑m
i=1E[Xi − µi2] =

∑m
i=1 σxi

2

⇒
∑m
i=1 σxi

2 = V ar[
∑m
i=1Xi]

Note:- it is possible in the case of Xi for i= 1,2,3,....n, Whereas
E[
∑m
i=1Xi] =

∑m
i=1E[Xi] Always holds

⇒ E[aX + b] = a.E[X] + E[b]
⇒ V ar[aX] = a2V ar[X]

Two point Sampling:-

Variances of the sum of the independent random variable equals the sum of the
variances (prooved above) σX

2 =
∑m
i=1 σxi

2

[Given X =
∑m
i=1Xi and Xi for i = 1....n independent random variable]

Let X and Y be discrete random variable defined on the same probability space.
The point closing function of X and Y is the function.
P (x, y) = Pr[X = x ∩ Y = y]
Pr[Y = y] =

∑
x P (x, y), Pr[X = x] =

∑
x P (x, y)

Pr[X = x | Y = y] = Pr(x, y)/Pr[Y = y] = Pr[X = x ∩ Y = y]/Pr[Y = y]
= Pr[X = x ∩ Y = y]/

∑
x P (x, y)

These definitions extend to a set X1, X2......Xm of none than two random vari-
ables, such a set of random variables is said to be pairwise independent if ∀i 6= j
and x, y ∈ IR
Pr[Xi = x | Xj = y] = Pr[Xi = x]

Two point sampling and probability amplification:-

suppose n be a prime number (not very small) and Zn
denote the ring of integers modulo n. For a and b chosen independently and
uniformly at random with a,b ∈ Zn. Let Yi = ai+ bmodn for i = o, 1, ...n− 1.
Observation : For i 6≡ j (mod n) , Yi and Yj are uniformly distributed on Znand
pairwise independent.
Given fix values for Yi, Yj , we can solve Yi = ai+b(modn) and Yj = aj+b(modn)
uniquely for a and b as [

Xi

Yi

]
=

[
ai+ b
aj + b

]
=

[
i 1
j 1

]
×
[
a
b

]



32

We now consider an application of these concepts to the reduction of the number
of random bits used by RP Algorithms. Consider an RP algorithm A for deciding
whether input strings x belong to a language L.
Given x, A picks a random number r from the range Zn = 0, 1, ....n− 1
For a suitable choice of a prime number n and computes a binary value A(x, r)
with the following properties :-
→ if x ∈ L, when A(x, r) = 1 for at least half possible numbers of r
→ if x 6∈ L, then A(x, r) = 0 ∀x.
Therefore, for a randomly chosen r, A(x,r) = 1 is conclusive proof that x ∈ L,
when A(x, r) = 0 is evidence that x ∈ L
Two point sampling refers to two sample as above:-

A(x, r) =

{
1 with prob ≥ 1/2 if x ∈ L
0 otherwise x 6∈ L

r → vector of random bits, in the range Zn = 0, 1, ....n− 1 for a suitably chosen
n. if A(X, r) = 1⇒ r is witness for x ∈ L, Otherwise no witness |r| = Length of
r = log n
Repeat the computation of A(x, r) for t > 1 independently chosen ri where, i=
1,2,...t. This is done to reduce the probability of finding A(x, r) = 0 for some
randomly chosen r through x ∈ L. In this case if for any i we obtain A(x, ri) = 1
we declare that x is in L, else we declare that x is not in L. By the independence
of the trials , we are guaranteed that the probability of incorrectly classifying an
input x ∈ L (by disclosing that it is not in L) is at most 2−t.
⇒ errorr probability ≤ 2−t , but this is at the cost of Ω(t log n) random bits.
Suppose instead that we are only willing to use O(log n) random bits. Take two
independent sample from Zn called a and b.
if we directly use a and b as witness, i.e. computing A(x,a) and A(x,b), yields
an upper bound of 1/4 on error probability.
A better scheme is : let ri = ai + bmod n compute A(x, ri) for 1 ≤ i ≤ t. If for
any i A(x, ri) = 1, we declare x is in L. else otherwise.
We can show that the error probability is much smaller than 1/4. Our analysis
this way will be insensitive to the actual value of r in Zn which are witness for
x. We will only rely on the fact that at least half the value of r are witnesses.
Clearly A(x, ri) is a random variable on the probability space of pairs a and b
chosen independently from Zn.
we have seen earlier that ri’s are pairwise independent and so are A(x, ri) for
1 ≤ i ≤ t. let Y =

∑t
i=1A(x, ri) Assuming x ∈ L,E[Y ] ≥

∑t
i=1 1/2 ≥ t/2

V ar[Y ] = σY
2 ≤ t/4⇒ σY ≤

√
t/2

The probability that the pairwise independent iterations produce an incorrect
classification corresponds to the event Y = 0 and
Pr[Y = 0] ≤ Pr[|Y − E[Y ]| ≥ t/2]
≤ σY 2/(t/2)2

≤ (t/4)/(t2/4)
≤ 1/t
By Chebyshev inequality, the latter is at most 1/t. Therefore the error proba-



33

bility is at most 1/t, which is cosiderably important over the error bound of 1/4
achieved by the naive use of a and b. This improvement is sometimes referred
as probability amplification.

The Coupon Collectors Problem

There are n types of coupons, and at each trial one coupon is picked in random.
How many trials one has to perform before picking all coupons? Let m be the
number of trials performed. We would like to bound the probability that m ex-
ceeds a certain number, and we still did not pick all coupons.
Let Ci ∈ 1, . . . ,n be the coupon picked in the i-th trial. The j-th trial is a
success, if Cj was not picked before in the first j- 1 trials. Let Xi denote the
number of trials from the i-th success, till after the (i + 1)-th success. Clearly,
the number of trials performed is

X =

n−1∑
i=0

Xi

Clearly, the probability of Xi to succeed in a trial is pi = n− i/n , and Xi has
geometric distribution with probability pi .
As such E[Xi] = 1/pi, and var[Xi] = q/p2 = (1− pi)/pi2. Thus,

E[X] =

n−1∑
i=0

E[Xi] =

n−1∑
i=0

n/(n− i) = nHn = n(lnn+Θ(1)) = nlnn+O(n).

Where, Hn =
∑n
i=0 1/i the n-th Harmonic number.

As for variance, using the independence of X0, X1, ......, Xn−1, we have

V [X] =
∑n−1
i=0 V [Xi] =

∑n−1
i=0 1− pi/pi2 =

∑n−1
i=0

1−(n−1)/n
((n−i)/n)2

=
∑n−1
i=0

1/n
((n−i)/n)2 =

∑n−1
i=0 (i/n).(n/(n− i))2

= n
∑n
i=0 i/(n− i)2 = n

∑n
i=0(n− i)/i2 = n(

∑n
i=0 n/i

2 −
∑n
i=0 1/i)

= n2.
∑n
i=0 1/i2 − nHn.

Since,limn→∞ 1/i2 = π2/6, we have limn→∞ V [X]/n2 = π2/6.
This implies a weak bound on the concentration of X, using Chebyshev inequal-
ity, but this is going to be quiet weaker than what we implied we can do, Indeed,
we have

Pr[X ≥ n log n+ n+ t.nπ/
√

6] ≤ Pr[|X − E[X]| ≥ t.V [X]] ≤ 1/t2

,
for any t.



34

The Occupancy and Coupon Collector problems

The Coupon Collectors Problem Revisited

There are n types of coupons, and at each trial one coupon is picked in random.
How many trials one has to perform before picking all coupons? Let m be the
number of trials performed. We would like to bound the probability that m ex-
ceeds a certain number, and we still did not pick all coupons.
In the previous lecture, we showed that

Pr[#of trials ≥ nlogn+ n+ t.n.π/
√

6] ≤ 1/t2

for any t. A stronger bound, follows from the following observation. Let Zi
r de-

note the event that the i-th coupon was not picked in the first r trials. Clearly,
Pr[Zi

r] = (1− 1/n)r ≤ e−r/n.
Thus, for r = βnlogn, we have Pr[Zi

r] ≤ e−(βnlogn)/n = n−β . Thus,

Pr[X > βn log n] ≤ Pr[
⋃
i Z

βnlogn
i ] ≤ n.Pr[Z1] ≤ n−β+1

This is quite strong, but still not as strong as we can do.
Let c > 0 be a constant, m = nlnn + cn for a positive integer n. Then for any
constant k, we have

lim
n→∞

(
n

k

)
(1− k/n)m = exp(−ck)/k!.

Proof: (1− k2m/n2)exp(−km/n) ≤ (1− k/n)m ≤ exp(−km/n).
Observe also that limn→∞(1 − k2m/n) = 1, and exp(−km/n) = n−kexp(−ck).
Also,
limn→∞

(
n
k

)
k!/nk = limn→∞(n.(n− 1).....(n− k + 1))/nk = 1.

Thus,
limn→∞

(
n
k

)
(1− k/n)m = limn→∞(nk/k!)exp(−km/n)

= limn→∞n
k/k!.n−k.exp(−ck) = exp(−ck)/k!.

Let the random variable X denote the number of trials for collecting each of the
n types of coupons. Then, for any constant c ∈ IR, and m = nlnn+ cn, we have

limn→∞ Pr[X > m] = 1− exp(−e−c).

Before dwelling into the proof, observe that
1− exp(−e−c) ≈ 1− exp(−e−c) = e−c, as such the bound in the above theorem
is indeed a considerable improvement over the previous bounds.
We have Pr[X > m] = Pr[

⋃
i Zi

m]. By inclusion-exclusion, we have
Pr[
⋃
i Zi

m] =
∑n
i=1(−1)i+1Pi

n, where

Pj
n =

∑
1≤i1≤i2≤....≤ij≤n Pr[

⋂j
v=1 Ziv

m]

Let Sk
n =

∑k
i=1(−1)i+1Pi

n. We know that S2k
n ≤ Pr[

⋃
i Zi

m] ≤ S2k+1
n.

By symmetry, Pk
n =

(
n
k

)
Pr[
⋂k
v=1 Zv

m] =
(
n
k

)
(1− k/n)m,



35

Thus, Pk = limn→∞ Pk
n = exp(−ck)/k!.

Let Sk =
∑k
j=1(−1)j+1Pj =

∑k
j=1(−1)j+1.exp(−cj)/j!.

Clearly, limk→∞ Sk = 1 − exp(−e−c) by the Taylor expansion of exp(x) for
x = −e−c. Indeed,

exp(x) =
∑∞
j=0 x

j/j! =
∑∞
j=0(−e−cj/j! = 1 +

∑
j=0∞(−1)je−cj/j!

Clearly, limk→∞ Sk
n = Sk and limk→∞ Sk = 1− exp(−e−c). Thus, (using fluffy

math), we have
limn→∞ Pr[X > m] = limn→∞ Pr[

⋃n
i=1 Zi

m]
= limn→∞ limk→∞ Sk

n = limn→∞ Sk = 1− exp(−e−c).

A Technical Lemma

For any y ≥ 1, and |x| ≤ 1, we have

(1− x2y)exy ≤ (1 + x)y ≤ exy

The right side of the inequality is standard by now. As for the left side, we prove
it for x ≥ 0Let us first prove that

(1− x2)ex < 1 + x

Dividing by (1 + x), we get (1 - x) ex ≤ 1, Which obviously holds by the Taylor
expansion of ex, Indeed,
(1− x)ex = ex − xex = 1 + x/1! + x2/2! + x3/3!....− x− x2/1!− x3/2!.... ≤ 1.
Next, observe that (1− x2)y ≥ 1− yx2, fory ≥ 1. As such,
(1− x2y)exy ≤ (1− x2)yexy = ((1− x2)ex)y ≤ (1 + x)y ≤ exy.
A similar argument works for x ≤ 0.



36

Cherno. Inequality

Tail Inequalities

The Cherno. Bound General Case
Here we present the Cherno. bound in a more general settings.
Let X1, ....Xn ba an n independent Bernouli trials, where

Pr[Xi = 1] = pi, andPr[Xi = 0] = qi = 1− pi
( Each Xi is known as a Poisson trials.) And let X =

∑
i=1 bXi . µ = E[X] =∑

i pi.
We are interested in the question of what is the probability that X > (1 + δ)µ?
Theorem : For any δ > 0, we have Pr[X > (1 + δ)µ] < (eδ/(1 + δ)(1+δ))µ

Or in a more simplified form, for any δ ≤ 2e− 1 ,

Pr[X > (1 + δ)µ] < exp(−µδ2/4,

, and
Pr[X > (1 + δ)µ] < 2−µ(1+δ),

for δ ≥ 2e − 1. Proof: We have [Pr[X > (1 + δ)µ] = Pr[e
tX > et(1+δ)µ]. By the

Markov inequality, we have:

Pr[X > (1 + δ)µ] < E[etX ]/et(1+δ)µ

On the other hand,

E[etX ] = E[et(X1+X2+...+Xn)] = E[etX1 ]...E[etXn ]

Namely,

[Pr[X > (1 + δ)µ] <

∏n
i=1E[etXi ]

et(1+δ)µ
=

∏n
i=1(1 + pi(e

t − 1))

et(1+δ)µ

Let y = pi(e
t − 1) We know that 1 + y < ey (since y ¿ 0). Thus,

Pr[X > (1 + δ)µ] <

∏n
i=1 exp(pi(e

t − 1))

et(1+δ)µ
=
exp(

∑n
i=1 pi(e

t − 1))

et(1+δ)µ

=
exp((et − 1)(

∑n
i=1 pi

et(1+δ)µ
=
exp((et − 1)µ)

et(1+δ)µ

=

(
exp(δ)

(1 + δ)1+δ

)µ



37

if we set t = log(1 + δ).

Definition: F+(µ, δ) =
[

eδ

(1−δ)1+δ

]
Arkansas Aardvarks win a game with probability 1/3. What is their probability
to have a winning season with n games. By Cherno. inequality, this probability
is smaller than

F+(n/3, 1/2) =

[
e1/2

1.51.5

]3

= (0.89745)n/3 = 0.964577n

For n = 40, this probability is smaller than 0.236307. For n = 100 this is less than
0.027145. For n = 1000, this is smaller than 2.17221.10−16 (which is pretty slim
and shady). Namely, as the number of experiments is increases, the distribution
converges to its expectation, and this converge is exponential.
Theorem: Pr[X < (1− δ)µ] < e−µ.δ

2/2

Definition F−(µ, δ) = e−µ.δ
2/2

Let ∆−(µ, ε) denote the quantity, which is what should be the value of δ, so that
the probability is smaller than ε. We have that

∆−(µ, ε) =

√
2 log 1/ε

µ

.

∆+(µ, ε) <
log(1/ε)

µ
− 1

A more convenient form : Proof

[
e

1 + δ

](1+δ)µ

≤
[

e

1 + 2e− 1

](1+δ)µ

≤ 2−(1+δ)µ

since δ > 2e− 1,
We proove this only for δ ≤ 1/2. For details about the case 1/2 ≤ δ ≤ 2e− 1,



38

Fig. 2: Summary of Chernoff type inequalities

Pr[X > (1 + δ)µ] <
eδ

(1 + δ)(1 + δ)

µ

= exp(µδ − µ(1δ)ln(1 + δ))

The Taylor expansion of ln(1 + δ) is

δ − δ2/2 + δ3/3− δ4/4 ≥ δ − δ2/2

,
for δ ≤ 1, Thus,

Pr[X > (1+δ)µ] < exp(µ(δ−(1+δ)(δ−δ2/2))) = exp(µ(δ−δ+δ2/2−δ2+δ3/2))

≤ exp(µ(−δ2/2 + δ3/2)) ≤ exp(−µδ2/4)

, for δ ≤ 1/2

Application of the Cherno. Inequality Routing in a Parallel
Computer

Let G be a graph of a network, where every node is a processor. The processor
communicate by sending packets on the edges. Let [1, . . . , N] denote be vertices
(i.e., processors) of G, where N = 2n, and G is the hypercube. As such, each
processes is a binary string b1, b2...bn .
We want to investigate the best routing strategy for this topology of network.
We assume that every processor need to send a message to a single other pro-
cessor. This is representation by a permutation π, and we would like to figure
out how to send the permutation and create minimum delay?



39

In our model, every edge has a FIFO queue of the packets it has to transmit.
At every clock tick, one message get sent. All the processors start sending the
packets in their permutation in the same time.

– Pick a random intermediate destination σ(i) from [1, . . . , N]. Packet vi
travels to σ(i).

– Wait till all the packets arrive to their intermediate destination.
– Packet vi travels from σ(i) to its destination d(i).

Theorem : For any deterministic oblivious permutation routing algorithm on a
network of N nodes each of out-degree n, there is a permutation for which the
routing of the permutation takes Ω(

√
N/n) time.

Oblivious here refers to the fact that the routing of packet is determined only by
inspecting only the packet, and without referring to other things in the network.
How do we sent a packet? We use bit fixing. Namely, the packet from the i node,
always go to the current adjacent node that have the first di.erent bit as we scan
the destination string d(i). For example, packet from (0000) going to (1101),
would pass through (1000), (1100), (1101). We assume each edge have a FIFO
queue. The routing algorithm is depicted above.
We analyze only (i) as (iii) follows from the same analysis. In the following, let
pi denote the route taken by vi in (i).

Once a packet vj that travel along a path pj can not leave a path pi , and
then join it again later. Namely, pi ∩ pj is (maybe an empty) path.
Lemma: Let the route of a message c follow the sequence of edges .π = (e1, e2, ..., ek).
Let S be the set of packets whose routes pass through at least one of (e1, ..., ek).
Then, the delay incurred by c is at most |S|.

Proof : A packet in S is said to leave π at that time step at which it traverses
an edge of π for the last time. If a packet if ready to follow edge ej at time t,
we define its lag at time t to be t-j. The lag of c is initially zero, and the delay
incurred by c is its lag when it traverse ek . We will show that each step at which
the lag of c increases by one can be charged to a distinct member of S.
We argue that if the lag of c reaches l+ 1, some packet in S leaves π with lag l
When the lag c increases from l to l + 1, there must be at least one packet (from
S) that wishes to traverse same edge as c at that time step, since otherwise c
would be permitted to traverse this edge and its lag would not increase. Thus, S
contains at least one packet whose lag reach the value l, Let τ be the last time
step at which any packet in S has lag l. Thus there is a packet d ready follow
edge eµ at τ such that τ − µ = l. We argue that some packet of S leaves π at
τ ; this establishes the lemma since once a packet leaves π, it would never join it
again and as such will never again delay c.
Since d is ready to follow eµ at τ , some packet ω. (which may be d itself) in S
follows eµ at time τ . Now ω leaves π at time τ ; if not, some packet will follow
eµ+1 at step µ+ 1 with lag still at l, violating the maximality of τ We charge to
ω the increase in the lag of c from l to l + 1; since ω leaves π, it will never be



40

charged again. Thus, each member of S whose route intersects π . is charge for
at most one delay, establishing the lemma.
Let Hij be an indicator variable that is 1 if pi and pj share an edge, and 0
otherwise. The total delay for vi is at most ≤ Hij . Note, that for a fixed i,
the variables Hi1, ...,HiN are independent (note however, that H11, ...,HNN are
not independent!). For Pi = (e1, ..., ek), let T(e) be the number of packets (i.e.,
paths) that pass through e.

N∑
j=1

Hij ≤
N∑
j=1

T (ej)

and thus

E[

N∑
j=1

Hij ] ≤ E[

k∑
j=1

T (ej)]

Because of symmetry, the variables T (e) have the same distribution for all the
edges of G. On the other hand, the expected length of a path is n/2, there are
N packets, and there are Nn/2 edges. We conclude E[T (e)] = 1. Thus

µ = E[

N∑
j=1

Hij ] ≤ E[

k∑
j=1

T (ej)] = E[|pi|] ≤ n/2

By the cheroff inequality, we have

Pr[
∑
j

Hij > 7n] ≤ Pr[
∑
j

Hij > (1 + 13)µ] < 2−13µ ≤ 2−6n

Since there are n = 2n packets, we know that with the probability ≤ 2−5n all
packets arrive to their temporary destination in a delay of most 7n.
Theorem: Each packet arrives to its destination in ≤ 14n stages, in probability
at least 1 - 1/N (note that this is very conservative).

Application of the Cherno. Inequality Faraway Strings

Consider the Hamming distance between binary strings. It is natural to ask how
many strings length n can one have, such that any pair of them, is of Hamming
distance at least t from each other. Consider two random strings, generated by
picking at each bit randomly and independently. Thus, E[dH(x, y)] = n/2, where
dH(x, y) denote the hamming distance between x and y. In particular, using the
Cherno. inequality, we have that

Pr[dH(x, y) ≤ n/2−∆] ≤ (−2δ2/n).

Next, consider generating M such string, where the value of M would be deter-
mined shortly Clearly, the probability that any pair of strings are at distance at



41

most n/2− δ, is

α < M2exp(−2n2/16n) = M2exp(−n/8).

Thus, for M = exp(n/16), we have that α < 1. We conclude:
There exists a set of exp(n/16) binary strings of length n, such that any pair of
them is at Hamming distance at least n/4 from each other.
This is our first introduction to the beautiful technique known as the probabilistic
method we will hear more about it later in the course.
This result has also interesting interpretation in the Euclidean setting. Indeed,
consider the sphere S of radius

√
n/2 centered at (1/2, 1/2, . . . , 1/2)∈ R2.

Clearly, all the vertices of the binary hypercube {0, 1}n lie on this sphere. As
such, let P be the set of points on S that exists according to Lemma, A pair p, q
of points of P have Euclidean distance at least

√
dH(p, q) =

√
n4 =

√
n/2 from

each other. We conclude:
Consider the unit hypersphere S in Rn. The sphere S contains a set Q of points,
such that each pair of points is at (Euclidean) distance at least one from each
other, and |Q| > exp(n/16).

Chernoff Bounds III

F+(µ, δ) <
(

eδ

(1+δ)(1+δ)

µ)
<
(

e
(1+δ)

)(1+δ)µ

if δ < 2e− 1, then F+(µ, δ) < 2−(1+δ)µ

∆+(µ, δ) = (log2 1/ε)/µ− 1

Theorem:- For 0 < δ ≤ µ

F+[µ, δ) ≤ e−C(u)µδ2 = ε

C(u) = (1+u)ln(i+u)−u
u2

Then : if u = 2e− 1, this gives
F+(µ, δ) < e−µδ

2/4

and thus ∆+(µ, ε) <
√

(4ln(1/ε))/µ

Proof :- Lemma 1 is a variant of this theorem with proof

0 < δ ≤ 1, F+(µ, δ) < e−µδ
2/3

example : n Balls into n bins, X = # balls in last bin
Pr(X1 > m) ≤ 1/n2

Chernoff bound : m = 1 +∆+(1, 1/n2),



42

using the above estimate (for big δ)
⇒ ∆+(1, 1/n2) < 2 log2 n− 1
Better value would be δ = 1.5lnn

lnlnn in the original F+.
Hint :- simple formula for ∆+, ∆− ok if µ = Ω(log n)
example :- [ set boundry] A ∈ 0, 1nxn

Probability :- Find b ∈ −1, 1n s.t mod Ab∞ is minimised

Detemine each b ∈ −1, 1n randomly and independently with Pi(b, 1) = 1/2
X = aj ⇒ E[x] = 0

Pr(|x− 0| ≥ 4
√
nlnn) ≤ (2/n2)

Routing on a parellel computer :- Network of N-processor connected by
channels, change of each process is (# outgoing/ is ports) = d.

3- dimentional binning Hyper cubes.
n- dimentional N = 2n (no. of modes) ⇒ n = log2N
#edges = n.2n−1 undirected
= 2.n2n−1 (directed) = n.2n

nodes V1, V2......VN
π ∈ Sn routing request : emergency processor is a source and distorton of exactly

i
Packet−−−−→ π(i) [route only depends on origin and destination]

i
occupy−−−−→ π(i)

Theorem: For any deterministic routing algorithm of a network of N-mode of
in/out d, these is one insource a permutation requiring Ω(

√
N/d) steps (Multi-

port mode).

Ω(
√
N/d) in single port module

Proof:

t

��   ''−→
V1

−→
V2

−→
V3

t destination graph for bt :

Sk =

{
set of edges

b ≥ k route to k

V (Sk) = {setof ∗ ∗ ∗ incidenttoedgesins(k)
t ≥ V (Sn) if k ≤ N/d,Assumek ≤ N/d

|V − v(Sk)| < (K − 1)(d− 1)/(|V (Sk)|)
Proof : ε ∈ V − V (Sk)
Path ε, V1, V2......Ve to t in b.



43

Vi frost mode on this path in V (Sk).

W• // •V1
//// •V2

//// •t ∈ V (Sk)

edge(Vi−1, V1) is at most (K-1) ****
⇒ at most (k-1)(d-1) starting points w hit vi as first node.

|V − V (Sk)| ≤ (k − 1)d|V (Sk)|

N = V (Sk) + |V − V (Sk)|

≤ |V (Sk)|+ (k − 1)(d− 1)|V (Sk)|

≤ 2[1 + (k − 1)(d− 1)|Sk|]

Sk ≥
N

2[1 + (k − 1)(d− 1)]

Parellel routing (real width to be mentioned)

routing ********
in/out degree ≤ d.
∃ at most (k-1)d nodes with charged.
|Sk| ≥ N

2[1+(k−1)(d)] ≥
N

2.k.(d) ≤ |Sk|

Per destination graph, we have at least ≥ N/2kd k-congested edges together

we have
∑N
n=1N/2kd = N2/2kd

E = Min no of edges ≤ Nd

Average no of marks per edges = N2/2kd/Nd = N/2kd2 ∃ edge with ≥ N/2kd2

marks (k-congested)
Pick k such that K = N/2kd2,K =

√
N/2d2

**************** Si 7→ ticomplementedittopermutationoutingrequest *****

Randomized approach for parellel routing :-

n-dimentional hypercube **** route depends only on diffrention ⇒ graph is a
trees

Bit finding routing protocol:-

******* for each edge, no of nodes = 2d−1



44

Routing Algorithm

Phase 1 : Pick for each i, a random intermediate destination σ ∈ 0, 1, 2, ...N − 1
for N-Hypercube
*** Vi goes from σi to the original desination di. i ↔ di one to one (injective)
into (it is bijective) use bit forming protocolformate sure all routes and shortest
routes
warning :- i⇒ σi need not be 1-to-1 (n- balls, m-bins)
for each outing edge we have a better, though we can send out 1 *** at a time
(more *** conjunction)
Use FIFO, two **+ to maintain there mutula order.
Lemma : Let the routes of path Vi be (e1, e2, e3......en)
S:= Set of paths other than Vi that use at least of the ej , i = 1, 2...k
The the delay inccoured by Viis ≤ |S|
Proof :- *****
V have e1 in step t when step t is the least step in which V used one of the ej .
V uses one of the ej
if paths V want to take ej at time t, we say lag of V at time t is (t - j) lag.
If for our path, lag from l to l+1 increases from l to l+1. Let t’ be the last time
lags whole a.
Let t’ be the last time lags where lag l path moves. such a *** must *** ei, it is
uniquely clustered.
eachpacket is charged one unit.

1.1 Single port module(to be added)

Hij =

{
1 if ei and ej share at least one edge

0 otherwise

⇒ change of Vi ≤
∑
j 6=iHij

T(e) = RV that gives no of routes in passing sequences σ using edge

⇒
∑e
j 6=1Hij ≤

∑k
j 6=1 T (ej)

⇒ E[
∑
j 6=1Hij ] ≤

∑k
j=1E[T (ej)] ≤ n/2

avg. no of edge ∗ ∗ ∗ path in Hypercube = n/2

Chernoff bound:-

Pr[
∑
i

Jij ≥ σn] ≤ 2−σn

Pr[Any packet delay ≥ σn] ≤ 2−5n

⇒ Phase one endes in ≤ n+ σn steps with prob ≥ 1− (1/32)n

(trace **** ) This is for multiport model.



45

A wiring problem

Hypercube: having more than two matrices wins can only run vertically or hor-
izontally.
Problem: Find a layout of the Nets **** which minimizes the width of man
bounding.
For net i, variable Xi0 and Xi1

IMAGE***
b bounding : Tb0 = { i; i passes through b if Xi0 = 1
Tb1{ i ; 1 passes through b if Xi1 = 1
⇒ Integer program ⇒ integer linear problem, minimize w , the width of the
boudries; where

Xi0, Xi1 ∈ 0, 1

Xi0 +Xi1 = 1

∑
i∈Tb0

Xi0 +
∑
i∈Tb1

Xi1 ≤ w

Relaxation: 0 ≤ Xi0, Xi1 < 1 (Randomized rounding)
X̂i0, X̂i1 are functional solutions.
Ŵ solution for Lp.
Wopt solution forILP
Wayout: randomized rounding:
Set X̂i0 = 1 with prob X̂i0

Theorem : Let 0 < ε < 1, this with probability ≥ (1− ε),
the global wiring ’S’ produced by a randomized rouding of the relaxed solution
algorithm, statistics

Ws ≤ Ŵ .(1 +∆+(Ŵ , ε/2n))

Ŵ ≤W

Ŵ =

optimal fractional solution(reduced)



46

A wiring problem :-

Proof : Consider boundry b∑
i∈Ti0 X̂i0 +

∑
i∈Ti0 Xi1 ≤ Ŵ

Ws(b) = # wires crossing through boundry b∑
i∈Ti0

X̄i0 +
∑
i∈Ti1

X̄i1

E[Ws(b)] = E[
∑
i∈Ti0

X̄i0] + E[
∑
i∈Ti1

X̄i1]

E[Ws(b)] =
∑
i∈Ti0

E[X̄i0] +
∑
i∈Ti1

E[X̄i1]

=
∑
i∈Ti0

E[X̂i0] +
∑
i∈Ti1

E[X̂i1] ≤ Ŵ

.
Prob[Ws(b) > ŵ(1 +∆+(Ŵ , ε/2n))] ≤ ε/2n

Prob[any boundry > ......] ≤ 2n.ε/2n ≤ ε

If Ŵ is small then estimate is not very good.
if Ŵ is big ( at least log n ) then estimate is very good.

Martin Gales∑n
i=0Xi

In book, general treatment using sequences of probability spaces.
adding additional probability (a called filters)
Xi lines in a probability space which is a ***** of probability space of Xi−1.

Pr[X = x | A]

Pr[X = x | Y = y] =
Pr[X = x

⋂
Y = y]

Pr[Y = y]

= P (x, y)/
∑
x

P (x, y)

E[X | Y = y] =

∑
xX.P (x, y)∑
x P (x, y)

lemma :E[E[X | Y ]] = E[X]
lemma :E[Y.E[X | Y ]] = E[X.Y ]



47

Definiton:- A sequence X0, X1, .... of R.V is called a Marting gale sequence if
Vi > 0 E[Xi | X0, X1, ...Xi−1] = Xi+1

e.g. ai bet in ith step X0 starting capital then Xi is capital after bet i.

Lemma 1. :- Let X0, X1, X2..... be a martin gale, Then Vi ≥ 0, E[Xi] = E[X0]
[E[Xi] = Xi + ...]
definition: Let X0, X1...beMartingale
Yi = Xi −Xi−1(ThenXi = X0 +

∑i
j=1 Yj)

A sequence Y1, Y2... of Rvs is called a Martin gale difference sequence if, ∀i ≥ 1
E[Yi, | Y1....Yi−1] = 0
Super and sub Martingale sub-optimal for ******

Martin Que

Martin Gales :- RV’s X0, X1, ......Xi−1, Xi

E[Xi | X0, .......Xi−1 = Xi−1]
= .....
= X0

Theorem: ( Kolomogorov - dooll’s inequality) :- let X0, X1......
be a martingal λ > 0
Thus Pr[min0≤i≤nXi ≥ λ] ≤ E[(Xn)]/λ
Proove meds to be added.
Theorem ( Azuma’s Inequality ):- let X0, X1... be a Martingals such that
∀x|Xk −Xk−1| ≤ Ck(Ckmaydependonk)

Then ∀t > 0and∀λ > 0 : − Pr[|Xt −X0 ≥ λ|] ≤ 2− e
− λ2

2
∑t
k=1

C2
k

analogus to chebyshev inequality

Corollary : C does not depend on k i.e. |Xk −Xk−1| ≤ C.
Pr[|Xt −X0| ≥ λC

√
t] ≤ 2.e−λ

2/2

This is also called as the methods of small differences.

Definition : f : D1xD2x......Dn → IRn− aryfunctionf [n− aryfunction]

satisfies the Lips duitz condition if for all
(X1, X2, ......Xn) ∈ πDi, anyi ∈ [n]andany

yi ∈ Di|f(X1, X2....Xi−1, yi, Xi+1.....Xn)−f(X1, X2.....Xi−1, Xi, Xi+ 1.....Xn)| ≤
1

RVs X1, X2......Xn, f Lips duitz . Define
Y0 = E[f(X1, X2....Xn)]



48

for i = 1, 2, .....n
Yi = E[f(x1..Xn) | X1....Xi]
⇒ |Yi − Yi−1| ≤ 1, so can apply azuma’s inequlaity
Application : Occupance problem - balls into bins.
(1) Throw m balls into n bins :- Z = number of empty bins in the end.
Xi = bin for balls i Z = f(X1, X2.....Xn), f is Lipz duitz

⇒ Pr[|Z − E(2)| ≤ λ] ≤ 2.e−λ
2/m above corollary.

(2) Theorem : Let r = m/n , Z as above then,
µ = E[Z] = n(1− 1/n)m ≈ n.e−m/n
≈ n.e−r

and for λ > 0, Pr[|Z −N | ≥ λ] ≤ 2.e
−λ

2(n−1/2)

n2−µ2

r = 1 ,e−r = 36.79r = 2 ,e−r = 13.5 r = 3 ,e−r = 4.98 Proof :- (2nd part ) Z as
above Zt = E[Z | t− 1ballshasbeenthrown]
The Z ′ts use matin gale.

Z( Y ,t ) =E[Z | Y binsareemptyattimet]
= Y (1− 1/n)m−t

1/t = # empty bins at time t0.
Zt−1 = Z(Yt−1, t− 1) = Yt−1(1− 1/n)m−t+1

In step t, two possibilities
(1) tth ball enters currently all the non empty bin, this with probability =
1− Yt−1/n
Then YE = Yt−1 and
Zt = Z(Yt, t) = Z(Yt−1, t) = Yt−1(1− 1/n)
(2) tth ball → currently empty bin, Prob for this = Yt−1/n Then Yt = Yt−1 and
Zt = Z(Yt, t) = Z(Yt−1, t) = (Yt−1 − 1)t−1(1− 1/n)m−t

RV δ = Zt − Zt−1

To show that δt s are small - 2 cases
(1) with prob : 1− Yt−1/n, δt is
δ0 = Yt−1(1− 1/n)1m− t− Yt−1(1− Yn)m−t+1

(2)withprobYt−1/n, δtis
δ1 = (Yt−1 − 1)(1− Yn)m−t − Yt−1(1− Yn)m−t+1

= −(1− Yt−1/n)(1− Yn)m−t

−(1− 1/n)m−t ≤ δt ≤ (1− Yn)m−t

Thus for t = 1,2,.... m
Ct = (1− 1/n)m−t

⇒ |Zt − Zt−1| ≤ Ct∑m
t=1 C

2
t = 1− (1− Yn)2m/1− (1− Yn)2 = n2−µ2

2n−1

Pr[|2− µ| ≥ λ ≤ 2.e−λ
2/2(n2−µ2)/(2n−1)]

≤ 2.exp(−λ2n− 1/2/(n2 − µ2))
For r large, this tail bound converges to 2.exp(−λ2/n(1− e1−2r))

estimate from normal distribution



49

2.exp(− λ2er

2n(1− e−r)
) = 2.exp(− λ2e2

n.2(1− e−r)
)

r = 1 1.1565 2.1501
r = 2 1.0186 4.2728
r = 3 1.0025 38.1711

Probability Method

Existence proof, some has efficient construction
(a ) set balancing :- Vi ∈ 0, 1n → where V1 are the charachteristic vector
W ∈ −1, 1n

∀ : ‖WVi‖∞ ≤ 4
√
nlm

Better argument : t
√
n (b) Gave two Evaluation:-

# have = 22k = 4k.
certificate of winning of the size ≤ 2k.
Probablistically n2.0793 (roughly)
(c) Max - cat : G ( V , E) unidirectional simple graph
V = V1 ⊕ V2|CV 1V 2| ≥ m/2
Min−cut
minstcut = Man. Flow

Stoer Wagner Algorithm

Randomized Flag :
∀v ∈ V : Put v into V1, V2 with prob 1/2.
ev, w Prob (e is in cut) = Y2

E[|CV 1V 2|] = m.1/2 = m/2

K-MAX SAT

x,y,z ... boolean variable
x̄, ȳ, z̄...Negationofvariable
CNF = F (X1, X2, ....Xn) = C1 ∧ C2, C3 ∧ C5

Ci = (X̄i1 ∨Xi2 ∨ ..... ∨ x2
t)

F (X) = X ∧ X̂

K-MAT-SAT (K literals)

∀i set Xi to v with prob 1/2
Prob(clause Ci) is unsatisfied.
E[#satisfied clauses] ≥

∑t
i=1(1− 2)−ki



50

≥ t/2, t = # classes
How to do deterministically??

Approximation Algorithm

A(I) = Approximate on Instance I
opt( I) =
0 ≤ A(I)/opt(I)2 ≤ 1
Pitch the lowest bound for all
Minimisation Problem → denominator at least as big as Numerator
Minimisation Problem→ 1 over Numerator

Other Solution

Zj ∈ 0, 1 for classes cj
yi ∈ 0, 1 for variable Xi

Maximise
∑t
j−1 Zj ,∀i, j, Zj , yi ∈ 0, 1

∀j,
∑
x̄l∈cj Yl +

∑
x̄l∈cj (1− yl) ≥ Zj

ILP ⇒ X̂i, X̂j ∈ [0, 1].∑t
j=1 Ẑj opt integral solution

Show : With randomised rounding ≥ (1 − 1/e)
∑t
j−1 Ẑj clauses are satisfied in

Proof : Let Bk = 1− (1− 1/k)k

Claim: Prob that clause Cj with k literals is satisfied by randomised **** is

≥ βkẐj
Since β ≥ (1− 1/e) this proves the claim.
w.log Cj = Xi ∨X2.... ∨Xk

It is unsatisfied with prob
∏
i=1(1− yi)

Its satisfied with probing ≥ 1−
∏k
i=k(1− yi)

This is smallest if yi’s are as small as possible .∑k
i=1 = Ẑj and all are equal.

i.eŶi = Ẑj/k

Thus it satisfies to show 1−
∏k
i=1(1− 2/k) ≥ βkZ.

Z ∈ [0, 1]
This function is concave .


