
Praktikum Algorithmen-Entwurf (Teil 5) 12.11.2012 1

Matchings in graphs

Let G = (V,E) be an undirected graph. A matching of G is a subset M ⊆ E of the edges
such that no two edges of M share an adjacent node. A matching M is called maximal, if
G doesn’t have a larger matching M ′ ⊃ M . A matching M is called maximum matching

if G doesn’t have a matchingM ′ such that |M ′| > |M |. We are interested in an algorithm
which, given a graph, efficiently computes a maximum matching.

(a) Maximal matching (b) Maximum matching

Matching problems occur in practice mostly in form of assignment problems. An
example could be the assignment of professors to courses, if each professor wants to be
in charge of at most one course: the nodes of the graph represent the professors and the
courses. An edge between a professor and a course indicates that the professor is able
to give the lecture of that course. A maximum matching corresponds to an assignment
of professors to courses such that as much courses as possible can be given.

For a graph G = (V,E) and a matching M ⊆ E we call the edges of M matched,
while edges of E\M are called unmatched. A node is called matched if one of its incident
edges is matched, otherwise it is called free. A helpful concept is that of alternating and
augmenting paths w.r.t. a matching M :

(i) A simple path v0, v1, . . . , vr is called alternating, if the edges (vi−1, vi) alternate
between being part of M and being part of E \M .

(ii) An alternating path is called augmenting, if the first and the last edge of the path
are unmatched such that the path can’t be extended (i.e., the first and the last
node of the path are free).

Keep in mind that an augmenting path can also consist of a single unmatched edge
connecting two free nodes.

It is easy to see that a matching M can be enlarged to a matching M ′ by using
an augfmenting path: if the matched edges of the path are removed from M and the
unmatched edges are added to M , we obtain a matching whose cardinality is larger by
exactly one compared to M . This process is called inverting an augmenting path. The
matching (b) illustrated above can be obtained from the matching (a) by inverting such
an augmenting path.

Satz 1 A matching M of G = (V,E) is a maximum matching if and only if there is no

augmenting path.

Beweis: The claim of this proposition is equivalent to: A matchingM is not a maximum
matching if and only if there is an augmenting path. We prove this claim. The direction
⇐ obviously is correct. It remains to prove the direction ⇒.

Praktikum Algorithmen-Entwurf (Teil 5) 12.11.2012 2

Let M be a matching in G which isn’t a maximum matching. Let M ′ be a maximum
matching in G. Consider the graph G′ = (V,M ⊕ M ′) where M ⊕ M ′ = (M ∪ M ′) \
(M ∩ M ′) denotes the symmetric difference of M and M ′. It is easy to see that each
node of G′ has degree at most two. Therefore G′ consists of a collection of simple paths
and cycles which are alternating w.r.t. M . M ′ can be obtained from M by inverting all
these paths and cycles. Since inverting a cycle or paths that are not augmenting can’t
increase the matching, there must be |M ′| − |M | ≥ 1 augmenting paths (w.r.t. M). ⊓⊔

From this proposition even follows that G contains exactly |M ′| − |M | node disjoint
augmenting paths where M ′ is a maximum matching. Since |M | matched edges can be
distributed over these |M ′| − |M | augmenting paths we also find that there must be an
augmenting path of length at most 2 · ⌊|M |/(|M ′| − |M |)⌋+ 1.

This proposition also shows that we can find a maximum matching by starting with
an arbitrary matching M , e.g. M = ∅, and iteratively search for and invert augmenting
paths until no augmenting path exists anymore. We only have to clarify how exactly we
should search for augmenting paths.

It turns out to be pretty beneficial to not simply search for an arbitrary augmenting
path but for a maximal set of shortest augmenting paths. LetM be the current matching
and let ℓ be the length (number of edges) of a shortest augmenting path w.r.t. M . Then
we search for a set p1, p2, . . . , pr of pairwise node disjoint augmenting paths of length ℓ
such there are no more such node disjoint paths exist, and invert all these paths p1, p2,
. . . , pr. The next section describes this procedure for bipartite graphs in more detail.

1 Matchings in bipartite graphs

A graph G = (V,E) is bipartite if its set of nodes V can be divided into two disjoint
subsets V1 and V2 such that each edge is adjacent to one node of V1 and one node of
V2. Many graphs which model assignment problems in practice are indeed bipartite, for
instance the assignment problem of professors and courses mentioned above.

In bipartite graphs the search for a maximal set of node disjoint augmenting paths
utilizing a simultaneous breadth first search followed by a depth first search can be
efficiently realized in linear time O(|V |+ |E|) (algorithm of Hopcroft and Karp, 1973).
We describe this algorithm in the following:

• set M := ∅

• while (true) do
simultaneous breadth first search;
if (there is an augmenting path)
then depth first search for node disjoint shortest augmenting paths;
else break;

• output the maximum matching M

Praktikum Algorithmen-Entwurf (Teil 5) 12.11.2012 3

1.1 Simultaneous breadth first search

Given a matching M the simultaneous BFS is used in order to decide if there are
augmenting paths at all, as well as assigning level values to the nodes which are used
by the following DFS to find a maximal set of shortest node disjoint augmenting paths.

Each path in a bipartite graph G alternately visits nodes of V1 and V2. Since the
length of each augmenting path is odd, it starts at a free node in V1 and ends at a free
node in V2. In doing so they use an unmatched edge when going from V1 to V2 and a
matched edge when going from V2 to V1. We assign to each node v a value level[v] which
is initialized by −1 at the beginning of each simultaneous BFS, and which is supposed
to represent the length of a shortest augmenting path from some free node of V1 to v at
the end of the simultaneous BFS.

To calculate the length of a shortest augmenting path, we start the BFS at all free
nodes of V1 at the same time: hence, simultaneous BFS. To do so, we don’t just initialize
the queue with a single node at the beginning but add all free nodes of V1 to the queue.
Furthermore, we set level[v] = 0 for each of these nodes v.

The BFS is divided into phases which alternate between being of type 1 or type 2:

Type 1: at the zu beginning of the phase the nodes in the queue are a subset of V1;
during the phase each of these nodes v are popped from the queue, and all un-
matched incident edges e = {v, w} are considered: if w wasn’t visited before, then
we set level[w] = level[v] + 1 and append w at the end of the queue; at the end of
the phase the queue only contains nodes of V2.

Type 2: at the zu beginning of the phase the nodes in the queue are a subset of V2;
during the phase each of these nodes v are popped from the queue, and all mat-

ched incident edges e = {v, w} are considered: if w wasn’t visited before, then we
set level[w] = level[v] + 1 and append w at the end of the queue; at the end of the
phase the queue only contains nodes of V1.

The BFS terminates, when the queue contains a free node w after a phase of type 1
(then there is an augmenting path of length level[w] which ends at w, and the DFS is
started), or when the queue is empty (then no augmenting path exists and the current
matching is a maximum matching).

1.2 Depth first search for augmenting paths

If during the simultaneous BFS after ℓ phases a free node of V2 was reached, then we
now that there is at least one shortest augmenting path of length ℓ, and we want to
calculate a maximal set of shortest augmenting paths using DFS. To be more precise,
we won’t use just a single DFS but for each free node v of V1 one corresponding DFS to
find an augmenting path of length ℓ starting at v (if possible). During these DFSs we
only consider edges which satisfy the following properties (all other edges are ignored):

• If the current node u is in V1, then we consider the edges e = {u, w} where
e ∈ E \M and level[w] = level[u] + 1.

• If the current node u is in V2, then we consider the edges e = {u, w} where e ∈ M
and level[w] = level[u] + 1.

Praktikum Algorithmen-Entwurf (Teil 5) 12.11.2012 4

If such a DFS starting at a free node v ∈ V1 reaches a free node w ∈ V2, then the
corresponding path from v to w is a shortest augmenting path. This path is immediately
inverted (edges which are in M are removed from M , and edges which are not in M
are added to M). Furthermore, we lock all nodes u of this path by setting level[u] = −1
to prevent following DFSs from using these already used nodes. Then the next DFS is
started at the next free node of V1. If a DFS reaches a dead-end, that is, if the current
DFS wasn’t able to find an augmenting path and the current node u doesn’t have an
edge which satisfies one of the properties mentioned above, then we set level[u] = −1
and we continue at the parent node of u. The level values of the nodes are only modified
if an augmenting path is found or if a dead-end is reached: if that happens, setting the
level values of the nodes in question to −1 lets further DFSs ignore these nodes.

1.3 Analysis

An execution of the body of the while-loop is called iteration. As Hopcroft and Karp
showed, we only have to do O(

√

|V |) iterations. (Proof idea: Each iteration increases

the length of the shortest augmenting path by at least 1. After at most
√

|V | phases

each augmenting path has length at least
√

|V |. Therefore, each path of M ⊕ M ′ has

length at least
√

|V |, where M is the current matching and M ′ is an arbitrary maximum

matching. This implies |M ′|−|M | ≤
√

|V | since these paths are node disjoint. Therefore,

at most
√

|V | augmentations can occur from this point on, hence, the remaining number

of phases is at most
√

|V |.)
Each iteration consists of one simultaneous BFS and, if the current matching isn’t

a maximum matching, of multiple DFSs. The BFS alone as well as all DFSs together
have running time in O(|V |+ |E|), respectively. Therefore, the total running time of the
algorithm is O(

√

|V ||E|) (assuming we remove all isolated nodes at the beginning).

1.4 Example for the execution of one iteration

The bipartite graph G = (V1 ∪ V2, E) with V1 = {1, 2, 3, 4, 5, 6} and V2 = {a, b, c, d, e, f}
as well as the current matching M are given as follows (matched edges are bold, free
nodes are bold-framed):

2 31 4 5

a c d

1

e

3

f

632

00

1 1 1

22 2

3

-1

3

b

The numbers outside the nodes are the respective level values which are obtained by the
simultaneous BFS. After the third phase of the simultaneous BFS the nodes c, e, and f

Praktikum Algorithmen-Entwurf (Teil 5) 12.11.2012 5

are in the queue. Since two of them (c and e) are free, the simultaneous BFS terminates,
and for each free node of V1, i.e. 1 and 4, a DFS is started. Hereby only the following
edges are considered:

1 4

2 3 6

a b d

c e f

Level 2:

Level 1:

Level 0:

Level 3:

For example the paths 1, a, 2, c, as well as 4, b, 3, e can be found which constitute a
maximal set of node disjoint shortest augmenting paths. (Also the path 4, b, 3, c alone
would be such a set.) By inverting these two paths we obtain the following matching
which already is a maximum matching.

2 311

b

4 5

a c d e f

632

