Effiziente Algorithmen und Datenstrukturen I

Aufgabe 1 (10 Punkte)

Given the key of an element x in an n-node binary search tree (choose a BST with suitable properties) and a natural number i, show how to augment the tree to find the i-th successor of x in the linear order of the tree in $O(\log n)$ time.

Aufgabe 2 (10 Punkte)

Suppose that we wish to keep track of a point of maximum overlap in a set of itervals - a point that has the largest number of intervals in the set of intervals overlapping it.

1. Show that there will always be a point of maximum overlap which is an endpoint of one of the segments.
2. Design a data structure that efficiently supports the operations INSERT, DELETE, and FIND_POM which are defined as follows:
(a) $\operatorname{INSERT}(i, j)$: Inserts the interval $[i, j]$ in the set of intervals.
(b) DELETE (i, j) : Deletes the interval $[i, j]$ from the set of intervals.
(c) FIND_POM: Returns a point of maximum overlap.
(Hint: Keep a red-black tree of all the endpoints. Associate a value of +1 with each left endpoint, and associate a value of -1 with each right endpoint. Augment each node of the tree with some extra information to maintain the point of maximum overlap.)

Aufgabe 3 (10 Punkte)

Suggest how to use a skip list so that given a pointer to a node with key x, we can return a pointer to a node with key $y<x$ in $O(\log k)$ expected time where k is the distance between the nodes with values y and x in L_{0}.

