Efficient Algorithms and Data Structures II

Harald Räcke

Fakultät für Informatik
TU München
http://www14.in.tum.de/lehre/2013SS/ea/
Summer Term 2013

70 EADS II
O Harald Räcke

Part I

Organizational Matters

- Modul: IN2004
- Name: "Efficient Algorithms and Data Structures II" "Effiziente Algorithmen und Datenstrukturen II"
- ECTS: 8 Credit points
- Lectures:
- 4 SWS

Mon 10:15-11:45 (Room 00.04.011, HS2)
Thu 10:15-11:45 (Room 00.06.011, HS3)

- Webpage: http://www14.in.tum.de/1ehre/2013SS/ea/

Part I

Organizational Matters

- Harald Räcke
- Email: raecke@in.tum.de
- Room: 03.09.044
- Office hours: (per appointment)

Tutorials

- Tutor:
- Chintan Shah
- chintan.shah@tum.de
- Room: 03.09.059
- Office hours: Wed 11:30-12:30
- Room: 01.06.020
- Time: Tue 14:15-15:45

Assessment

- Assignment Sheets:
- An assignment sheet is usually made available on Wednesday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Thursday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial on Tuesday.
- The first one will be out on Wednesday, 24 April.

Assessment

- In order to pass the module you need to pass an exam.
- Exam:
- 3 hours
- Date will be announced shortly.
- There are no resources allowed, apart from a hand-written piece of paper (A4).
- Answers should be given in English, but German is also accepted.

1 Contents

Part 1: Linear Programming

Part 2: Approximation Algorithms

2 Literatur

固 V. Chvatal: Linear Programming, Freeman, 1983
R. Seidel: Skript Optimierung, 1996D. Bertsimas and J.N. Tsitsiklis: Introduction to Linear Optimization, Athena Scientific, 1997

國 Vijay V. Vazirani:
Approximation Algorithms, Springer 2001

Part II

Linear Programming

Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{\epsilon})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
$\Rightarrow 442$ €
- only brew beer: 32 barrels of beer $\Rightarrow 736$ €
- 7.5 barrels ale, 29.5 barrels beer $\Rightarrow 776$ €
- 12 barrels ale, 28 barrels beer $\Rightarrow 800$ €

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

$$
\max c^{t} x
$$

$$
\text { s.t. } \quad A x=b
$$

$$
x \geq 0
$$

Standard Form LPs

Original LP

$\max 13 a$	$+23 b$
s.t. $\quad 5 a$	$+15 b \leq 480$
$4 a$	$+4 b \leq 160$
$35 a$	$+20 b \leq 1190$
	$a, b \leq 0$

Standard Form

Add a slack variable to every constraint.

$$
\begin{array}{rlrlll}
\max 13 a & +23 b & & & \\
& =480 \\
\text { s.t. } 5 a & +15 b+s_{c} & & \\
4 a & +4 b \\
35 a & +20 b & & & s_{h} & \\
& =160 \\
a & , & b & s_{c} & =1190 \\
& s_{h}, & s_{m} & \geq 0
\end{array}
$$

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$
- output: numbers x_{j}
- $n=$ \#decision variables, $m=$ \#constraints
- maximize linear objective function subject to linear inequalities

$$
\begin{aligned}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} 1 \leq i \leq m \\
& x_{j} \geq 0 \quad 1 \leq j \leq n
\end{aligned}
$$

Standard Form LPs

There are different standard forms:

standard maximization form $\max c^{t} x$

$$
\text { s.t. } A x \leq b
$$

$$
x \geq 0
$$

$$
\begin{aligned}
\min & c^{t} x \\
\text { s.t. } & A x=b \\
& x>0
\end{aligned}
$$

standard minimization form $\min c^{t} x$
s.t. $A x \geq b$
$x \geq 0$

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
a-3 b+5 c \leq 12 \Longrightarrow \begin{aligned}
a-3 b+5 c+s & =12 \\
s & \geq 0
\end{aligned}
$$

- greater or equal to equality:

$$
a-3 b+5 c \geq 12 \Rightarrow \begin{aligned}
a-3 b+5 c-s & =12 \\
s & \geq 0
\end{aligned}
$$

- min to max

$$
\min a-3 b+5 c \Rightarrow \max -a+3 b-5 c
$$

Standard Form LPs

Observations:

- a linear program does not contain $x^{2}, \cos (x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \leq 12 \\
-a+3 b-5 c \leq-12
\end{gathered}
$$

- equality to greater or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \geq 12 \\
-a+3 b-5 c \geq-12
\end{gathered}
$$

- unrestricted to nonnegative:

$$
x \text { unrestricted } \Rightarrow x=x^{+}-x^{-}, x^{+} \geq 0, x^{-} \geq 0
$$

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{t} x \geq \alpha$?

Questions

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Geometry of Linear Programming

Convex Sets

A set $S \subseteq \mathbb{R}$ is convex if for all $x, y \in S$ also $\lambda x+(1-\lambda) y \in S$ for all $0 \leq \lambda \leq 1$.

A point in $x \in S$ that can't be written as a convex combination of two other points in the set is called a vertex.

Geometry of Linear Programming

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
- $c^{t} x<\infty$ for all $x \in P$ (for maximization problems)
- $c^{t} x>-\infty$ for all $x \in P$ (for minimization problems)

Observation

The feasible region of an LP is a convex set.

Proof

intersections of convex sets are convex...

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0
- $x+\lambda^{\prime} d$ is feasible. Since $A\left(x+\lambda^{\prime} d\right)=b$ and $x+\lambda^{\prime} d \geq 0$
- $x+\lambda^{\prime} d$ has one more zero-component ($d_{k}=0$ for $x_{k}=0$ as $x \pm d \in P)$
- $c^{t} x^{\prime}=c^{t}\left(x+\lambda^{\prime} d\right)=c^{t} x+\lambda^{\prime} c^{t} d \geq c^{t} x$

Case 2. [$d_{j} \geq 0$ for all j and $c^{t} d>0$]

- $x+\lambda d$ is feasible for all $\lambda \geq 0$ since $A(x+\lambda d)=b$ and $x+\lambda d \geq x \geq 0$
- as $\lambda \rightarrow \infty, c^{t}(x+\lambda d) \rightarrow \infty$ as $c^{t} d>0$

Notation

Suppose $B \subseteq\{1 \ldots n\}$ is a set of column-indices. Define A_{B} as the subset of columns of A indexed by B.

Theorem 3
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is a vertex iff A_{B} has linearly independent columns.

Theorem 3

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is a vertex iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components
- now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not a vertex

Theorem 3
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is a vertex iff A_{B} has linearly independent columns.

Proof (\Leftarrow)

- assume x is not a vertex
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$
- $A_{B^{\prime}}$ has linearly dependent columns as $A d=0$
$d_{j}=0$ for all j with $x_{j}>0$ as $x \pm d \geq 0$
- Hence, $B^{\prime} \subseteq B, A_{B^{\prime}}$ is sub-matrix of A_{B}

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then for all x with $A_{i} x=b_{i}$ we also have $A_{1} x=b_{1}$; hence the first constraint is superfluous
C2 if $b_{1} \neq \sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then the LP is infeasible, since for all x that fulfill constraints A_{2}, \ldots, A_{m} we have

$$
A_{1} x=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i} x=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i} \neq b_{1}
$$

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

Basic Feasible Solutions

$x \in \mathbb{R}^{n}$ is called basic solution (Basislösung) if $A x=b$ and $\operatorname{rank}\left(A_{J}\right)=|J|$ where $J=\left\{j \mid x_{j} \neq 0\right\}$;
x is a basic feasible solution (gültige Basislösung) if in addition $x \geq 0$.

A basis (Basis) is an index set $B \subseteq\{1, \ldots, n\}$ with $\operatorname{rank}\left(A_{B}\right)=m$ and $|B|=m$.
$x \in \mathbb{R}^{n}$ with $A_{B} x=b$ and $x_{j}=0$ for all $j \notin B$ is the basic
solution associated to basis B (die zu B assoziierte Basislösung)

Theorem 4
Given $P=\{x \mid A x=b, x \geq 0\} . x$ is a vertex iff there exists $B \subseteq\{1, \ldots, n\}$ with $|B|=m$ and

- A_{B} is non-singular
- $x_{B}=A_{B}^{-1} b \geq 0$
- $x_{N}=0$
where $N=\{1, \ldots, n\} \backslash B$.

Proof
Take $B=\left\{j \mid x_{j}>0\right\}$ and augment with linearly independent columns until $|B|=m$; always possible since $\operatorname{rank}(A)=m$.

Algebraic View

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{t} x \geq \alpha$?

Questions:

- Is LP in NP? yes!
- Is LP in co-NP?
- Is LP in P?

Proof:

- Given a basis B we can compute the associated basis solution by calculating $A_{B}^{-1} b$ in polynomial time; then we can also compute the profit.

4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947]
Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

Observation

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m} \cdot \operatorname{poly}(n, m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

4 Simplex Algorithm

| $\max 13 a+23 b$ | | |
| ---: | :--- | ---: | :--- |
| s.t. $\quad 5 a+15 b+s_{c}$ | | $=480$ |
| $4 a+4 b+s_{h} \quad$ | $=160$ | |
| $35 a+20 b$ | | |
| $a, \quad b, s_{c}, s_{h}, s_{m}$ | $=1190$ | |
| | | |

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $13 a+23 b$ | $-Z$ | $=0$ |
| $5 a+15 b+s_{c}$ | $=480$ | |
| $4 a+4 b+s_{h}$ | | $=160$ |
| $35 a+20 b$ | | $=1190$ |
| $a, \quad b, s_{c}, s_{h}, s_{m}$ | | ≥ 0 |

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& A=B=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

Pivoting Step

$\max Z$		
$13 a+23 b$	$-Z=0$	$\begin{aligned} & \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\ & a=b=0 \end{aligned}$
$5 a+15 b+s_{c}$	$=480$	$Z=0$
$4 a+4 b+s_{h}$	= 160	$s_{c}=480$
$35 a+20 b+s_{m}$	$=1190$	$s_{h}=160$
$a, \quad b, s_{c}, s_{h}, s_{m}$	≥ 0	$s_{m}=1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

$\max Z$	$-Z$	$=0$		
$13 a+23 \boldsymbol{b}$				
$5 a+15 \boldsymbol{b}+s_{c}$		$=480$		
$4 a+4 \boldsymbol{b}+s_{h}$	$=160$			
$35 a+20 \boldsymbol{b}+s_{m}$	$=1190$			
$a, \quad \boldsymbol{b}, s_{c}, s_{h}, s_{m}$	≥ 0		\quad	basis $=\left\{s_{c}, s_{h}, s_{m}\right\}$
:---				
$\boldsymbol{a}=\boldsymbol{b}=0$				
$Z=0$				
$s_{c}=480$				
$s_{h}=160$				
$s_{m}=1190$				

- Choose variable with coefficient ≥ 0 as entering variable.
- If we keep $a=0$ and increase b from 0 to $\theta>0$ s.t. all constraints ($A x=b, x \geq 0$) are still fulfilled the objective value Z will strictly increase.
- For maintaining $A x=b$ we need e.g. to set $s_{c}=480-15 \theta$.
- Choosing $\theta=\min \{480 / 15,160 / 4,1190 / 20\}$ ensures that in the new solution one current basic variable becomes 0 , and no variable goes negative.
- The basic variable in the row that gives $\min \{480 / 15,160 / 4,1190 / 20\}$ becomes the leaving variable.

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $13 a+23 b$ | $-Z$ | $=0$ |
| $5 a+15 b+s_{c}$ | $=480$ | |
| $4 a+4 b+s_{h}$ | | $=160$ |
| $35 a+20 b$ | | $=1190$ |
| $a, b, s_{c}, s_{h}, s_{m}$ | | ≥ 0 |

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

Substitute $b=\frac{1}{15}\left(480-5 a-s_{c}\right)$.

$\max Z$				
$\frac{16}{3} a$	$-\frac{23}{15} s_{c}$		$-Z=-736$	basis $=\left\{b, s_{h}, s_{m}\right\}$
$\frac{1}{3} a$	$+\frac{1}{15} s_{c}$		$=32$	$\begin{aligned} & a=s_{c}=0 \\ & Z=736 \end{aligned}$
$\frac{8}{3} a$	$-\frac{4}{15} s_{c}$		= 32	$b=32$
$\frac{85}{3} a$	$-\frac{4}{3} s_{c}$	$+s_{m}$	$=550$	$\begin{aligned} & s_{h}=32 \\ & s_{m}=550 \end{aligned}$

Choose variable a to bring into basis.
Computing $\min \{3 \cdot 32,3 \cdot 32 / 8,3 \cdot 550 / 85\}$ means pivot on line 2.
Substitute $a=\frac{3}{8}\left(32+\frac{4}{15} s_{c}-s_{h}\right)$.

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- in particular: $Z=800-s_{c}-2 s_{h}, s_{c} \geq 0, s_{h} \geq 0$
- hence optimum solution value is at most 800
- the current solution has value 800

Matrix View

Let our linear program be

$$
\begin{array}{rlrl}
c_{B}^{t} x_{B}+c_{N}^{t} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B} & , & x_{N} & \geq 0
\end{array}
$$

The simplex tableaux for basis B is

$$
\begin{array}{rlrl}
& & \left(c_{N}^{t}-c_{B}^{t} A_{B}^{-1} A_{N}\right) x_{N} & =Z-c_{B}^{t} A_{B}^{-1} b \\
I x_{B}+ & A_{B}^{-1} A_{N} x_{N} & =A_{B}^{-1} b \\
x_{B}, & x_{N} & \geq 0
\end{array}
$$

The BFS is given by $x_{N}=0, x_{B}=A_{B}^{-1} b$.
If $\left(c_{N}^{t}-c_{B}^{t} A_{B}^{-1} A_{N}\right) \leq 0$ we know that we have an optimum solution.

Algebraic Definition of Pivoting

- Given basis B with BFS x^{*}.
- Choose index $j \notin B$ in order to increase x_{j}^{*} from 0 to $\theta>0$.
- Other non-basis variables should stay at 0 .
- Basis variables change to maintain feasibility.
- Go from x^{*} to $x^{*}+\theta \cdot d$.

Requirements for d :

- $d_{j}=1$ (normalization)
- $d_{\ell}=0, \ell \notin B, \ell \neq j$
- $A\left(x^{*}+\theta d\right)=b$ must hold. Hence $A d=0$.
- Altogether: $A_{B} d_{B}+A_{* j}=A d=0$, which gives $d_{B}=-A_{B}^{-1} A_{* j}$.

Algebraic Definition of Pivoting

Definition 5 (j-th basis direction)

Let B be a basis, and let $j \notin B$. The vector d with $d_{j}=1$ and $d_{\ell}=0, \ell \notin B, \ell \neq j$ and $d_{B}=-A_{B}^{-1} A_{* j}$ is called the j-th basis direction for B.

Going from x^{*} to $x^{*}+\theta \cdot d$ the objective function changes by

$$
\theta \cdot c^{t} d=\theta\left(c_{j}-c_{B}^{t} A_{B}^{-1} A_{* j}\right)
$$

Algebraic Definition of Pivoting

Let our linear program be

$$
\left.\begin{array}{rl}
c_{B}^{t} x_{B}+c_{N}^{t} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B}, & x_{N}
\end{array}\right)=0
$$

The simplex tableaux for basis B is

		$\left(c_{N}^{t}-c_{B}^{t} A_{B}^{-1} A_{N}\right) x_{N}$			
$I x_{B}$	+	$A_{B}^{-1} A_{N} x_{N}$			A_{B}^{-1}
χ_{B}		x_{N}			

The BFS is given by $x_{N}=0, x_{B}=A_{B}^{-1} b$.
If $\left(c_{N}^{t}-c_{B}^{t} A_{B}^{-1} A_{N}\right) \leq 0$ we know that we have an optimum solution.

Algebraic Definition of Pivoting

Definition 6 (Reduced Cost)
For a basis B the value

$$
\tilde{c}_{j}=c_{j}-c_{B}^{t} A_{B}^{-1} A_{* j}
$$

is called the reduced cost for variable x_{j}.

Note that this is defined for every j. If $j \in B$ then the above term is 0 .

4 Simplex Algorithm

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- Is there always a basis B such that

$$
\left(c_{N}^{t}-c_{B}^{t} A_{B}^{-1} A_{N}\right) \leq 0 ?
$$

Then we can terminate because we know that the solution is optimal.

- If yes how do we make sure that we reach such a basis?

Min Ratio Test

The min ratio test computes a value $\theta \geq 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this one computes $b_{i} / A_{i e}$ for all constraints i and calculates the minimum positive value.

What does it mean that the ratio $b_{i} / A_{i e}$ is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if all $b_{i} / A_{i e}$ are negative? Then we do not have a leaving variable. Then the LP is unbounded!

Termination

The objective function may not decrease!
Because a variable x_{ℓ} with $\ell \in B$ is already 0 .
The set of inequalities is degenerate (also the basis is degenerate).

Definition 7 (Degeneracy)
A BFS x^{*} is called degenerate if the set $J=\left\{j \mid x_{j}^{*}>0\right\}$ fulfills $|J|<m$.

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

Termination

The objective function does not decrease during one iteration of the simplex-algorithm.

Does it always increase?

Non Degenerate Example

Degenerate Example

Summary: How to choose pivot-elements

- We can choose a column e as an entering variable if $\tilde{c}_{e}>0$ (\tilde{c}_{e} is reduced cost for x_{e}).
- The standard choice is the column that maximizes \tilde{c}_{e}.
- If $A_{i e} \leq 0$ for all $i \in\{1, \ldots, m\}$ then the maximum is not bounded.
- Otw. choose a leaving variable ℓ such that $b_{\ell} / A_{\ell e}$ is minimal among all variables i with $A_{i e}>0$.
- If several variables have minimum $b_{\ell} / A_{\ell e}$ you reach a degenerate basis.
- Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

How do we come up with an initial solution?

- $A x \leq b, x \geq 0$, and $b \geq 0$.
- The standard slack from for this problem is $A x+I s=b, x \geq 0, s \geq 0$, where s denotes the vector of slack variables.
- Then $s=b, x=0$ is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

Two phase algorithm

Suppose we want to maximize $c^{t} x$ s.t. $A x=b, x \geq 0$.

1. Multiply all rows with $b_{i}<0$ by -1 .
2. maximize $-\sum_{i} v_{i}$ s.t. $A x+I=b, x \geq 0, v \geq 0$ using Simplex. $x=0, v=b$ is initial feasible.
3. If $\sum_{i} v_{i}>0$ then the original problem is infeasible.
4. Otw. you have $x \geq 0$ with $A x=b$.
5. From this you can get basic feasible solution.
6. Now you can start the Simplex for the original problem.

Duality

How do we get an upper bound to a maximization LP?

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Note that a lower bound is easy to derive. Every choice of $a, b \geq 0$ gives us a lower bound (e.g. $a=12, b=28$ gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_{i} \geq 0$) such that $\sum_{i} y_{i} a_{i j} \geq c_{j}$ then $\sum_{i} y_{i} b_{i}$ will be an upper bound.

Lemma 8

Let B be a basis and x^{*} a BFS corresponding to basis B. $\tilde{c} \leq 0$ implies that x^{*} is an optimum solution to the LP.

Duality

Definition 9

Let $z=\max \left\{c^{t} x \mid A x \geq b, x \geq 0\right\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$
w=\min \left\{b^{t} y \mid A^{t} y \geq c, y \geq 0\right\}
$$

is called the dual problem.

Duality

Lemma 10

The dual of the dual problem is the primal problem.

Proof:

- $w=\min \left\{b^{t} y \mid A^{t} y \geq c, y \geq 0\right\}$
- $w=\max \left\{-b^{t} y \mid-A^{t} y \leq-c, y \geq 0\right\}$

The dual problem is

- $z=\min \left\{-c^{t} x \mid-A x \geq-b, x \geq 0\right\}$
- $z=\max \left\{c^{t} x \mid A x \geq b, x \geq 0\right\}$

Weak Duality

$A^{t} \hat{y} \geq c \Rightarrow \hat{x}^{t} A^{t} \hat{y} \geq \hat{x}^{t} c(\hat{x} \geq 0)$
$A \hat{x} \leq b \Rightarrow y^{t} A \hat{x} \leq \hat{y}^{t} b(\hat{y} \geq 0)$

This gives

$$
c^{t} \hat{x} \leq \hat{y}^{t} A \hat{x} \leq b^{t} \hat{y} .
$$

Since, there exists primal feasible \hat{x} with $c^{t} \hat{x}=z$, and dual feasible \hat{y} with $b^{t} y=w$ we get $z \leq w$.

If P is unbounded then D is infeasible.

Weak Duality

Let $z=\max \left\{c^{t} x \mid A x \leq b, x \geq 0\right\}$ and
$w=\min \left\{b^{t} y \mid A^{t} y \geq c, y \geq 0\right\}$ be a primal dual pair.
x is primal feasible iff $x \in\{x \mid A x \leq b, x \geq 0\}$
y is dual feasible, iff $y \in\left\{y \mid A^{t} y \geq c, y \geq 0\right\}$.

Theorem 11 (Weak Duality)
Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$
c^{t} \hat{x} \leq z \leq w \leq b^{t} \hat{y}
$$

The following linear programs form a primal dual pair:

$$
\begin{aligned}
z & =\max \left\{c^{t} x \mid A x=b, x \geq 0\right\} \\
w & =\min \left\{b^{t} y \mid A^{t} y \geq c\right\}
\end{aligned}
$$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{t} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{t} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{t} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Dual:

$$
\begin{aligned}
\min \{ & {\left.\left[b^{t}-b^{t}\right] y \mid\left[A^{t}-A^{t}\right] y \geq c, y \geq 0\right\} } \\
& =\min \left\{\left[b^{t}-b^{t}\right] \cdot\left[\begin{array}{c}
y^{+} \\
y^{-}
\end{array}\right] \left\lvert\,\left[A^{t}-A^{t}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \geq c\right., y^{-} \geq 0, y^{+} \geq 0\right\} \\
& =\min \left\{b^{t} \cdot\left(y^{+}-y^{-}\right) \mid A^{t} \cdot\left(y^{+}-y^{-}\right) \geq c, y^{-} \geq 0, y^{+} \geq 0\right\} \\
& =\min \left\{b^{t} y^{\prime} \mid A^{t} y^{\prime} \geq c, y^{\prime} \geq 0\right\}
\end{aligned}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{t}-c_{B}^{t} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{t}\left(A_{B}^{-1}\right)^{t} \mathcal{C}_{B} \geq \mathcal{C}$
$y^{*}=\left(A_{B}^{-1}\right)^{t} c_{B}$ is solution to the dual $\min \left\{b^{t} y \mid A^{t} y \geq c\right\}$.

$$
\begin{aligned}
b^{t} y^{*} & =\left(A x^{*}\right)^{t} y^{*}=\left(A_{B} x_{B}^{*}\right)^{t} y^{*} \\
& =\left(A_{B} x_{B}^{*}\right)^{t}\left(A_{B}^{-1}\right)^{t} c_{B}=\left(x_{B}^{*}\right)^{t} A_{B}^{t}\left(A_{B}^{-1}\right)^{t} c_{B} \\
& =c^{t} x^{*}
\end{aligned}
$$

Hence, the solution is optimal.

Strong Duality

Theorem 12 (Strong Duality)
Let P and D be a primal dual pair of linear programs, and let z^{*} and w^{*} denote the optimal solution to P and D, respectively. Then

$$
z^{*}=w^{*}
$$

Lemma 13 (Weierstrass)

Let X be a compact set and let $f(x)$ be a continuous function on X. Then $\min \{f(x): x \in X\}$ exists.

Lemma 14 (Projection Lemma)

Let $X \subseteq \mathbb{R}^{m}$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^{*} \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $\left(y-x^{*}\right)^{t}\left(x-x^{*}\right) \leq 0$.

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\begin{aligned}
\left\|y-x^{*}\right\|^{2} & \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2} \\
& =\left\|y-x^{*}\right\|^{2}+\epsilon^{2}\left\|x-x^{*}\right\|^{2}-2 \epsilon\left(y-x^{*}\right)^{t}\left(x-x^{*}\right)
\end{aligned}
$$

Hence, $\left(y-x^{*}\right)^{t}\left(x-x^{*}\right) \leq \frac{1}{2} \epsilon\left\|x-x^{*}\right\|^{2}$.
Letting $\epsilon \rightarrow 0$ gives the result.

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x^{\prime} \in X$.
- Define $X^{\prime}=\left\{x \in X \mid\|y-x\| \leq\left\|y-x^{\prime}\right\|\right\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.

Theorem 15 (Separating Hyperplane)
Let $X \subseteq \mathbb{R}^{m}$ be a non-empty closed convex set, and let $y \notin X$.
Then there exists a separating hyperplane $\left\{x \in \mathbb{R}: a^{t} x=\alpha\right\}$ where $a \in \mathbb{R}^{m}, \alpha \in \mathbb{R}$ that separates y from X. ($a^{t} y<\alpha$; $a^{t} x \geq \alpha$ for all $x \in X$)

Theorem 15 (Separating Hyperplane) Let $X \subseteq \mathbb{R}^{m}$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\left\{x \in \mathbb{R}: a^{t} x=\alpha\right\}$ where $a \in \mathbb{R}^{m}, \alpha \in \mathbb{R}$ that separates y from X. ($a^{t} y<\alpha$; $a^{t} x \geq \alpha$ for all $x \in X$)	
$\text { Tll EADS II } 5 \text { Harald Räcke }$	77

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{t}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.
- Choose $a=\left(x^{*}-y\right)$ and $\alpha=a^{t} x^{*}$.
- For $x \in X: a^{t}\left(x-x^{*}\right) \geq 0$, and, hence, $a^{t} x \geq \alpha$.
- Also, $a^{t} y=a^{t}\left(x^{*}-a\right)=\alpha-\|a\|^{2}<\alpha$

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{t} y \geq 0, b^{t} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{t} b<\alpha$ and $y^{t} s \geq \alpha$ for all $s \in S$.
$0 \in S \Rightarrow \alpha \leq 0 \Rightarrow y^{t} b<0$
$y^{t} A x \geq \alpha$ for all $x \geq 0$. Hence, $y^{t} A \geq 0$ as we can choose x arbitrarily large.

Lemma 16 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x=b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{t} y \geq 0, b^{t} y<0$

Assume \hat{x} satisfies 1 . and \hat{y} satisfies 2 . Then

$$
0>y^{t} b=y^{t} A x \geq 0
$$

Hence, at most one of the statements can hold.

Lemma 17 (Farkas Lemma; different version)
Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x \leq b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{t} y \geq 0, b^{t} y<0, y \geq 0$

Rewrite the conditions:

1. $\exists x \in \mathbb{R}^{n}$ with $[A I] \cdot\left[\begin{array}{l}x \\ s\end{array}\right]=b, x \geq 0, s \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $\left[\begin{array}{c}A^{t} \\ I\end{array}\right] y \geq 0, b^{t} y<0$

Proof of Strong Duality

$P: z=\max \left\{c^{t} x \mid A x \leq b, x \geq 0\right\}$
$D: w=\min \left\{b^{t} y \mid A^{t} y \geq c, y \geq 0\right\}$

Theorem 18 (Strong Duality)
Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$
z=w
$$

Proof of Strong Duality

$$
\begin{aligned}
& \exists y \in \mathbb{R}^{m} ; z \in \mathbb{R} \\
& \text { s.t. } A^{t} y-c z \geq 0 \\
& y b^{t}-\alpha z<0 \\
& y, z \geq 0
\end{aligned}
$$

If the solution y, z has $z=0$ we have that

$$
\begin{aligned}
& \exists y \in \mathbb{R}^{m} \\
& \text { s.t. } A^{t} y \geq 0 \\
& y b^{t}<0 \\
& y \geq 0
\end{aligned}
$$

is feasible. By Farkas lemma this gives that LP P is infeasible. Contradiction to the assumption of the lemma.

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}$:
We show $z<\alpha$ implies $w<\alpha$.

$\exists x \in \mathbb{R}^{n}$								
s.t.	$A x$	\leq	b					
	$-c^{t} x$	\leq	$-\alpha$					
	x	≥ 0		\quad	$\exists y \in \mathbb{R}^{m} ; z \in \mathbb{R}$			
---:	:---	:---	:---					
	s.t.	$A^{t} y-c z$	≥ 0					
		$y b^{t}-\alpha z$	<0					

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

Proof of Strong Duality

Hence, there exists a solution y, z with $z>0$.

We can rescale this solution (scaling both y and z) s.t. $z=1$.

Then y is feasible for the dual but $b^{t} y<\alpha$. This means that $w<\alpha$.

Fundamental Questions

Definition 19 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{t} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α. Suppose that $\alpha>\operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraint and that it has dual cost $<\alpha$.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$
c^{t} x^{*} \leq y^{* t} A x^{*} \leq b^{t} y^{*}
$$

Because of strong duality we then get

$$
c^{t} x^{*}=y^{* t} A x^{*}=b^{t} y^{*}
$$

This gives e.g.

$$
\sum_{j}\left(y^{t} A-c^{t}\right)_{j} x_{j}^{*}=0
$$

From the constraint of the dual it follows that $y^{t} A \geq c^{t}$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $\left(y^{t} A-c^{t}\right)_{j}>0$ (the j-th constraint in the dual is not tight) then $x_{j}=0$ (2.). The result for (1./3./4.) follows similarly.

Complementary Slackness

Lemma 20
Assume a linear program $P=\max \left\{c^{t} x \mid A x \leq b ; x \geq 0\right\}$ has solution x^{*} and its dual $D=\min \left\{b^{t} y \mid A^{t} y \geq c ; y \geq 0\right\}$ has solution y^{*}.

1. If $x_{j}^{*}>0$ then the j-th constraint in D is tight.
2. If the j-th constraint in D is not tight than $x_{j}^{*}=0$.
3. If $y_{i}^{*}>0$ then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than $y_{i}^{*}=0$.

If we say that a variable $x_{j}^{*}\left(y_{i}^{*}\right)$ has slack if $x_{j}^{*}>0\left(y_{i}^{*}>0\right)$, (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint and its corresponding (dual) variable has slack.

EADS II		
OHarald Räcke	5 Duality	87

Interpretation of Dual Variables

- Brewer: find mix of ale and beer that maximizes profits

$\max 13 a$	$+23 b$
s.t. $5 a$	$+15 b \leq 480$
$4 a$	$+4 b \leq 160$
$35 a$	$+20 b \leq 1190$
	a, b

- Entrepeneur: buy resources from brewer at minimum cost C, H, M : unit price for corn, hops and malt.

$$
\begin{array}{rrrrr}
\min 480 C & +160 H & + & 1190 M & \\
\text { s.t. } 5 C+4 H & + & 35 M & \geq 13 \\
& 15 C & +4 H & + & 20 M
\end{array}
$$

Note that brewer won't sell (at least not all) if e.g. $5 C+4 H+35 M<13$ as then brewing ale would be advantageous.

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by $\varepsilon_{C}, \varepsilon_{H}$, and ε_{M}, respectively.
The profit increases to $\max \left\{c^{t} x \mid A x \leq b+\varepsilon ; x \geq 0\right\}$. Because of strong duality this is equal to

$$
\begin{array}{rrl}
\hline \min & \left(b^{t}+\epsilon^{t}\right) y & \\
\text { s.t. } & A^{t} y & \geq c \\
& y & \geq 0
\end{array}
$$

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Therefore we can interpret the dual variables as marginal prices.
Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

Example

The change in profit when increasing hops by one unit is
$-\tilde{c}_{h}=-c_{h}+c_{B}^{t} A_{B}^{-1} A_{* h}=\underbrace{c_{B}^{t} A_{B}^{-1}}_{y^{*}} e_{h}$.

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Flows

Definition 21

An (s, t)-flow in a (complete) directed graph $G=(V, V \times V, c)$ is a function $f: V \times V \mapsto \mathbb{R}_{0}^{+}$that satisfies

1. For each edge (x, y)

$$
0 \leq f_{x y} \leq c_{x y}
$$

(capacity constraints)
2. For each $v \in V \backslash\{s, t\}$

$$
\sum_{x} f_{v x}=\sum_{x} f_{x v} .
$$

(flow conservation constraints)

LP-Formulation of Maxflow

\max	$\sum_{z} f_{s z}-\sum_{z} f_{z s}$				
s.t.	$\forall(z, w) \in V \times V$	$f_{z w}$	\leq	$c_{z w}$	$\ell_{z w}$
	$\forall w \neq s, t$	$\sum_{z} f_{z w}-\sum_{z} f_{w z}$	$=0$	p_{w}	
		$f_{z w}$	≥ 0		

| \min | | $\sum_{(x y)} c_{x y} \ell_{x y}$ | |
| :---: | :--- | :--- | :--- | :--- |
| $\mathrm{s.t}$. | $f_{x y}(x, y \neq s, t):$ | $1 \ell_{x y}-1 p_{x}+1 p_{y}$ | ≥ 0 |
| | $f_{s y}(y \neq s, t):$ | $1 \ell_{s y}+1 p_{y}$ | ≥ 1 |
| | $f_{x s}(x \neq s, t):$ | $1 \ell_{x s}-1 p_{x}$ | ≥-1 |
| | $f_{t y}(y \neq s, t):$ | $1 \ell_{t y}+1 p_{y}$ | ≥ 0 |
| | $f_{x t}(x \neq s, t):$ | $1 \ell_{x t}-1 p_{x}$ | ≥ 0 |
| | $f_{s t}:$ | $1 \ell_{s t}$ | ≥ 1 |
| | $f_{t s}:$ | $1 \ell_{t s}$ | ≥-1 |
| | | $\ell_{x y}$ | ≥ 0 |

Flows

Definition 22
The value of an (s, t)-flow f is defined as

$$
\operatorname{val}(f)=\sum_{x} f_{s x}-\sum_{x} f_{x s}
$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

LP-Formulation of Maxflow

LP-Formulation of Maxflow

| \min | | $\sum_{(x y)} c_{x y} \ell_{x y}$ |
| ---: | :--- | ---: | :--- |
| $\mathrm{s.t}$. | $f_{x y}(x, y \neq s, t):$ | $1 \ell_{x y}-1 p_{x}+1 p_{y} \geq 0$ |
| | $f_{s y}(y \neq s, t):$ | $1 \ell_{s y}-p_{s}+1 p_{y} \geq 0$ |
| | $f_{x s}(x \neq s, t):$ | $1 \ell_{x s}-1 p_{x}+p_{s} \geq 0$ |
| | $f_{t y}(y \neq s, t):$ | $1 \ell_{t y}-p_{t}+1 p_{y} \geq 0$ |
| | $f_{x t}(x \neq s, t):$ | $1 \ell_{x t}-1 p_{x}+p_{t} \geq 0$ |
| | $f_{s t}:$ | $1 \ell_{s t}-p_{s}+p_{t} \geq 0$ |
| | $f_{t s}:$ | $1 \ell_{t s}-p_{t}+p_{s} \geq 0$ |
| | | $\ell_{x y} \geq 0$ |

with $p_{t}=0$ and $p_{s}=1$.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_{x}=1$ or $p_{x}=0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

LP-Formulation of Maxflow

$$
\begin{array}{rrr}
\min & \sum_{(x y)} c_{x y} \ell_{x y} & \\
\text { s.t. } f_{x y}: \quad 1 \ell_{x y}-1 p_{x}+1 p_{y} & \geq 0 \\
& \ell_{x y} & \geq 0 \\
& p_{s} & =1 \\
& p_{t} & =0
\end{array}
$$

We can interpret the $\ell_{x y}$ value as assigning a length to every edge.
The value p_{x} for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_{s}=1$).

The constraint $p_{x} \leq \ell_{x y}+p_{y}$ then simply follows from triangle inequality $\left(d(x, t) \leq d(x, y)+d(y, t) \Rightarrow d(x, t) \leq \ell_{x y}+d(y, t)\right)$.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:
Change LP $:=\max \left\{c^{t} x, A x=b ; x \geq 0\right\}$ into
$\mathrm{LP}^{\prime}:=\max \left\{c^{t} x, A x=b^{\prime}, x \geq 0\right\}$ such that
I. LP is feasible
II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_{B}^{-1} b \nsupseteq 0$) then B corresponds to an infeasible basis in LP ${ }^{\prime}$ (note that columns in A_{B} are linearly independent).
III. LP has no degenerate basic solutions

Degenerate Example

Perturbation

Let B be index set of some basis with basic solution

$$
x_{B}^{*}=A_{B}^{-1} b \geq 0, x_{N}^{*}=0 \quad \text { (i.e. } B \text { is feasible) }
$$

Fix

$$
b^{\prime}:=b+A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right) \text { for } \varepsilon>0
$$

This is the perturbation that we are using.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP $:=\max \left\{c^{t} x, A x=b ; x \geq 0\right\}$. Change it into $\mathrm{LP}^{\prime}:=\max \left\{c^{t} x, A x=b^{\prime}, x \geq 0\right\}$ such that
I. LP^{\prime} is feasible
II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_{B}^{-1} b \nsupseteq 0$) then B corresponds to an infeasible basis in LP^{\prime} (note that columns in A_{B} are linearly independent).
III. LP ${ }^{\prime}$ has no degenerate basic solutions

Property I

The new LP is feasible because the set B of basis variables provides a feasible basis:

$$
A_{B}^{-1}\left(b+A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)\right)=x_{B}^{*}+\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right) \geq 0
$$

Property II

Let \tilde{B} be a non-feasible basis. This means $\left(A_{\tilde{B}}^{-1} b\right)_{i}<0$ for some row i.

Then for small enough $\epsilon>0$

$$
\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)\right)\right)_{i}=\left(A_{\tilde{B}}^{-1} b\right)_{i}+\left(A_{\tilde{B}}^{-1} A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)\right)_{i}<0
$$

Hence, \tilde{B} is not feasible.

Since, there are no degeneracies Simplex will terminate when run on LP^{\prime}.

- If it terminates because the reduced cost vector fulfills

$$
\tilde{c}=\left(c^{t}-c_{B}^{t} A_{B}^{-1} A\right) \leq 0
$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

- If it terminates because it finds a variable x_{j} with $\tilde{c}_{j}>0$ for which the j-th basis direction d, fulfills $d \geq 0$ we know that LP^{\prime} is unbounded. The basis direction does not depend on b. Hence, we also know that LP is unbounded.

Property III

Let \tilde{B} be a basis. It has an associated solution

$$
x_{\tilde{B}}^{*}=A_{\tilde{B}}^{-1} b+A_{\tilde{B}}^{-1} A_{B}\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)
$$

in the perturbed instance.
We can view each component of the vector as a polynom with variable ε of degree at most m.
$A_{\tilde{B}}^{-1} A_{B}$ has rank m. Therefore no polynom is 0 .
A polynom of degree at most m has at most m roots
(Nullstellen).
Hence, $\epsilon>0$ small enough gives that no component of the above vector is 0 . Hence, no degeneracies.
7 EADS II 6 Degeneracy Revisited

OHarald Räcke

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:
Simulate behaviour of LP^{\prime} without explicitly doing a perturbation.

Lexicographic Pivoting

We choose the entering variable arbitrarily as before ($\tilde{c}_{e}>0$, of course).

If we do not have a choice for the leaving variable then LP^{\prime} and LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.

Matrix View

Let our linear program be

$$
\left.\begin{array}{rl}
c_{B}^{t} x_{B}+c_{N}^{t} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B}, & x_{N}
\end{array}\right)=0
$$

The simplex tableaux for basis B is

The BFS is given by $x_{N}=0, x_{B}=A_{B}^{-1} b$.
If $\left(c_{N}^{t}-c_{B}^{t} A_{B}^{-1} A_{N}\right) \leq 0$ we know that we have an optimum solution.

Lexicographic Pivoting

In the following we assume that $b \geq 0$. This can be obtained by replacing the initial system $\left(A_{B} \mid b\right)$ by $\left(A_{B}^{-1} A \mid A_{B}^{-1} b\right)$ where B is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

$$
b^{\prime}=b+\left(\begin{array}{c}
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}\right)
$$

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e}>0$ and minimizes

$$
\theta_{\ell}=\frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}}=\frac{\left(A_{B}^{-1} b\right)_{\ell}}{\left(A_{B}^{-1} A_{* e}\right)_{\ell}} .
$$

ℓ is the index of a leaving variable within B. This means if e.g. $B=\{1,3,7,14\}$ and leaving variable is 3 then $\ell=2$.

Lexicographic Pivoting

Definition 23

$u \leq_{\text {lex }} v$ if and only if the first component in which u and v differ fulfills $u_{i} \leq v_{i}$.

Lexicographic Pivoting

This means you can choose the variable/row ℓ for which the vector

$$
\frac{\ell \text {-th row of } A_{B}^{-1}(b \mid I)}{\left(A_{B}^{-1} A_{* e}\right)_{\ell}}
$$

is lexicographically minimal.
Of course only including rows with $\left(A_{B}^{-1} A_{* e}\right)_{\ell}>0$.
This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

Lexicographic Pivoting
 LP^{\prime} chooses an index that minimizes
 \[\begin{aligned} \theta_{\ell} \& =\frac{\left(A_{B}^{-1}\left(b+\left($$
\begin{array}{c} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{array}
$$\right)\right)_{\ell}\right.

{\left(A_{B}^{-1} A_{* e}\right)_{\ell}}=\frac{\left(A_{B}^{-1}(b \mid I)\left(\begin{array}{c}1

\varepsilon

\vdots

\varepsilon^{m}
\end{array}\right)\right)_{\ell}}{\left(A_{B}^{-1} A_{* e}\right)_{\ell}}

\& =\frac{\ell -th row of A_{B}^{-1}(b \mid I)}{\left(A_{B}^{-1} A_{* e}\right)_{\ell}}\left($$
\begin{array}{c}
1 \\
\varepsilon \\
\vdots \\
\varepsilon^{m}
\end{array}
$$\right)
\end{aligned}
\]}

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require $\binom{n}{m}$ iterations then Simplex is not a polynomial time algorithm.

Can we obtain a better analysis?

Number of Simplex Iterations

Observation

Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.

Example

$$
\begin{array}{|cc|}
\hline \max c^{t} x & \\
\text { s.t. } & 0 \leq x_{1} \leq 1 \\
& 0 \leq x_{2} \leq 1 \\
& \vdots \\
& 0 \leq x_{n} \leq 1
\end{array}
$$

However, Simplex may still run quickly as it usually does not visit all feasible bases.

In the following we give an example of a feasible region for which there is a bad Pivoting Rule.

Example

```
max c}\mp@subsup{c}{}{t}
```

 s.t. \(0 \leq x_{1} \leq 1\)
 \(0 \leq x_{2} \leq 1\)
 \(:\)
 $0 \leq x_{n} \leq 1$

$2 n$ constraint on n variables define an n-dimensional hypercube as feasible region.

The feasible region has 2^{n} vertices.

Pivoting Rule

A Pivoting Rule defines how to choose the entering and leaving variable for an iteration of Simplex.

In the non-degenerate case after choosing the entering variable the leaving variable is unique.

Klee Minty Cube

$$
\begin{array}{|cc|}
\max x_{n} & \\
\text { s.t. } & 0 \leq x_{1} \leq 1 \\
& \epsilon x_{1} \leq x_{2} \leq 1-\epsilon x_{1} \\
& \epsilon x_{2} \leq x_{3} \leq 1-\epsilon x_{2} \\
& \vdots \\
& \epsilon x_{n-1} \leq x_{n} \leq 1-\epsilon x_{n-1} \\
& x_{i} \geq 0
\end{array}
$$

Observations

We have $2 n$ constraints, and $3 n$ variables (after adding slack variables to every constraint).

- Every basis is defined by $2 n$ variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_{i} stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \rightarrow 0$.

Klee Minty Cube

$$
\begin{array}{rr}
\max x_{n} & \\
\text { s.t. } & 0 \leq x_{1} \leq 1 \\
& \epsilon x_{1} \leq x_{2} \leq 1-\epsilon x_{1} \\
& \epsilon x_{2} \leq x_{3} \leq 1-\epsilon x_{2}
\end{array}
$$

Analysis

The sequence S_{n} that visits every node of the hypercube is defined recursively

The non-recursive case is $S_{1}=0 \rightarrow 1$
EADS II

7 Klee Minty Cube
© Harald Räcke

Remarks about Simplex

Observation

The simplex algorithm takes at most $\binom{n}{m}$ iterations. Each iteration can be implemented in time $\mathcal{O}(\mathrm{mn})$.

In practise it usually takes a linear number of iterations.

Analysis

Lemma 24

The objective value x_{n} is increasing along path S_{n}.

Proof by induction:

$\boldsymbol{n}=1$: obvious, since $S_{1}=0 \rightarrow 1$, and $1>0$
$n-1 \rightarrow n$

- For the first part the value of $x_{n}=\epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1}, hence, also x_{n}.
- Going from $(0, \ldots, 0,1,0)$ to $(0, \ldots, 0,1,1)$ increases x_{n} for small enough ϵ.
- For the remaining path $S_{n-1}^{\text {rev }}$ we have $x_{n}=1-\epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1}, hence $-\epsilon x_{n-1}$ is increasing along $S_{n-1}^{\text {rev }}$.

Remarks about Simplex

Theorem

For almost all known deterministic pivoting rules (rules for choosing entering and leaving variables) there exist lower bounds that require the algorithm to have exponential running time $\left(\Omega\left(2^{\Omega(n)}\right)\right)$ (e.g. Klee Minty 1972).

Remarks about Simplex

Theorem

For some standard randomized pivoting rules there exist subexponential lower bounds $\left(\Omega\left(2^{\Omega\left(n^{\alpha}\right)}\right)\right.$ for $\left.\alpha>0\right)$ (Friedmann, Hansen, Zwick 2011).

8 Seidels LP-algorithm

- Suppose we want to solve $\min \left\{c^{t} x \mid A x \geq b ; x \geq 0\right\}$, where $x \in \mathbb{R}^{d}$ and we have m constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}\left(m(m+d)\binom{m+d}{m}\right) \approx(m+d)^{m}$. (slightly better bounds on the running time exist, but will not be discussed here).
- If d is much smaller than m one can do a lot better.
- In the following we develop an algorithm with running time $\mathcal{O}(d!\cdot m)$, i.e., linear in m.

Remarks about Simplex

Conjecture (Hirsch)

The edge-vertex graph of an m-facet polytope in d-dimensional Euclidean space has diameter no more than $m-d$.

The conjecture has been proven wrong in 2010.
But the question whether the diameter is perhaps of the form $\mathcal{O}(\operatorname{poly}(m, d))$ is open.

8 Seidels LP-algorithm

Setting:

- We assume an LP of the form

$$
\begin{aligned}
\min & c^{t} x \\
\text { s.t. } & A x \\
& x \geq b \\
& \geq 0
\end{aligned}
$$

- Further we assume that the LP is non-degenerate.
- We assume that the optimum solution is unique.
- We assume that the LP is bounded.

Ensuring Conditions

Given a standard minimization LP

$$
\begin{array}{rrl}
\min & c^{t} x & \\
\text { s.t. } & A x & \geq b \\
& x & \geq 0
\end{array}
$$

how can we obtain an LP of the required form?

- Compute a lower bound on $\boldsymbol{c}^{\boldsymbol{t}} \boldsymbol{x}$ for any basic feasible solution.

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of entries in A, b.
Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.
Add slack variables; denote the resulting matrix with \bar{A}.
If B is an optimal basis then x_{B} with $\bar{A}_{B} x_{B}=b$, gives an optimal assignment to the basis variables (non-basic variables are 0).
5 EADS II 8 Seidels LP-algorithm

Proof:

- Define

$$
X_{j}=\left(\begin{array}{ccccc}
\mid & & \mid & \mid & \\
e_{1} & \cdots & e_{j-1} & x & e_{j+1} \\
\mid & & \mid & \mid & \\
\mid & e_{n} \\
\mid & & & \mid
\end{array}\right)
$$

Note that expanding along the j-th column gives that $\operatorname{det}\left(X_{j}\right)=x_{j}$.

- Further, we have

$$
M X_{j}=\left(\begin{array}{ccccc}
\mid & \mid & \mid & \mid & \mid \\
M e_{1} & \cdots & M e_{j-1} & M x & M e_{j+1} \\
\mid & \mid & \mid & \mid & M e_{n} \\
\mid & \mid & \mid
\end{array}\right)=M_{j}
$$

- Hence,

$$
x_{j}=\operatorname{det}\left(X_{j}\right)=\frac{\operatorname{det}\left(M_{j}\right)}{\operatorname{det}(M)}
$$

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let C denote the matrix obtained from \bar{A}_{B} by replacing the j-th column with vector b.

Observe that

$$
\begin{aligned}
|\operatorname{det}(C)| & =\left|\sum_{\pi \in S_{m}} \prod_{1 \leq i \leq m} \operatorname{sgn}(\pi) C_{i \pi(i)}\right| \\
& \leq \sum_{\pi \in S_{m}} \prod_{1 \leq i \leq m}\left|C_{i \pi(i)}\right| \\
& \leq m!\cdot Z^{m} .
\end{aligned}
$$

Hadamards Inequality

Hadamards inequality says that the red volume is smaller than the volume in the black cube (if $\left\|e_{1}\right\|=\left\|a_{1}\right\|,\left\|e_{2}\right\|=\left\|a_{2}\right\|$, $\left.\left\|e_{3}\right\|=\left\|a_{3}\right\|\right)$.

Bounding the Determinant

Alternatively, Hadamards inequality gives

$$
\begin{aligned}
|\operatorname{det}(C)| & \leq \prod_{i=1}^{m}\left\|C_{* i}\right\| \leq \prod_{i=1}^{m}(\sqrt{m} Z) \\
& \leq m^{m / 2} Z^{m}
\end{aligned}
$$

Ensuring Conditions

Given a standard minimization LP

\min	$c^{t} x$	
s.t.	$A x$	$\geq b$
	x	≥ 0

how can we obtain an LP of the required form?

- Compute a lower bound on $\boldsymbol{c}^{\boldsymbol{t}} \boldsymbol{x}$ for any basic feasible solution. Add the constraint $c^{t} x \geq-m Z\left(m!\cdot Z^{m}\right)-1$. Note that this constraint is superfluous unless the LP is unbounded.

Ensuring Conditions

Make the LP non-degenerate by perturbing the right-hand side vector b.

Make the LP solution unique by perturbing the optimization direction c.

Compute an optimum basis for the new LP.

- If the cost is $c^{t} x=-(m Z)\left(m!\cdot Z^{m}\right)-1$ we know that the original LP is unbounded.
- Otw. we have an optimum basis.

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^{t} x \geq-m Z\left(m!\cdot Z^{m}\right)-1$.

We give a routine SeidelLP (\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^{t} x$ over all feasible points.

In addition it obeys the implicit constraint
$c^{t} x \geq-(m Z)\left(m!\cdot Z^{m}\right)-1$.

8 Seidels LP-algorithm

- If $d=1$ we can solve the 1 -dimensional problem in time $\mathcal{O}(m)$.
- If $d>1$ and $m=0$ we take time $\mathcal{O}(d)$ to return d-dimensional vector x.
- The first recursive call takes time $T(m-1, d)$ for the call plus $\mathcal{O}(d)$ for checking whether the solution fulfills h.
- If we are unlucky and \hat{x}^{*} does not fulfill h we need time $\mathcal{O}(d(m+1))=\mathcal{O}(d m)$ to eliminate x_{ℓ}. Then we make a recursive call that takes time $T(m-1, d-1)$.
- The probability of being unlucky is at most d / m as there are at most d constraints whose removal will decrease the objective function (recall that the solution is unique).

8 Seidels LP-algorithm

This gives the recurrence

Note that $T(m, d)$ denotes the expected running time.

8 Seidels LP-algorithm

$d>1 ; m>1$

(by induction hypothesis statm. true for $d^{\prime}<d, m^{\prime} \geq 0$;
and for $d^{\prime}=d, m^{\prime}<m$)

$$
\begin{aligned}
T(m, d) & =\mathcal{O}(d)+T(m-1, d)+\frac{d}{m}(\mathcal{O}(d m)+T(m-1, d-1)) \\
& \leq C d+C f(d)(m-1)+C d^{2}+\frac{d}{m} C f(d-1)(m-1) \\
& \leq 2 C d^{2}+C f(d)(m-1)+d C f(d-1) \\
& \leq C f(d) m
\end{aligned}
$$

if $f(d) \geq d f(d-1)+2 d^{2}$.

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.
$d=1:$
$T(m, 1) \leq C m \leq C f(1) \max \{1, m\}$ for $f(1) \geq 1$
$d>1 ; m=0:$
$T(0, d) \leq \mathcal{O}(d) \leq C d \leq C f(d) \max \{1, m\}$ for $f(d) \geq d$
$d>1 ; m=1:$

$$
\begin{aligned}
T(1, d) & =\mathcal{O}(d)+T(0, d)+d(\mathcal{O}(d)+T(0, d-1)) \\
& \leq C d+C d+C d^{2}+d T(0, d-1) \\
& \leq C f(d) \max \{1, m\} \text { for } f(d) \geq 4 d^{2}
\end{aligned}
$$

8 Seidels LP-algorithm

- Define $f(1)=4 \cdot 1^{2}$ and $f(d)=d f(d-1)+4 d^{2}$ for $d>1$.

Then

$$
\begin{aligned}
f(d)= & 4 d^{2}+d f(d-1) \\
= & 4 d^{2}+d\left[4(d-1)^{2}+(d-1) f(d-2)\right] \\
= & 4 d^{2}+d\left[4(d-1)^{2}+(d-1)\left[4(d-2)^{2}+(d-2) f(d-3)\right]\right] \\
= & 4 d^{2}+4 d(d-1)^{2}+4 d(d-1)(d-2)^{2}+\ldots \\
& +4 d(d-1)(d-2) \cdot \ldots \cdot 4 \cdot 3 \cdot 1^{2} \\
= & 4 d!\left(\frac{d^{2}}{d!}+\frac{(d-1)^{2}}{(d-1)!}+\frac{(d-2)^{2}}{(d-2)!}+\ldots\right) \\
= & \mathcal{O}(d!)
\end{aligned}
$$

since $\sum_{i \geq 1} \frac{i^{2}}{i!}$ is a constant.

Complexity

LP Feasibility Problem (LP feasibility)

- Given $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$. Does there exist $x \in \mathbb{R}$ with $A x=b, x \geq 0$?
- Note that allowing A, b to contain rational numbers does not make a difference, as we can multiply every number by a suitable large constant so that everything becomes integral but the feasible region does not change.

Is this problem in NP or even in P?

The Bit Model

Input size

- The number of bits to represent a number $a \in \mathbb{Z}$ is

$$
\left\lceil\log _{2}(|a|)\right\rceil+1
$$

- Let for an $m \times n$ matrix $M, L(M)$ denote the number of bits required to encode all the numbers in M.

$$
L(M):=\sum_{i, j}\left\lceil\log _{2}\left(\left|m_{i j}\right|\right)\right\rceil
$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- Then the input length is $\Theta(L([A \mid b]))$.

Suppose that $A x=b ; x \geq 0$ is feasible.
Then there exists a basic feasible solution. This means a set B of basic variables such that

$$
x_{B}=A_{B}^{-1} b
$$

and all other entries in x are 0 .

Size of a Basic Feasible Solution

Lemma 26
Let $M \in \mathbb{Z}^{m \times m}$ be an invertable matrix and let $b \in \mathbb{Z}^{m}$. Further
define $L^{\prime}=L([M \mid b])+n \log _{2} n$. Then a solution to $M x=b$ has rational components x_{j} of the form $\frac{D_{j}}{D}$, where $\left|D_{j}\right| \leq 2^{L^{\prime}}$ and $|D| \leq 2^{L^{\prime}}$.

Proof:

Cramers rules says that we can compute x_{j} as

$$
x_{j}=\frac{\operatorname{det}\left(M_{j}\right)}{\operatorname{det}(M)}
$$

where M_{j} is the matrix obtained from M by replacing the j-th column by the vector b.

This means if $A x=b, x \geq 0$ is feasible we only need to consider vectors x where an entry x_{j} can be represented by a rational number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the input-length L.

For a given vector x of polynomial length we can check for feasibility in polynomial time.

Hence, LP feasibility is in NP.

Bounding the Determinant

Let $X=A_{B}$. Then

$$
\begin{aligned}
|\operatorname{det}(X)| & =\left|\sum_{\pi \in S_{n}} \prod_{1 \leq i \leq n} \operatorname{sgn}(\pi) X_{i \pi(i)}\right| \\
& \leq \sum_{\pi \in S_{n}} \prod_{1 \leq i \leq n}\left|X_{i \pi(i)}\right| \\
& \leq n!\cdot 2^{L([A \mid b])} \leq n^{n} 2^{L} \leq 2^{L^{\prime}} .
\end{aligned}
$$

Analogously for $\operatorname{det}\left(M_{j}\right)$.

Reducing LP-solving to LP decision.

Given an LP max $\left\{c^{t} x \mid A x=b ; x \geq 0\right\}$ do a binary search for the optimum solution
(Add constraint $c^{t} x-\delta=M ; \delta \geq 0$ or $\left(c^{t} x \geq M\right)$. Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$
\log _{2}\left(\frac{2 n 2^{2 L^{\prime}}}{1 / 2^{L^{\prime}}}\right)=\mathcal{O}\left(L^{\prime}\right)
$$

as the range of the search is at most $-n 2^{2 L^{\prime}}, \ldots, n 2^{2 L^{\prime}}$ and the distance between two adjacent values is at least $\frac{1}{\operatorname{det}(A)} \geq \frac{1}{2^{L^{\prime}}}$.

Here we use $L^{\prime}=L([A|b| c])+n \log _{2} n$ (it also includes the encoding size of c).

How do we detect whether the LP is unbounded?

Let $M_{\max }=n 2^{2 L^{\prime}}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^{t} x \geq M_{\max }+1$ and check for feasibility.

issues/Questions:

- How do you choose the first Ellipsoid? What is its volume?
- What if the polytop K is unbounded?
- How do you measure progress? By how much does the volume decrease in each iteration?
- When can you stop? What is the minimum volume of a non-empty polytop?

Definition 27
A mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $f(x)=L x+t$, where L is an invertible matrix is called an affine transformation.

Definition 28
A ball in \mathbb{R}^{n} with center c and radius r is given by

$$
\begin{aligned}
B(c, r) & =\left\{x \mid(x-c)^{t}(x-c) \leq r^{2}\right\} \\
& =\left\{x \mid \sum_{i}(x-c)_{i}^{2} / r^{2} \leq 1\right\}
\end{aligned}
$$

$B(0,1)$ is called the unit ball.

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the transformation function for the Ellipsoid) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_{1}.
- Compute the new center \hat{c}^{\prime} and the new matrix \hat{Q}^{\prime} for this simplified setting.
- Use the transformations R and f to get the new center c^{\prime} and the new matrix Q^{\prime} for the original ellipsoid E.

Definition 29
An affine transformation of the unit ball is called an ellipsoid.
From $f(x)=L x+t$ follows $x=L^{-1}(f(x)-t)$.

$$
\begin{aligned}
f(B(0,1)) & =\{f(x) \mid x \in B(0,1)\} \\
& =\left\{y \in \mathbb{R}^{n} \mid L^{-1}(y-t) \in B(0,1)\right\} \\
& =\left\{y \in \mathbb{R}^{n} \mid(y-t)^{t} L^{-1} L^{-1}(y-t) \leq 1\right\} \\
& =\left\{y \in \mathbb{R}^{n} \mid(y-t)^{t} Q^{-1}(y-t) \leq 1\right\}
\end{aligned}
$$

where $Q=L L^{t}$ is an invertible matrix.

The Easy Case

- The new center lies on axis x_{1}. Hence, $\hat{c}^{\prime}=t e_{1}$ for $t>0$.
- The vectors e_{1}, e_{2}, \ldots have to fulfill the ellipsoid constraint with equality. Hence $\left(e_{i}-\hat{c}^{\prime}\right)^{t} \hat{Q}^{\prime-1}\left(e_{i}-\hat{c}^{\prime}\right)=1$.

The Easy Case

- The obtain the matrix $\hat{Q}^{\prime-1}$ for our ellipsoid \hat{E}^{\prime} note that \hat{E}^{\prime} is axis-parallel.
- Let a denote the radius along the x_{1}-axis and let b denote the (common) radius for the other axes.
- The matrix

$$
\hat{L}^{\prime}=\left(\begin{array}{cccc}
a & 0 & \ldots & 0 \\
0 & b & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b
\end{array}\right)
$$

maps the unit ball (via function $\hat{f}^{\prime}(x)=\hat{L}^{\prime} x$) to an axis-parallel ellipsoid with radius a in direction x_{1} and b in all other directions.

The Easy Case

- $\left(e_{1}-\hat{c}^{\prime}\right)^{t} \hat{Q}^{\prime-1}\left(e_{1}-\hat{c}^{\prime}\right)=1$ gives

$$
\left(\begin{array}{c}
1-t \\
0 \\
\vdots \\
0
\end{array}\right)^{t} \cdot\left(\begin{array}{cccc}
\frac{1}{a^{2}} & 0 & \ldots & 0 \\
0 & \frac{1}{b^{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \frac{1}{b^{2}}
\end{array}\right) \cdot\left(\begin{array}{c}
1-t \\
0 \\
\vdots \\
0
\end{array}\right)=1
$$

- This gives $(1-t)^{2}=a^{2}$.

The Easy Case

- As $\hat{Q}^{\prime}=\hat{L}^{\prime} \hat{L}^{\prime t}$ the matrix $\hat{Q}^{\prime-1}$ is of the form

$$
\hat{Q}^{\prime-1}=\left(\begin{array}{cccc}
\frac{1}{a^{2}} & 0 & \ldots & 0 \\
0 & \frac{1}{b^{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \frac{1}{b^{2}}
\end{array}\right)
$$

The Easy Case

- For $i \neq 1$ the equation $\left(e_{i}-\hat{c}^{\prime}\right)^{t} \hat{Q}^{\prime-1}\left(e_{i}-\hat{c}^{\prime}\right)=1$ gives

$$
\left(\begin{array}{c}
-t \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)^{t} \cdot\left(\begin{array}{cccc}
\frac{1}{a^{2}} & 0 & \ldots & 0 \\
0 & \frac{1}{b^{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \frac{1}{b^{2}}
\end{array}\right) \cdot\left(\begin{array}{c}
-t \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)=1
$$

- This gives $\frac{t^{2}}{a^{2}}+\frac{1}{b^{2}}=1$, and hence

$$
\frac{1}{b^{2}}=1-\frac{t^{2}}{a^{2}}=1-\frac{t^{2}}{(1-t)^{2}}=\frac{1-2 t}{(1-t)^{2}}
$$

Summary

So far we have

$$
a=1-t \quad \text { and } \quad b=\frac{1-t}{\sqrt{1-2 t}}
$$

The Easy Case

We want to choose t such that the volume of \hat{E}^{\prime} is minimal.

Lemma 30
Let L be an affine transformation and $K \subseteq \mathbb{R}^{n}$. Then

$$
\operatorname{vol}(L(K))=|\operatorname{det}(L)| \cdot \operatorname{vol}(K) .
$$

The Easy Case
We still have many choices for t :

Choose t such that the volume of \hat{E}^{\prime} is minimal!!!

n-dimensional volume

The Easy Case

- We want to choose t such that the volume of \hat{E}^{\prime} is minimal.

$$
\operatorname{vol}\left(\hat{E}^{\prime}\right)=\operatorname{vol}(B(0,1)) \cdot\left|\operatorname{det}\left(\hat{L}^{\prime}\right)\right|
$$

where $\hat{Q}^{\prime}=\hat{L}^{\prime} \hat{L}^{\prime}$.

- We have

$$
\hat{L}^{\prime-1}=\left(\begin{array}{cccc}
\frac{1}{a} & 0 & \ldots & 0 \\
0 & \frac{1}{b} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \frac{1}{b}
\end{array}\right) \text { and } \hat{L}^{\prime}=\left(\begin{array}{cccc}
a & 0 & \ldots & 0 \\
0 & b & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b
\end{array}\right)
$$

- Note that a and b in the above equations depend on t, by the previous equations.

The Easy Case

$$
\begin{aligned}
& \frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cdot((n-1)(1-t)-n(1-2 t)) \\
& =\frac{1}{N^{2}} \cdot(\sqrt{1-2 t})^{n-3} \cdot(1-t)^{n-1} \cdot((n+1) t-1)
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
\operatorname{vol}\left(\hat{E}^{\prime}\right) & =\operatorname{vol}(B(0,1)) \cdot\left|\operatorname{det}\left(\hat{L}^{\prime}\right)\right| \\
& =\operatorname{vol}(B(0,1)) \cdot a b^{n-1} \\
& =\operatorname{vol}(B(0,1)) \cdot(1-t) \cdot\left(\frac{1-t}{\sqrt{1-2 t}}\right)^{n-1} \\
& =\operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}
\end{aligned}
$$

The Easy Case

- We obtain the minimum for $t=\frac{1}{n+1}$.
- For this value we obtain

$$
a=1-t=\frac{n}{n+1} \text { and } b=\frac{1-t}{\sqrt{1-2 t}}=\frac{n}{\sqrt{n^{2}-1}}
$$

To see the equation for b, observe that

$$
b^{2}=\frac{(1-t)^{2}}{1-2 t}=\frac{\left(1-\frac{1}{n+1}\right)^{2}}{1-\frac{2}{n+1}}=\frac{\left(\frac{n}{n+1}\right)^{2}}{\frac{n-1}{n+1}}=\frac{n^{2}}{n^{2}-1}
$$

The Easy Case

Let $\gamma_{n}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=a b^{n-1}$ be the ratio by which the volume changes:

$$
\begin{aligned}
\gamma_{n}^{2} & =\left(\frac{n}{n+1}\right)^{2}\left(\frac{n^{2}}{n^{2}-1}\right)^{n-1} \\
& =\left(1-\frac{1}{n+1}\right)^{2}\left(1+\frac{1}{(n-1)(n+1)}\right)^{n-1} \\
& \leq e^{-2 \frac{1}{n+1}} \cdot e^{\frac{1}{n+1}} \\
& =e^{-\frac{1}{n+1}}
\end{aligned}
$$

where we used $(1+x)^{a} \leq e^{a x}$ for $x \in \mathbb{R}$ and $a>0$.
This gives $\gamma_{n} \leq e^{-\frac{1}{2(n+1)}}$.

Our progress is the same:

$$
\begin{aligned}
e^{-\frac{1}{2(n+1)}} & \geq \frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(\hat{E})}=\frac{\operatorname{vol}\left(R\left(\hat{E}^{\prime}\right)\right)}{\operatorname{vol}(R(\hat{E}))} \\
& =\frac{\operatorname{vol}\left(\bar{E}^{\prime}\right)}{\operatorname{vol}(\bar{E})}=\frac{\operatorname{vol}\left(f\left(\bar{E}^{\prime}\right)\right)}{\operatorname{vol}(f(\bar{E}))}=\frac{\operatorname{vol}\left(E^{\prime}\right)}{\operatorname{vol}(E)}
\end{aligned}
$$

Here it is important that mapping a set with affine function $f(x)=L x+t$ changes the volume by factor $\operatorname{det}(L)$.

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_{1}
- Compute the new center \hat{c}^{\prime} and the new matrix \hat{Q}^{\prime} for this simplified setting.
- Use the transformations R and f to get the new center c^{\prime} and the new matrix Q^{\prime} for the original ellipsoid E.

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: $f(x)=L x+c$;
The halfspace to be intersected: $H=\left\{x \mid a^{t}(x-c) \leq 0\right\}$;

$$
\begin{aligned}
f^{-1}(H) & =\left\{f^{-1}(x) \mid a^{t}(x-c) \leq 0\right\} \\
& =\left\{f^{-1}(f(y)) \mid a^{t}(f(y)-c) \leq 0\right\} \\
& =\left\{y \mid a^{t}(f(y)-c) \leq 0\right\} \\
& =\left\{y \mid a^{t}(L y+c-c) \leq 0\right\} \\
& =\left\{y \mid\left(a^{t} L\right) y \leq 0\right\}
\end{aligned}
$$

This means $\bar{a}=L^{t} a$.

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_{1}-direction. Hence,

$$
R^{-1}\left(\frac{L^{t} a}{\left\|L^{t} a\right\|}\right)=-e_{1} \quad \Rightarrow \quad-\frac{L^{t} a}{\left\|L^{t} a\right\|}=R \cdot e_{1}
$$

Hence,

$$
\begin{aligned}
\bar{c}^{\prime}=R \cdot \hat{c}^{\prime} & =R \cdot \frac{1}{n+1} e_{1}=-\frac{1}{n+1} \frac{L^{t} a}{\left\|L^{t} a\right\|} \\
c^{\prime} & =f\left(\bar{c}^{\prime}\right)=L \cdot \bar{c}^{\prime}+c \\
& =-\frac{1}{n+1} L \frac{L^{t} a}{\left\|L^{t} a\right\|}+c \\
& =c-\frac{1}{n+1} \frac{Q a}{\sqrt{a^{t} Q a}}
\end{aligned}
$$

For computing the matrix Q^{\prime} of the new ellipsoid we assume in the following that $\hat{E}^{\prime}, \bar{E}^{\prime}$ and E^{\prime} refer to the ellispoids centered in the origin.

$$
\begin{aligned}
b^{2}-b^{2} \frac{2}{n+1} & =\frac{n^{2}}{n^{2}-1}-\frac{2 n^{2}}{(n-1)(n+1)^{2}} \\
& =\frac{n^{2}(n+1)-2 n^{2}}{(n-1)(n+1)^{2}}=\frac{n^{2}(n-1)}{(n-1)(n+1)^{2}}=a^{2}
\end{aligned}
$$

9 The Ellipsoid Algorithm

$$
\begin{aligned}
\bar{E}^{\prime} & =R\left(\hat{E}^{\prime}\right) \\
& =\left\{R(x) \mid x^{t} \hat{Q}^{\prime-1} x \leq 1\right\} \\
& =\left\{y \mid\left(R^{-1} y\right)^{t} \hat{Q}^{\prime-1} R^{-1} y \leq 1\right\} \\
& =\left\{y \mid y^{t}\left(R^{t}\right)^{-1} \hat{Q}^{\prime-1} R^{-1} y \leq 1\right\} \\
& =\{y \mid y^{t}(\underbrace{\left(\hat{Q}^{\prime} R^{t}\right.}_{\bar{Q}^{\prime}})^{-1} y \leq 1\}
\end{aligned}
$$

9 The Ellipsoid Algorithm

Hence,

$$
\begin{aligned}
\bar{Q}^{\prime} & =R \hat{Q}^{\prime} R^{t} \\
& =R \cdot \frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} e_{1} e_{1}^{t}\right) \cdot R^{t} \\
& =\frac{n^{2}}{n^{2}-1}\left(R \cdot R^{t}-\frac{2}{n+1}\left(R e_{1}\right)\left(R e_{1}\right)^{t}\right) \\
& =\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} \frac{L^{t} a a^{t} L}{\left\|L^{t} a\right\|^{2}}\right)
\end{aligned}
$$

9 The Ellipsoid Algorithm

Hence,

$$
\begin{aligned}
Q^{\prime} & =L \bar{Q}^{\prime} L^{t} \\
& =L \cdot \frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} \frac{L^{t} a a^{t} L}{a^{t} Q a}\right) \cdot L^{t} \\
& =\frac{n^{2}}{n^{2}-1}\left(Q-\frac{2}{n+1} \frac{Q a a^{t} Q}{a^{t} Q a}\right)
\end{aligned}
$$

9 The Ellipsoid Algorithm

$$
\begin{aligned}
E^{\prime} & =L\left(\bar{E}^{\prime}\right) \\
& =\left\{L(x) \mid x^{t} \bar{Q}^{\prime-1} x \leq 1\right\} \\
& =\left\{y \mid\left(L^{-1} y\right)^{t} \bar{Q}^{\prime-1} L^{-1} y \leq 1\right\} \\
& =\left\{y \mid y^{t}\left(L^{t}\right)^{-1} \bar{Q}^{\prime-1} L^{-1} y \leq 1\right\} \\
& =\{y \mid y^{t}(\underbrace{L \bar{Q}^{\prime} L^{t}}_{Q^{\prime}})^{-1} y \leq 1\}
\end{aligned}
$$

Incomplete Algorithm

```
Algorithm 1 ellipsoid-algorithm
    : input: point \(c \in \mathbb{R}^{n}\), convex set \(K \subseteq \mathbb{R}^{n}\)
    output: point \(x \in K\) or " \(K\) is empty"
    \(Q \leftarrow ? ? ?\)
    repeat
        if \(c \in K\) then return \(c\)
        else
            choose a violated hyperplane \(a\)
            \(c \leftarrow c-\frac{1}{n+1} \frac{Q a}{\sqrt{a^{t} Q a}}\)
            \(Q \leftarrow \frac{n^{2}}{n^{2}-1}\left(Q-\frac{2}{n+1} \frac{Q a a^{t} Q}{a^{t} Q a}\right)\)
        endif
    until ???
    return " \(K\) is empty"
```


Repeat: Size of basic solutions

Lemma 31
Let $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ be a bounded polytop. Let $\left\langle a_{\max }\right\rangle$ be the maximum encoding length of an entry in A. Then every
entry x_{j} in a basic solution fulfills $\left|x_{j}\right|=\frac{D_{j}}{D}$ with
$D_{j}, D \leq 2^{2 n\left\langle a_{\max }\right\rangle+n \log _{2} n}$.

In the following we use $\delta:=2^{n\left\langle a_{\max }\right\rangle+n \log _{2} n}$.
Note that here we have $P=\{x \mid A x \leq b\}$. The previous lemmas we had about the size of feasible solutions were slightly different as they were for different polytopes.

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded.

In this case every entry x_{i} in a basic solution fulfills $\left|x_{i}\right| \leq \delta$.
Hence, P is contained in the cube $-\delta \leq x_{i} \leq \delta$.

A vector in this cube has at most distance $R:=\sqrt{n} \delta$ from the origin.

Starting with the ball $E_{0}:=B(0, R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^{n} B(0,1) \leq(n \delta)^{n} B(0,1)$.

Repeat: Size of basic solutions

Proof:

Let $\bar{A}=\left[\begin{array}{cc}A & I_{m} \\ -A & \end{array}\right], \bar{b}=\binom{b}{-b}$, be the matrix and right-hand vector after transforming the system to standard form.

The determinant of the matrices \bar{A}_{B} and \bar{M}_{j} (matrix obt. when replacing the j-th column of \bar{A}_{B} by \bar{b}) can become at most

$$
\begin{aligned}
\operatorname{det}\left(\bar{A}_{B}\right), \operatorname{det}\left(\bar{M}_{j}\right) & \leq\left\|\vec{\ell}_{\max }\right\|^{n} \\
& \leq\left(\sqrt{n} \cdot 2^{\left\langle a_{\max }\right\rangle}\right)^{n} \leq 2^{n\left\langle a_{\max }\right\rangle+n \log _{2} n}
\end{aligned}
$$

where $\vec{\ell}_{\text {max }}$ is the longest column-vector that can be obtained after deleting all but n rows and columns from \bar{A}.

This holds because columns from I_{m} selected when going from \bar{A} to \bar{A}_{B} do not increase the determinant. Only the at most n columns from matrices A and $-A$ that \bar{A} consists of contribute.

When can we terminate?

Let $P:=\{x \mid A x \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop. Let $\left\langle a_{\max }\right\rangle$ be the encoding length of the largest entry in A or b.

Consider the following polytope

$$
P_{\lambda}:=\left\{x \left\lvert\, A x \leq b+\frac{1}{\lambda}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)\right.\right\},
$$

where $\lambda=\delta^{2}+1$.

Lemma 32

P_{λ} is feasible if and only if P is feasible.
\Longleftarrow : obvious

Let $\bar{A}=\left[\begin{array}{cc}A & \\ -A & I_{m}\end{array}\right]$, and $\bar{b}=\binom{b}{-b}$.
\bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$
x_{B}=\bar{A}_{B}^{-1} \bar{b}+\frac{1}{\lambda} \bar{A}_{B}^{-1}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

(The other x-values are zero)
The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$
\left(\bar{A}_{B}^{-1} \bar{b}\right)_{i}<0 \leq\left(\bar{A}_{B}^{-1} \bar{b}\right)_{i}+\frac{1}{\lambda}\left(\bar{A}_{B}^{-1} \overrightarrow{1}\right)_{i}
$$

Consider the polytops

$$
\bar{P}=\left\{x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array} I_{m}\right] x=\binom{b}{-b}\right. ; x \geq 0\right\}
$$

and

$$
\bar{P}_{\lambda}=\left\{x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array} I_{m}\right] x=\binom{b}{-b}+\frac{1}{\lambda}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)\right. ; x \geq 0\right\} .
$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.
\bar{P}_{λ} is bounded since P_{λ} and P are bounded.

By Cramers rule we get

$$
\left(\bar{A}_{B}^{-1} \bar{b}\right)_{i}<0 \quad \Longrightarrow \quad\left(\bar{A}_{B}^{-1} \bar{b}\right)_{i} \leq-\frac{1}{\operatorname{det}\left(\bar{A}_{B}\right)}
$$

and

$$
\left(\bar{A}_{B}^{-1} \overrightarrow{1}\right)_{i} \leq \operatorname{det}\left(\bar{M}_{j}\right),
$$

where \bar{M}_{j} is obtained by replacing the j-th column of \bar{A}_{B} by $\overrightarrow{1}$.
However, we showed that the determinants of \bar{A}_{B} and \bar{M}_{j} can become at most δ.

Since, we chose $\lambda=\delta^{2}+1$ this gives a contradiction.
EADS II
© Harald Räcke $\quad 9$ The Ellipsoid Algorithm $\quad 197$

Lemma 33

If P_{λ} is feasible then it contains a ball of radius $r:=1 / \delta^{3}$. This has a volume of at least $r^{n} \operatorname{vol}\left(B(0,1)=\frac{1}{\delta^{3 n}} \operatorname{vol}(B(0,1))\right.$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.
This means $A x \leq b$.
Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$
\begin{aligned}
\left(A(x+\vec{\ell})_{i}\right. & =(A x)_{i}+(A \vec{\ell})_{i} \leq b_{i}+A_{i} \vec{\ell} \\
& \leq b_{i}+\left\|A_{i}\right\| \cdot\|\vec{\ell}\| \leq b_{i}+\sqrt{n} \cdot 2^{\left\langle a_{\max }\right\rangle} \cdot r \\
& \leq b_{i}+\frac{\sqrt{n} \cdot 2^{\left\langle a_{\max }\right\rangle}}{\delta^{3}} \leq b_{i}+\frac{1}{\delta^{2}+1} \leq b_{i}+\frac{1}{\lambda}
\end{aligned}
$$

Hence, $x+\vec{\ell}$ is feasible for P_{λ} which proves the lemma.

How many iterations do we need until the volume becomes too small?

$$
e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0, R))<\operatorname{vol}(B(0, r))
$$

Hence,

$$
\begin{aligned}
i & >2(n+1) \ln \left(\frac{\operatorname{vol}(B(0, R))}{\operatorname{vol}(B(0, r))}\right) \\
& =2(n+1) \ln \left(n^{n} \delta^{n} \cdot \delta^{3 n}\right) \\
& =8 n(n+1) \ln (\delta)+2(n+1) n \ln (n) \\
& =\mathcal{O}\left(\operatorname{poly}\left(n,\left\langle a_{\max }\right\rangle\right)\right)
\end{aligned}
$$

Separation Oracle:

Let $K \subseteq \mathbb{R}^{n}$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^{n}$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.
In order to find a point in K we need

- a guarantee that a ball of radius r is contained in K,
- an initial ball $B(c, R)$ with radius R that contains K,
- a separation oracle for K.

The Ellipsoid algorithm requires $\mathcal{O}(\operatorname{poly}(n) \cdot \log (R / r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.
until $\operatorname{det}(Q) \leq r^{2 n} / /$ i.e., $\operatorname{det}(L) \leq r^{n}$
return " K is empty"

10 Karmarkars Algorithm

We want to solve the following linear program:

- $\min v=c^{t} x$ subject to $A x=0$ and $x \in \Delta$.
- Here $\Delta=\left\{x \in \mathbb{R}^{n} \mid e^{t} x=1, x \geq 0\right\}$ with $e^{t}=(1, \ldots, 1)$ denotes the standard simplex in \mathbb{R}^{n}.

Further assumptions:

1. A is an $m \times n$-matrix with rank m.
2. $A e=0$, i.e., the center of the simplex is feasible.
3. The optimum solution is 0 .

10 Karmarkars Algorithm

The algorithm computes (strictly) feasible interior points
$\bar{x}^{(0)}=\frac{e}{n}, x^{(1)}, x^{(2)}, \ldots$ with

$$
c^{t} x^{k} \leq 2^{-\Theta(L)} c^{t} x^{0}
$$

For $k=\Theta(L)$. A point x is strictly feasible if $x>0$.
If my objective value is close enough to 0 (the optimum!!) I can "snap" to an optimum vertex.

10 Karmarkars Algorithm

Suppose you start with $\max \left\{c^{t} x \mid A x=b ; x \geq 0\right\}$.

- Multiply c by -1 and do a minimization. \Rightarrow minimization problem
- We can check for feasibility by using the two phase algorithm. \Rightarrow can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. \Rightarrow optimum is 0
- Add a new variable pair $x_{\ell}, x_{\ell}^{\prime}$ (both restricted to be positive) and the constraint $\sum_{i} x_{i}=1 . \Rightarrow$ solution in simplex
- Add $-\left(\sum_{i} x_{i}\right) b_{i}=-b_{i}$ to every constraint. \Rightarrow vector b is 0
- If A does not have full column rank we can delete constraints (or conclude that the LP is infeasible).
$\Rightarrow A$ has full row rank
We still need to make e / n feasible.

10 Karmarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so that the current point \bar{x} moves to the center.
2. Project the optimization direction c onto the feasible region. Determine a distance to travel along this direction such that you do not leave the simplex (and you do not touch the border). \hat{x} is the point you reached.
3. Do a backtransformation to transform \hat{x} into your new point x^{\prime}.

The Transformation

Let $\bar{Y}=\operatorname{diag}(\bar{x})$ the diagonal matrix with entries \bar{x} on the diagonal.

Define

$$
F_{\bar{x}}: x \mapsto \frac{\bar{Y}^{-1} x}{e^{t} \bar{Y}^{-1} x}
$$

The inverse function is

$$
F_{\bar{x}}^{-1}: \hat{x} \mapsto \frac{\bar{Y} \hat{x}}{e^{t} \bar{Y} \hat{x}}
$$

Note that $\bar{x}>0$ in every coordinate. Therefore the above is well defined.

Properties

\bar{x} is mapped to e / n

$$
F_{\bar{x}}(\bar{x})=\frac{\bar{Y}^{-1} \bar{x}}{e^{t} \bar{Y}^{-1} \bar{x}}=\frac{e}{e^{t} e}=\frac{e}{n}
$$

Properties

$F_{\bar{x}}^{-1}$ really is the inverse of $F_{\bar{x}}$:

$$
F_{\bar{x}}\left(F_{\bar{x}}^{-1}(\hat{x})\right)=\frac{\bar{Y}^{-1} \frac{\bar{Y} \hat{x}}{e^{t} \hat{Y}}}{e^{t} \bar{Y}^{-1} \frac{\bar{Y} \hat{x}}{e^{t} \hat{Y} \hat{x}}}=\frac{\hat{x}}{e^{t} \hat{x}}=\hat{x}
$$

because $\hat{x} \in \Delta$.
Note that in particular every $\hat{x} \in \Delta$ has a preimage (Urbild) under $F_{\bar{x}}$.

Properties

A unit vectors $\boldsymbol{e}_{\boldsymbol{i}}$ is mapped to itself:

$$
F_{\bar{x}}\left(e_{i}\right)=\frac{\bar{Y}^{-1} e_{i}}{e^{t} \bar{Y}^{-1} e_{i}}=\frac{\left(0, \ldots, 0, \bar{x}_{i}, 0, \ldots, 0\right)^{t}}{e^{t}\left(0, \ldots, 0, \bar{x}_{i}, 0, \ldots, 0\right)^{t}}=e_{i}
$$

Properties

All nodes of the simplex are mapped to the simplex:

$$
F_{\bar{x}}(x)=\frac{\bar{Y}^{-1} x}{e^{t} \bar{Y}^{-1} x}=\frac{\left(\frac{x_{1}}{\bar{x}_{1}}, \ldots, \frac{x_{n}}{\bar{x}_{n}}\right)^{t}}{e^{t\left(\frac{x_{1}}{\bar{x}_{1}}, \ldots, \frac{x_{n}}{\bar{x}_{n}}\right)^{t}}}=\frac{\left(\frac{x_{1}}{\bar{x}_{1}}, \ldots, \frac{x_{n}}{\bar{x}_{n}}\right)^{t}}{\sum_{i} \frac{x_{i}}{\bar{x}_{i}}} \in \Delta
$$

10 Karmarkars Algorithm

After the transformation we have the problem

$$
\begin{aligned}
& \min \left\{c^{t} F_{\bar{x}}^{-1}(x) \mid A F_{\bar{x}}^{-1}(x)=0 ; x \in \Delta\right\} \\
& \\
& \quad=\min \left\{\left.\frac{c^{t} \bar{Y} x}{e^{t} \bar{Y} x} \right\rvert\, \frac{A \bar{Y} x}{e^{t} \bar{Y} x}=0 ; x \in \Delta\right\}
\end{aligned}
$$

This holds since the back-transformation "reaches" every point in Δ (i.e. $F_{\tilde{\chi}}^{-1}(\Delta)=\Delta$).

Since the optimum solution is 0 this problem is the same as

$$
\min \left\{\hat{c}^{t} x \mid \hat{A} x=0, x \in \Delta\right\}
$$

with $\hat{c}=\bar{Y}^{t} c=\bar{Y} c$ and $\hat{A}=A \bar{Y}$.

The Transformation

Easy to check:

- $F_{\bar{x}}^{-1}$ really is the inverse of $F_{\bar{x}}$.
- \bar{x} is mapped to e / n.
- A unit vectors e_{i} is mapped to itself.
- All nodes of the simplex are mapped to the simplex.

We still need to make e / n feasible.

- We know that our LP is feasible. Let \bar{x} be a feasible point.
- Apply $F_{\bar{x}}$, and solve

$$
\min \left\{\hat{c}^{t} x \mid \hat{A} x=0 ; x \in \Delta\right\}
$$

- The feasible point is moved to the center.

10 Karmarkars Algorithm

When computing \hat{x} we do not want to leave the simplex or touch its boundary (why?).

For this we compute the radius of a ball that completely lies in the simplex.

$$
B\left(\frac{e}{n}, \rho\right)=\left\{x \in \mathbb{R}^{n} \left\lvert\,\left\|x-\frac{e}{n}\right\| \leq \rho\right.\right\}
$$

We are looking for the largest radius r such that

$$
B\left(\frac{e}{n}, r\right) \cap\left\{x \mid e^{t} x=1\right\} \subseteq \Delta
$$

The Simplex

10 Karmarkars Algorithm

This holds for $r=\left\|\frac{e}{n}-\left(e-e_{1}\right) \frac{1}{n-1}\right\|$. (r is the distance between the center e / n and the center of the ($n-1$)-dimensional simplex obtained by intersecting a side $\left(x_{i}=0\right)$ of the unit cube with Δ.)

This gives $r=\frac{1}{\sqrt{n(n-1)}}$.
Now we consider the problem

$$
\min \left\{\hat{c}^{t} x \mid \hat{A} x=0, x \in B(e / n, r) \cap \Delta\right\}
$$

10 Karmarkars Algorithm

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A} x=0$ or the constraint $x \in \Delta$.

Therefore we first project \hat{c} on the nullspace of

$$
B=\binom{\hat{A}}{e^{t}}
$$

We use

$$
P=I-B^{t}\left(B B^{t}\right)^{-1} B
$$

Then

$$
\hat{d}=P \hat{c}
$$

is the required projection.

10 Karmarkars Algorithm

We get the new point

$$
\hat{x}(\rho)=\frac{e}{n}-\rho \frac{\hat{d}}{\|d\|}
$$

for $\rho<r$.
Choose $\rho=\alpha r$ with $\alpha=1 / 4$.

Lemma 34

The new point \hat{x} in the transformed space is the point that minimizes the cost $\hat{c}^{t} x$ among all feasible points in $B\left(\frac{e}{n}, \rho\right)$.

Proof: Let z be another feasible point in $B\left(\frac{e}{n}, \rho\right)$.

As $\hat{A} z=0, \hat{A} \hat{x}=0, e^{t} z=1, e^{t} \hat{x}=1$ we have

$$
B(\hat{x}-z)=0
$$

Further,

$$
\begin{aligned}
(\hat{c}-d)^{t} & =(\hat{c}-P \hat{c})^{t} \\
& =\left(B^{t}\left(B B^{t}\right)^{-1} B \hat{c}\right)^{t} \\
& =\hat{c}^{t} B^{t}\left(B B^{t}\right)^{-1} B
\end{aligned}
$$

Hence, we get

$$
(\hat{c}-d)^{t}(\hat{x}-z)=0 \text { or } \hat{c}^{t}(\hat{x}-z)=d^{t}(\hat{x}-z)
$$

which means that the cost-difference between \hat{x} and z is the same measured w.r.t. the cost-vector \hat{c} or the projected cost-vector d.

In order to measure the progress of the algorithm we introduce a potential function f :

$$
f(x)=\sum_{j} \ln \left(\frac{c^{t} x}{x_{j}}\right)=n \ln \left(c^{t} x\right)-\sum_{j} \ln \left(x_{j}\right)
$$

- The function f is invariant to scaling (i.e., $f(k x)=f(x)$).
- The potential function essentially measures cost (note the term $n \ln \left(c^{t} x\right)$) but it penalizes us for choosing x_{j} values very small (by the term $-\sum_{j} \ln \left(x_{j}\right)$; note that $-\ln \left(x_{j}\right)$ is always positive).

But

$$
\frac{d^{t}}{\|d\|}(\hat{x}-z)=\frac{d^{t}}{\|d\|}\left(\frac{e}{n}-\rho \frac{d}{\|d\|}-z\right)=\frac{d^{t}}{\|d\|}\left(\frac{e}{n}-z\right)-\rho<0
$$

as $\frac{e}{n}-z$ is a vector of length at most ρ.
This gives $d(\hat{x}-z) \leq 0$ and therefore $\hat{c} \hat{x} \leq \hat{c} z$.

For a point z in the transformed space we use the potential function

$$
\begin{aligned}
\hat{f}(z) & :=f\left(F_{\bar{x}}^{-1}(z)\right)=f\left(\frac{\bar{Y} z}{e^{t} \bar{Y} z}\right)=f(\bar{Y} z) \\
& =\sum_{j} \ln \left(\frac{c^{t} \bar{Y} z}{\bar{x}_{j} z_{j}}\right)=\sum_{j} \ln \left(\frac{\hat{c}^{t} z}{z_{j}}\right)-\sum_{j} \ln \bar{x}_{j}
\end{aligned}
$$

Observation:

This means the potential of a point in the transformed space is simply the potential of its pre-image under F.

Note that if we are interested in potential-change we can ignore the additive term above. Then f and \hat{f} have the same form; only c is replaced by \hat{c}.

The basic idea is to show that one iteration of Karmarkar results in a constant decrease of \hat{f}. This means

$$
\hat{f}(\hat{x}) \leq \hat{f}\left(\frac{e}{n}\right)-\delta,
$$

where δ is a constant.

This gives

$$
f\left(\bar{x}_{\text {new }}\right) \leq f(\bar{x})-\delta
$$

et z^{*} be the feasible point in the transformed space where $\hat{c}^{t} x$ is minimized. (Note that in contrast \hat{x} is the point in the intersection of the feasible region and $B\left(\frac{e}{n}, \rho\right)$ that minimizes this function; in general $z^{*} \neq \hat{x}$)
z^{*} must lie at the boundary of the simplex. This means
$z^{*} \notin B\left(\frac{e}{n}, \rho\right)$.

The point z we want to use lies farthest in the direction from $\frac{e}{n}$ to z^{*}, namely

$$
z=(1-\lambda) \frac{e}{n}+\lambda z^{*}
$$

for some positive $\lambda<1$.

Lemma 35
There is a feasible point z (i.e., $\hat{A} z=0$) in $B\left(\frac{e}{n}, \rho\right) \cap \Delta$ that has

$$
\hat{f}(z) \leq \hat{f}\left(\frac{e}{n}\right)-\delta
$$

with $\delta=\ln (1+\alpha)$.

Note that this shows the existence of a good point within the ball. In general it will be difficult to find this point.

Hence,

$$
\hat{c}^{t} z=(1-\lambda) \hat{c}^{t} \frac{e}{n}+\lambda \hat{c}^{t} z^{*}
$$

The optimum cost (at z^{*}) is zero.

Therefore,

$$
\frac{\hat{c}^{t} \frac{e}{n}}{\hat{c}^{t} z}=\frac{1}{1-\lambda}
$$

	EADS II © Harald Räcke	10 Karmarkars Algorithm	229

The improvement in the potential function is

$$
\begin{aligned}
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z) & =\sum_{j} \ln \left(\frac{\hat{c}^{t} \frac{e}{n}}{\frac{1}{n}}\right)-\sum_{j} \ln \left(\frac{\hat{c}^{t} z}{z_{j}}\right) \\
& =\sum_{j} \ln \left(\frac{\hat{c}^{t} \frac{e}{n}}{\hat{c}^{t} z} \cdot \frac{z_{j}}{\frac{1}{n}}\right) \\
& =\sum_{j} \ln \left(\frac{n}{1-\lambda} z_{j}\right) \\
& =\sum_{j} \ln \left(\frac{n}{1-\lambda}\left((1-\lambda) \frac{1}{n}+\lambda z_{j}^{*}\right)\right) \\
& =\sum_{j} \ln \left(1+\frac{n \lambda}{1-\lambda} z_{j}^{*}\right)
\end{aligned}
$$

In order to get further we need a bound on λ :

$$
\alpha r=\rho=\|z-e / n\|=\left\|\lambda\left(z^{*}-e / n\right)\right\| \leq \lambda R
$$

Here R is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.
$R=\sqrt{(n-1) / n}$. Since $r=1 / \sqrt{(n-1) n}$ we have $R / r=n-1$ and

$$
\lambda \geq \alpha /(n-1)
$$

Then

$$
1+n \frac{\lambda}{1-\lambda} \geq 1+\frac{n \alpha}{n-\alpha-1} \geq 1+\alpha
$$

This gives the lemma.

Lemma 36

If we choose $\alpha=1 / 4$ and $n \geq 4$ in Karmarkars algorithm the point \hat{x} satisfies

$$
\hat{f}(\hat{x}) \leq \hat{f}\left(\frac{e}{n}\right)-\delta
$$

with $\delta=1 / 10$.

$$
\begin{aligned}
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z) & =\sum_{j} \ln \left(1+\frac{n \lambda}{1-\lambda} z_{j}^{*}\right) \\
& \geq \ln \left(1+\frac{n \lambda}{1-\lambda}\right)
\end{aligned}
$$

Proof:

Define

$$
\begin{aligned}
g(x) & =n \ln \frac{\hat{c}^{t} x}{\hat{c}^{t} \frac{e}{n}} \\
& =n\left(\ln \hat{c}^{t} x-\ln \hat{c}^{t} \frac{e}{n}\right) .
\end{aligned}
$$

This is the change in the cost part of the potential function when going from the center $\frac{e}{n}$ to the point x in the transformed space.

We want to derive a lower bound on	
$\hat{f}\left(\frac{e}{n}\right)-\hat{f}(\hat{x})=$	$\left[\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z)\right]$
	$+h(z)$
	$-h(x)$
	$+[g(z)-g(\hat{x})]$

where z is the point in the ball where \hat{f} achieves its minimum.

Similar, the penalty when going from $\frac{e}{n}$ to w increases by

$$
h(w)=\operatorname{pen}(w)-\operatorname{pen}\left(\frac{e}{n}\right)=-\sum_{j} \ln \frac{w_{j}}{\frac{1}{n}}
$$

where $\operatorname{pen}(v)=-\sum_{j} \ln \left(v_{j}\right)$.

We have

$$
\left[\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z)\right] \geq \ln (1+\alpha)
$$

by the previous lemma.

We have

$$
[g(z)-g(\hat{x})] \geq 0
$$

since \hat{x} is the point with minimum cost in the ball, and g is monotonically increasing with cost.

For a point in the ball we have

$$
\hat{f}(w)-\left(\hat{f}\left(\frac{e}{n}\right)+g(w)\right) h(w)
$$

(The increase in penalty when going from $\frac{e}{n}$ to w).
This is at most $\frac{\beta^{2}}{2(1-\beta)}$ with $\beta=n \alpha r$.
Hence,

$$
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(\hat{x}) \geq \ln (1+\alpha)-\frac{\beta^{2}}{(1-\beta)}
$$

Lemma 37
For $|x| \leq \beta<1$

$$
|\ln (1+x)-x| \leq \frac{x^{2}}{2(1-\beta)}
$$

The decrease in potential is therefore at least

$$
\ln (1+\alpha)-\frac{\beta^{2}}{1-\beta}
$$

with $\beta=n \alpha r=\alpha \sqrt{\frac{n}{n-1}}$.
It can be shown that this is at least $\frac{1}{10}$ for $n \geq 4$ and $\alpha=1 / 4$.

Let $\bar{x}^{(k)}$ be the current point after the k-th iteration, and let $\bar{x}^{(0)}=\frac{e}{n}$.

Then $f\left(\bar{x}^{(k)}\right) \leq f(e / n)-k / 10$.
This gives

$$
\begin{aligned}
n \ln \frac{c^{t} \bar{x}^{(k)}}{c^{t} \frac{e}{n}} & \leq \sum_{j} \ln \bar{x}_{j}^{(k)}-\sum_{j} \ln \frac{1}{n}-k / 10 \\
& \leq n \ln n-k / 10
\end{aligned}
$$

Choosing $k=10 n(\ell+\ln n)$ with $\ell=\Theta(L)$ we get

$$
\frac{c^{t} \bar{x}^{(k)}}{c^{t} \frac{e}{n}} \leq e^{-\ell} \leq 2^{-\ell}
$$

Hence, $\Theta(n L)$ iterations are sufficient. One iteration can be performed in time $\mathcal{O}\left(n^{3}\right)$.

Part III

Approximation Algorithms

Definition 38
An α-approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

Minimization Problem:

Let \mathcal{I} denote the set of problem instances, and let for a given instance $I \in \mathcal{I}, \mathcal{F}(I)$ denote the set of feasible solutions. Further let $\operatorname{cost}(F)$ denote the cost of a feasible solution $F \in \mathcal{F}$.

Let for an algorithm A and instance $I \in \mathcal{I}, A(I) \in \mathcal{F}(I)$ denote the feasible solution computed by A. Then A is an approximation algorithm with approximation guarantee $\alpha \geq 1$ if

$$
\forall I \in \mathcal{I}: \operatorname{cost}(A(I)) \leq \alpha \cdot \min _{F \in \mathcal{F}(I)}\{\operatorname{cost}(F)\}=\alpha \cdot \mathrm{OPT}(I)
$$

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

Maximization Problem:

Let \mathcal{I} denote the set of problem instances, and let for a given instance $I \in \mathcal{I}, \mathcal{F}(I)$ denote the set of feasible solutions. Further let $\operatorname{profit}(F)$ denote the profit of a feasible solution $F \in \mathcal{F}$.

Let for an algorithm A and instance $I \in \mathcal{I}, A(I) \in \mathcal{F}(I)$ denote the feasible solution computed by A. Then A is an approximation algorithm with approximation guarantee $\alpha \leq 1$ if

$$
\forall I \in \mathcal{I}: \operatorname{cost}(A(I)) \geq \alpha \cdot \max _{F \in \mathcal{F}(I)}\{\operatorname{profit}(F)\}=\alpha \cdot \mathrm{OPT}(I)
$$

What can we hope for?

Definition 39
A polynomial-time approximation scheme (PTAS) is a family of algorithms $\left\{A_{\epsilon}\right\}$, such that A_{ϵ} is a $(1+\epsilon)$-approximation algorithm (for minimization problems) or a
($1-\epsilon$)-approximation algorithm (for maximization problems).

Many NP-complete problems have polynomial time approximation schemes.

There are difficult problems!

The class MAXSNP (which we do not define) contains optimization problems like maximum cut or MAX-3SAT

Theorem 40
For any MAX SNP-hard problem, there does not exist a polynomial-time approximation scheme, unless $\mathrm{P}=\mathrm{NP}$.

MAXCUT. Given a graph $G=(V, E)$; partition V into two disjoint pieces A and B s.t. the number of edges between both pieces is maximized.
MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

There are really difficult problems!

Theorem 41
For any constant $\epsilon>0$ there does not exist an
$\Omega\left(n^{\epsilon-1}\right)$-approximation algorithm for the maximum clique problem on a given graph G with n nodes unless $\mathrm{P}=\mathrm{NP}$.

Note that an $1 / n$-approximation is trivial.

Tull EADS II	11 Introduction

A crucial ingredient for the design and analysis of approximation

Definition 42

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 43

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

Set Cover

Given a ground set U, a collection of subsets $S_{1}, \ldots, S_{k} \subseteq U$, where the i-th subset S_{i} has weight/cost w_{i}. Find a collection $I \subseteq\{1, \ldots, k\}$ such that

$$
\forall u \in U \exists i \in I: u \in S_{i} \text { (every element is covered) }
$$

and

$$
\sum_{i \in I} w_{i} \text { is minimized }
$$

IP-Formulation of Set Cover

min		$\sum_{i} w_{i} x_{i}$	
s.t.	$\forall u \in U$	$\sum_{i: u \in S_{i}} x_{i}$	≥ 1
	$\forall i \in\{1, \ldots, k\}$	x_{i}	$\in\{0,1\}$

Vertex Cover

Given a graph $G=(V, E)$ and a weight w_{v} for every node. Find a vertex subset $S \subseteq V$ of minimum weight such that every edge is incident to at least one vertex in S.

Maximum Weighted Matching

Given a graph $G=(V, E)$, and a weight w_{e} for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

\max	$\sum_{e \in E} w_{e} x_{e}$			
s.t.	$\forall v \in V$	$\sum_{e: v \in e} x_{e}$	≤ 1	
	$\forall e \in E$	x_{e}	$\in\{0,1\}$	

IP-Formulation of Vertex Cover

```
min }\mp@subsup{\sum}{v\inV}{}\mp@subsup{w}{v}{}\mp@subsup{x}{v}{
s.t. }\foralle=(i,j)\inE \mp@subsup{x}{i}{}+\mp@subsup{x}{j}{}\geq
    \forallv\inV }\quad\mp@subsup{x}{v}{}\in{0,1
```


Maximum Independent Set

Given a graph $G=(V, E)$, and a weight w_{v} for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

\max		$\sum_{v \in V} w_{v} x_{v}$	
s.t.	$\forall e=(i, j) \in E$	$x_{i}+x_{j}$	≤ 1
	$\forall v \in V$	x_{v}	$\in\{0,1\}$

Knapsack

Given a set of items $\{1, \ldots, n\}$, where the i-th item has weight w_{i} and profit p_{i}, and given a threshold K. Find a subset $I \subseteq\{1, \ldots, n\}$ of items of total weight at most K such that the profit is maximized.

\max		$\sum_{i=1}^{n} p_{i} x_{i}$	
s.t.	$\forall i \in\{1, \ldots, n\}$	$\sum_{i=1}^{n} w_{i} x_{i}$	$\leq K$
	x_{i}	$\in\{0,1\}$	

Facility Location

\min		$\sum_{f} x_{f} o(f)+\sum_{c} \sum_{f} y_{c f} s(c, f)$	
s.t.	$\forall c \in C, f \in L$	$y_{c f}$	$\leq x_{f}$
	$\forall c \in C$	$\sum_{f} y_{c f}$	≥ 1
	$\forall f \in L$	x_{f}	$\in\{0,1\}$
	$\forall c \in C, f \in L$	$y_{c f}$	$\in\{0,1\}$

- $y_{+} c f \leq x_{f}$ ensures that we cannot assign customers to facilities that are not open.
- $\sum_{f} y_{c f} \geq 1$ ensures that every customer is assigned to a facility.

Facility Location

Given a set L of (possible) locations for placing facilities and a set C of customers together with cost functions $s: C \times L \rightarrow \mathbb{R}^{+}$ and $o: L \rightarrow \mathbb{R}^{+}$find a set of facility locations F together with an assignment $\phi: C \rightarrow F$ of customers to open facilities such that

$$
\sum_{f \in F} o(f)+\sum_{c} s(c, \phi(c))
$$

is minimized.
In the metric facility location problem we have

$$
s(c, f) \leq s\left(c, f^{\prime}\right)+s\left(c^{\prime}, f\right)+s\left(c^{\prime}, f^{\prime}\right)
$$

Relaxations

Definition 44

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_{i} \in[0,1]$ instead of $x_{i} \in\{0,1\}$.

By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_{i}-values with $x_{i} \geq \frac{1}{f}$ to 1 . Set all other x_{i}-values to 0 .

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

min		$\sum_{i=1}^{k} w_{i} x_{i}$	
s.t.	$\forall u \in U$	$\sum_{i: u \in S_{i}} x_{i} \geq 1$	
	$\forall i \in\{1, \ldots, k\}$	$x_{i} \in[0,1]$	

Let f_{u} be the number of sets that the element u is contained in (the frequency of u). Let $f=\max _{u}\left\{f_{u}\right\}$ be the maximum frequency.

Technique 1: Round the LP solution.

Lemma 45

The rounding algorithm gives an f-approximation.
Proof: Every $u \in U$ is covered.

- We know that $\sum_{i: u \in S_{i}} x_{i} \geq 1$.
- The sum contains at most $f_{u} \leq f$ elements.
- Therefore one of the sets that contain u must have $x_{i} \geq 1 / f$.
- This set will be selected. Hence, u is covered.

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f. OPT.

$$
\begin{aligned}
\sum_{i \in I} w_{i} & \leq \sum_{i=1}^{k} w_{i}\left(f \cdot x_{i}\right) \\
& =f \cdot \operatorname{cost}(x) \\
& \leq f \cdot \mathrm{OPT}
\end{aligned}
$$

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$
\sum_{u: u \in S_{i}} y_{u}=w_{i}
$$

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

$$
\begin{array}{cl}
\min & \sum_{i \in I} w_{i} x_{i} \\
\text { s.t. } \forall u & \sum_{i: u \in S_{i}} x_{i} \geq 1 \\
& x_{i} \geq 0
\end{array}
$$

Dual:

$\max \quad \sum_{u \in U} y_{u}$		
s.t.	$\forall i \quad \sum_{u: u \in S_{i}} y_{u}$	$\leq w_{i}$
	y_{u}	≥ 0

Technique 2: Rounding the Dual Solution.

Lemma 46
The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- This means $\sum_{u: u \in S_{i}} y_{u}<w_{i}$ for all sets S_{i} that contain u.
- But then y_{u} could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

EADS II		
OHarald Räcke	13.2 Rounding the Dual	273

Technique 2: Rounding the Dual Solution.

Proof:

$$
\begin{aligned}
\sum_{i \in I} w_{i} & =\sum_{i \in I} \sum_{u: u \in S_{i}} y_{u} \\
& =\sum_{u}\left|\left\{i \in I: u \in S_{i}\right\}\right| \cdot y_{u} \\
& \leq \sum_{u} f_{u} y_{u} \\
& \leq f \sum_{u} y_{u} \\
& \leq f \operatorname{cost}\left(x^{*}\right) \\
& \leq f \cdot \operatorname{OPT}
\end{aligned}
$$

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$
\sum_{u} y_{u} \leq \operatorname{cost}\left(x^{*}\right) \leq \mathrm{OPT}
$$

where x^{*} is an optimum solution to the primal LP.
2. The set I contains only sets for which the dual inequality is tight.
Of course, we also need that I is a cover.

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$
I \subseteq I^{\prime}
$$

This means I^{\prime} is never better than I.

- Suppose that we take S_{i} in the first algorithm. I.e., $i \in I$.
- This means $x_{i} \geq \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose S_{i}.

Technique 3: The Primal Dual Method

```
Algorithm 1 PrimalDual
    1: \(y \leftarrow 0\)
    2: \(I \leftarrow \emptyset\)
    3: while exists \(u \notin \bigcup_{i \in I} S_{i}\) do
4: increase dual variable \(y_{i}\) until constraint for some
        new set \(S_{\ell}\) becomes tight
5: \(\quad I \leftarrow I \cup\{\ell\}\)
```


Technique 4: The Greedy Algorithm

```
Algorithm 1 Greedy
    I\leftarrow\emptyset
    \mp@subsup{\hat{S}}{j}{}\leftarrow\mp@subsup{S}{j}{}\quad\mathrm{ for all j}
    while I not a set cover do
        \ell\leftarrowarg min
        I\leftarrowI\cup{\ell}
        \mp@subsup{\hat{S}}{j}{}\leftarrow\mp@subsup{\hat{S}}{j}{}-\mp@subsup{S}{\ell}{}\quad\mathrm{ for all }j
```

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|} \leq \frac{\sum_{j \in \mathrm{OPT}} w_{j}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}=\frac{\mathrm{OPT}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|} \leq \frac{\mathrm{OPT}}{n_{\ell}}
$$

since an optimal algorithm can cover the remaining n_{ℓ} elements with cost OPT.

Let \hat{S}_{j} be a subset that minimizes this ratio. Hence, $w_{j} /\left|\hat{S}_{j}\right| \leq \frac{\mathrm{OPT}}{n_{\ell}}$.

Technique 4: The Greedy Algorithm

Lemma 47

Given positive numbers a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k} then

$$
\min _{i} \frac{a_{i}}{b_{i}} \leq \frac{\sum_{i} a_{i}}{\sum_{i} b_{i}} \leq \max _{i} \frac{a_{i}}{b_{i}}
$$

Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1}=n_{\ell}-\left|\hat{S}_{j}\right|$.

$$
w_{j} \leq \frac{\left|\hat{S}_{j}\right| \mathrm{OPT}}{n_{\ell}}=\frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT}
$$

Technique 4: The Greedy Algorithm

$$
\begin{aligned}
\sum_{j \in I} w_{j} & \leq \sum_{\ell=1}^{s} \frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT} \\
& \leq \mathrm{OPT} \sum_{\ell=1}^{s}\left(\frac{1}{n_{\ell}}+\frac{1}{n_{\ell}-1}+\cdots+\frac{1}{n_{\ell+1}+1}\right) \\
& =\text { OPT } \sum_{i=1}^{k} \frac{1}{i} \\
& =H_{n} \cdot \mathrm{OPT} \leq \mathrm{OPT}(\ln n+1) .
\end{aligned}
$$

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S_{j} uniformly at random with probability $1-x_{j}$ (for all j).
Version A: Repeat rounds until you have a cover.
Version B: Repeat for s rounds. If you have a cover STOP Otherwise, repeat the whole algorithm.

Probability that $u \in U$ is not covered (in one round):

$\operatorname{Pr}[u$ not covered in one round]

$$
\begin{aligned}
& =\prod_{j: u \in S_{j}}\left(1-x_{j}\right) \leq \prod_{j: u \in S_{j}} e^{-x_{j}} \\
& =e^{-\sum_{j: u \in S_{j}} x_{j}} \leq e^{-1}
\end{aligned}
$$

Probability that $u \in U$ is not covered (after ℓ rounds):
$\operatorname{Pr}[u$ not covered after ℓ round $] \leq \frac{1}{e^{\ell}}$.
$=\operatorname{Pr}\left[u_{1}\right.$ not covered $\vee u_{2}$ not covered $\vee \ldots \vee u_{n}$ not covered $]$
$\leq \sum_{i} \operatorname{Pr}\left[u_{i}\right.$ not covered after ℓ rounds $] \leq n e^{-\ell}$.

Lemma 48
With high probability $\mathcal{O}(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $\mathcal{O}(\log n)$ with probability at least $1-n^{-\alpha}$.

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] }\cdotE[\mathrm{ cost | success]
+ Pr[no success] \cdot E[cost| no success]
```

This means
E [cost | success]
$=\frac{1}{\operatorname{Pr}[\text { sucess }]}(E[$ cost $]-\operatorname{Pr}[$ no success $] \cdot E[$ cost \mid no success $])$
$\leq \frac{1}{\operatorname{Pr}[\text { sucess }]} E[$ cost $] \leq \frac{1}{1-n^{-\alpha}}(\alpha+1) \ln n \cdot \operatorname{cost}(L P)$
$\leq 2(\alpha+1) \ln n \cdot$ OPT
for $n \geq 2$ and $\alpha \geq 1$

Expected Cost

- Version A.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply take all sets.
$E[\operatorname{cost}] \leq(\alpha+1) \ln n \cdot \operatorname{cost}(L P)+\left(\sum_{j} w_{j}\right) n^{-\alpha}=\mathcal{O}(\ln n) \cdot \mathrm{OPT}$
If the weights are polynomially bounded (smallest weight is $1)$, sufficiently large α and OPT at least 1 .

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy

Randomized Rounding

- Local Search
- Rounding the Data + Dynamic Programming

Lower Bounds on the Solution

Let for a given schedule C_{j} denote the finishing time of machine j, and let $C_{\text {max }}$ be the makespan.

Let $C_{\max }^{*}$ denote the makespan of an optimal solution.

Clearly

$$
C_{\max }^{*} \geq \max _{j} p_{j}
$$

as the longest job needs to be scheduled somewhere.

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in\{1, \ldots, n\}$ has processing time p_{j}. Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

\[

\]

Here the variable $x_{j, i}$ is the decision variable that describes whether job j is assigned to machine i.

Lower Bounds on the Solution

The average work performed by a machine is $\frac{1}{m} \sum_{j} p_{j}$. Therefore,

$$
C_{\max }^{*} \geq \frac{1}{m} \sum_{j} p_{j}
$$

Local Search

A local search algorithm successivley makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.
Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.
Note that every machine is busy before time S_{ℓ}, because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ}.

The interval $\left[S_{\ell}, C_{\ell}\right]$ is of length $p_{\ell} \leq C_{\text {max }}^{*}$.
During the first interval $\left[0, S_{\ell}\right]$ all processors are busy, and, hence, the total work performed in this interval is

$$
m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_{j}
$$

Hence, the length of the schedule is at most

$$
p_{\ell}+\frac{1}{m} \sum_{j \neq \ell} p_{j}=\left(1-\frac{1}{m}\right) p_{\ell}+\frac{1}{m} \sum_{j} p_{j} \leq\left(2-\frac{1}{m}\right) C_{\max }^{*}
$$

A Tight Example

$$
\begin{aligned}
& p_{\ell} \approx S_{\ell}+\frac{S_{\ell}}{m-1} \\
& \frac{\mathrm{ALG}}{\mathrm{OPT}}=\frac{S_{\ell}+p_{\ell}}{p_{\ell}} \approx \frac{2+\frac{1}{m-1}}{1+\frac{1}{m-1}}=2-\frac{1}{m}
\end{aligned}
$$

A Greedy Strategy

Lemma 50

If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to $4 / 3$.

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2-approximations.

Proof:

- Let $p_{1} \geq \cdots \geq p_{n}$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If $p_{n} \leq C_{\max }^{*} / 3$ the previous analysis gives us a schedule length of at most

$$
C_{\max }^{*}+p_{n} \leq \frac{4}{3} C_{\max }^{*} .
$$

Hence, $p_{n}>C_{\text {max }}^{*} / 3$.

- This means that all jobs must have a processing time $>C_{\text {max }}^{*} / 3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- For such instances Longest-Processing-Time-First is optimal.

When in an optimal solution a machine can have at most 2 jobs the optimal solution looks as follows.

Traveling Salesman

Given a set of cities ($\{1, \ldots, n\}$) and a symmetric matrix $C=\left(c_{i j}\right), c_{i j} \geq 0$ that specifies for every pair $(i, j) \in[n] \times[n]$ the cost for travelling from city i to city j. Find a permutation π of the cities such that the round-trip cost

$$
c_{\pi(1) \pi(n)}+\sum_{i=1}^{n-1} c_{\pi(i) \pi(i+1)}
$$

is minimized.
We can assume that one machine schedules p_{1} and p_{n} (the largest and smallest job).

- If not assume wlog. that p_{1} is scheduled on machine A and p_{n} on machine B.
- Let p_{A} and p_{B} be the other job scheduled on A and B, respectively.
- $p_{1}+p_{n} \leq p_{1}+p_{A}$ and $p_{A}+p_{B} \leq p_{1}+p_{A}$, hence scheduling p_{1} and p_{n} on one machine and p_{A} and p_{B} on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.
15 EADS II 15 Scheduling on Identical Machines: Greedy

Traveling Salesman

Theorem 51
There does not exist an $O\left(2^{n}\right)$-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph $G=(V, E)$ decide whether there exists a simple cycle that contains all nodes in G.

- Given an instance to HAMPATH we create an instance for TSP.
- If $(i, j) \notin E$ then set $c_{i j}$ to $n 2^{n}$ otw. set $c_{i j}$ to 1 . This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than 2^{n}.
- An $\mathcal{O}\left(2^{n}\right)$-approximation algorithm could decide btw. these cases. Hence, cannot exist unless $P=N P$.

Metric Traveling Salesman

In the metric version we assume for every triple
$i, j, k \in\{1, \ldots, n\}$

$$
c_{i j} \leq c_{i j}+c_{j k}
$$

It is convenient to view the input as a complete undirected graph $G=(V, E)$, where $c_{i j}$ for an edge (i, j) defines the distance between nodes i and j.

TSP: Greedy Algorithm

- Start with a tour on a subset S containing a single node.
- Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- Repeat until all nodes have been processed.

TSP: Lower Bound I

Lemma 52

The cost $\mathrm{OPT}_{T S P}(G)$ of an optimum traveling salesman tour is at least as large as the weight $\mathrm{OPT}_{M S T}(G)$ of a minimum spanning tree in G.

Proof:

- Take the optimum TSP-tour.
- Delete one edge.
- This gives a spanning tree of cost at most $\mathrm{OPT}_{\mathrm{TSP}}(G)$.

TSP: Greedy Algorithm

The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

TSP: Greedy Algorithm

Lemma 53

The Greedy algorithm is a 2-approximation algorithm.
Let S_{i} be the set at the start of the i-th iteration, and let v_{i} denote the node added during the iteration.

Further let $s_{i} \in S_{i}$ be the node closest to $v_{i} \in S_{i}$.
Let r_{i} denote the successor of s_{i} in the tour before inserting v_{i}.
We replace the edge (s_{i}, r_{i}) in the tour by the two edges $\left(s_{i}, v_{i}\right)$ and (v_{i}, r_{i}).

This increases the cost by

$$
c_{s_{i}, v_{i}}+c_{v_{i}, r_{i}}-c_{s_{i}, r_{i}} \leq 2 c_{s_{i}, v_{i}}
$$

TSP: A different approach

Suppose that we are given an Eulerian graph $G^{\prime}=\left(V, E^{\prime}, c^{\prime}\right)$ of $G=(V, E, c)$ such that for any edge $(i, j) \in E^{\prime} c^{\prime}(i, j) \geq c(i, j)$.

Then we can find a TSP-tour of cost at most

$$
\sum_{e \in E^{\prime}} c^{\prime}(e)
$$

- Find an Euler tour of G^{\prime}.
- Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.

TSP: Greedy Algorithm

The edges (s_{i}, v_{i}) considered during the Greedy algorithm are exactly the edges considered during PRIMs MST algorithm.

Hence,

$$
\sum_{i} c_{s_{i}, v_{i}}=\mathrm{OPT}_{\mathrm{MST}}(G)
$$

which with the previous lower bound gives a 2-approximation.

TSP: A different approach

TSP: A different approach

Consider the following graph:

- Compute an MST of G.
- Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most $2 \cdot \operatorname{OPT}_{\mathrm{MST}}(G)$.

Hence, short-cutting gives a tour of cost no more than $2 \cdot \mathrm{OPT}_{\mathrm{MST}}(G)$ which means we have a 2 -approximation.

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.
We only need to make the graph Eulerian.
For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number of them).

TSP: Can we do better?

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most OPT $_{\text {TSP }}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $\mathrm{OPT}_{\mathrm{TSP}}(G) / 2$.

Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$
\mathrm{OPT}_{\mathrm{MST}}(G)+\mathrm{OPT}_{\mathrm{TSP}}(G) / 2 \leq \frac{3}{2} \mathrm{OPT}_{\mathrm{TSP}}(G)
$$

Short cutting gives a $\frac{3}{2}$-approximation for metric TSP.
This is the best that is known.

| EADS II |
| :--- | :--- | :--- |
| OHarald Räcke |$\quad 16$ TSP $\quad 317$

Christofides. Tight Example

- optimal tour: n edges.
- MST: $n-1$ edges.
- weight of matching $(n+1) / 2-1$
- MST+matching $\approx 3 / 2 \cdot n$
© Harald Räcke

17 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items $\{1, \ldots, n\}$, where the i-th item has weight $w_{i} \in \mathbb{N}$ and profit $p_{i} \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq\{1, \ldots, n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_{i} \leq W$).

\max		$\sum_{i=1}^{n} p_{i} x_{i}$	
s.t.	$\forall i \in\{1, \ldots, n\}$	$\sum_{i=1}^{n} w_{i} x_{i} \leq$	W
		$x_{i} \in\{0,1\}$	

Tree shortcutting. Tight Example

- edges have Euclidean distance.

17 Rounding Data + Dynamic Programming

```
Algorithm 1 Knapsack
    \(A(1) \leftarrow\left[(0,0),\left(p_{1}, w_{1}\right)\right]\)
    for \(j \leftarrow 2\) to \(n\) do
        \(A(j) \leftarrow A(j-1)\)
        for each \((p, w) \in A(j-1)\) do
            if \(w+w_{j} \leq W\) then
                add \(\left(p+p_{j}, w+w_{j}\right)\) to \(A(j)\)
            remove dominated pairs from \(A(j)\)
    return \(\max _{(p, w) \in A(n)} p\)
```

The running time is $\mathcal{O}(n \cdot \min \{W, P\})$, where $P=\sum_{i} p_{i}$ is the total profit of all items. This is only pseudo-polynomial.

17 Rounding Data + Dynamic Programming

Definition 54
An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\begin{aligned}
\sum_{i \in S} p_{i} & \geq \mu \sum_{i \in S} p_{i}^{\prime} \\
& \geq \mu \sum_{i \in O} p_{i}^{\prime} \\
& \geq \sum_{i \in O} p_{i}-|O| \mu \\
& \geq \sum_{i \in O} p_{i}-n \mu \\
& =\sum_{i \in O} p_{i}-\epsilon M \\
& \geq(1-\epsilon) \mathrm{OPT}
\end{aligned}
$$

17 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.
- Set $p_{i}^{\prime}:=\left\lfloor p_{i} / \mu\right\rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$
\mathcal{O}\left(n P^{\prime}\right)=\mathcal{O}\left(n \sum_{i} p_{i}^{\prime}\right)=\mathcal{O}\left(n \sum_{i}\left\lfloor\frac{p_{i}}{\epsilon M / n}\right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right)
$$

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of

$$
\frac{1}{m} \sum_{j \neq \ell} p_{j}+p_{\ell}
$$

where ℓ is the last job to complete.
Together with the obervation that if each $p_{i} \geq \frac{1}{3} C_{\text {max }}^{*}$ then LPT is optimal this gave a 4/3-approximation.

17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.
A job j is called short if

$$
p_{j} \leq \frac{1}{k m} \sum_{i} p_{i}
$$

Idea:

1. Find the optimum Makespan for the long jobs by brute force.
2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

Hence we get a schedule of length at most

$$
\left(1+\frac{1}{k}\right) C_{\max }^{*}
$$

There are at most $k m$ long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most $m^{k m}$, which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 55

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k=\left\lceil\frac{1}{\epsilon}\right\rceil$.

We still have the inequality

$$
\frac{1}{m} \sum_{j \neq \ell} p_{j}+p_{\ell}
$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

$$
p_{\ell} \leq \sum_{j} p_{j} /(m k)
$$

which is at most $C_{\max }^{*} / k$.

How to get rid of the requirement that m is constant?
We first design an algorithm that works as follows:
On input of T it either finds a schedule of length $\left(1+\frac{1}{k}\right) T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_{j} p_{j}$).

We partition the jobs into long jobs and short jobs:

- A job is long if its size is larger than T / k.
- Otw. it is a short job.
- We round all long jobs down to multiples of T / k^{2}.
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T / k).

Since, jobs had been rounded to multiples of T / k^{2} going from rounded sizes to original sizes gives that the Makespan is at most

$$
\left(1+\frac{1}{k}\right) T
$$

During the second phase there always must exist a machine with load at most T, since T is larger than the average load.
Assigning the current (short) job to such a machine gives that the new load is at most

$$
T+\frac{T}{k} \leq\left(1+\frac{1}{k}\right) T .
$$

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^{2}} T$ for $i \in\left\{k, \ldots, k^{2}\right\}$.
Therefore the number of different inputs is at most $n^{k^{2}}$
(described by a vector of length k^{2} where, the i-th entry describes the number of jobs of size $\frac{i}{k^{2}} T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^{2} where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^{2}} T$ assigned to x. There are only $(k+1)^{k^{2}}$ different vectors.

This means there are a constant number of different machine configurations.

Let OPT $\left(n_{1}, \ldots, n_{k^{2}}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{k^{2}}\right)$ with Makespan at most T.

If $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right) \leq m$ we can schedule the input.

We have
$\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right)$

$$
= \begin{cases}0 & \left(n_{1}, \ldots, n_{k^{2}}\right)=0 \\ 1+\min _{\left(s_{1}, \ldots, s_{k^{2}}\right) \in C} \operatorname{OPT}\left(n_{1}-s_{1}, \ldots, n_{k^{2}}-s_{k^{2}}\right) & \left(n_{1}, \ldots, n_{k^{2}}\right) \ngtr 0 \\ \infty & \text { otw. }\end{cases}
$$

where C is the set of all configurations.
Hence, the running time is roughly $(k+1)^{k^{2}} n^{k^{2}} \approx(n k)^{k^{2}}$.

More General

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{A}\right)$ with Makespan at most T
(A : number of different sizes).
If $\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right) \leq m$ we can schedule the input.
$\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right)$

$$
= \begin{cases}0 & \left(n_{1}, \ldots, n_{A}\right)=0 \\ 1+\min _{\left(s_{1}, \ldots, s_{A}\right) \in C} \operatorname{OPT}\left(n_{1}-s_{1}, \ldots, n_{A}-s_{A}\right) & \left(n_{1}, \ldots, n_{A}\right) \ngtr 0 \\ \infty & \text { otw. }\end{cases}
$$

where C is the set of all configurations.
$|C| \leq(B+1)^{A}$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O\left((B+1)^{A} n^{A}\right)$ because the dynamic programming table has just n^{A} entries.

We can turn this into a PTAS by choosing $k=\lceil 1 / \epsilon\rceil$ and using binary search. This gives a running time that is exponential in $1 / \epsilon$.

Can we do better?
Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 56
There is no FPTAS for problems that are strongly NP-hard.

Bin Packing

Given n items with sizes s_{1}, \ldots, s_{n} where

$$
1>s_{1} \geq \cdots \geq s_{n}>0
$$

Pack items into a minimum number of bins where each bin can hold items of total size at most 1 .

Theorem 57
There is no ρ-approximation for Bin Packing with $\rho<3 / 2$ unless $\mathrm{P}=\mathrm{NP}$.

Bin Packing

Proof

- In the partition problem we are given positive integers b_{1}, \ldots, b_{n} with $B=\sum_{i} b_{i}$ even. Can we partition the integers into two sets S and T s.t.

$$
\sum_{i \in S} b_{i}=\sum_{i \in T} b_{i} ?
$$

- We can solve this problem by setting $s_{i}:=2 b_{i} / B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ-approximation algorithm with $\rho<3 / 2$ cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

Bin Packing

Again we can differentiate between small and large items.
Lemma 59
Any packing of items of size at most γ into ℓ bins can be extended to a packing of all items into $\max \left\{\ell, \frac{1}{1-\gamma} \operatorname{SIZE}(I)+1\right\}$
bins, where $\operatorname{SIZE}(I)=\sum_{i} s_{i}$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least $1-\gamma$.
- Hence, $r(1-\gamma) \leq \operatorname{SIZE}(I)$ where r is the number of nearly-full bins.
- This gives the lemma.

Bin Packing

Definition 58

An asymptotic polynomial-time approximation scheme (APTAS)
is a family of algorithms $\left\{A_{\epsilon}\right\}$ along with a constant c such that
A_{ϵ} returns a solution of value at most $(1+\epsilon) \mathrm{OPT}+c$ for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

Bin Packing

Linear Grouping:

Generate an instance I^{\prime} (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1 ; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

Lemma 60
$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 1:

- Any bin packing for I gives a bin packing for I^{\prime} as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3 , where in the packing for I the items for group 2 have been packed;
- ...

Assume that our instance does not contain pieces smaller than $\epsilon / 2$. Then $\operatorname{SIZE}(I) \geq \epsilon n / 2$.

We set $k=\lfloor\epsilon \operatorname{SIZE}(I)\rfloor$
Then $n / k \leq 2 n /\left\lfloor\epsilon^{2} n / 2\right\rfloor \leq 4 / \epsilon^{2}$ (here we used $\lfloor\alpha\rfloor \geq \alpha / 2$ for $\alpha \geq 1$).

Hence, after grouping we have a constant number of piece sizes $\left(4 / \epsilon^{2}\right)$ and at most a constant number $(2 / \epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

- cost (for large items) at most

$$
\mathrm{OPT}\left(I^{\prime}\right)+k \leq \mathrm{OPT}(I)+\epsilon \operatorname{SIZE}(I) \leq(1+\epsilon) \mathrm{OPT}(I)
$$

- running time $\mathcal{O}\left(\left(\frac{2}{\epsilon} n\right)^{4 / \epsilon^{2}}\right)$.

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$
\mathrm{OPT}(I)+\mathcal{O}\left(\log ^{2}(\operatorname{SIZE}(I))\right)
$$

Note that this is usually better than a guarantee of

$$
(1+\epsilon) \mathrm{OPT}(I)+1 .
$$

Configuration LP

A possible packing of a bin can be described by an m-tuple $\left(t_{1}, \ldots, t_{m}\right)$, where t_{i} describes the number of pieces of size s_{i}. Clearly,

$$
\sum_{i} t_{i} \cdot s_{i} \leq 1
$$

We call a vector that fulfills the above constraint a configuration.

Configuration LP

Change of Notation:

- Group pieces of identical size.
- Let s_{1} denote the largest size, and let b_{1} denote the number of pieces of size s_{1}.
- s_{2} is second largest size and b_{2} number of pieces of size s_{2}
- ...
- s_{m} smallest size and b_{m} number of pieces of size s_{m}.

Configuration LP

Let N be the number of configurations (exponential).

Let T_{1}, \ldots, T_{N} be the sequence of all possible configurations (a configuration T_{j} has $T_{j i}$ pieces of size s_{i}).

\[

\]

How to solve this LP?

later...

Harmonic Grouping

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G_{1} is the smallest cardinality set of largest items s.t. total size sums up to at least 2 . Similarly, for G_{2}, \ldots, G_{r-1}.
- Only the size of items in the last group G_{r} may sum up to less than 2.

We can assume that each item has size at least 1/SIZE(I),

Harmonic Grouping

From the grouping we obtain instance I^{\prime} as follows:

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_{1} and G_{r}.
- For groups G_{2}, \ldots, G_{r-1} delete $n_{i}-n_{i-1}$ items.
- Observe that $n_{i} \geq n_{i-1}$.

Lemma 62

The number of different sizes in I^{\prime} is at most SIZE(I)/2.

- Each group that survives (recall that G_{1} and G_{Y} are deleted) has total size at least 2
- Hence, the number of surviving groups is at most $\operatorname{SIZE}(I) / 2$
- All items in a group have the same size in I^{\prime}.

Lemma 63
The total size of deleted items is at most $\mathcal{O}(\log (\operatorname{SIZE}(I)))$
The total size of items in G_{1} and G_{r} is at most 6 as a group has total size at most 3.

- Consider a group G_{i} that has strictly more items than G_{i-1}.
- It discards $n_{i}-n_{i-1}$ pieces of total size at most

$$
3 \frac{n_{i}-n_{i-1}}{n_{i}} \leq \sum_{j=n_{i-1}+1}^{n_{i}} \frac{3}{j}
$$

since the smallest piece has size at most $3 / n_{i}$.

- Summing over all i that have $n_{i}>n_{i-1}$ gives a bound of at most

$$
\sum_{j=1}^{n_{r-1}} \frac{3}{j} \leq \mathcal{O}(\log (\operatorname{SIZE}(I)))
$$

(note that $n_{r} \leq \operatorname{SIZE}(I)$ since we assume that the size of each item is at least $1 / \operatorname{SIZE}(I))$.

Analysis

$$
\operatorname{OPT}_{\mathrm{LP}}\left(I_{1}\right)+\operatorname{OPT}_{\mathrm{LP}}\left(I_{2}\right) \leq \operatorname{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \operatorname{OPT}_{\mathrm{LP}}(I)
$$

Proof:

- Each piece surviving in I^{\prime} can be mapped to a piece in I of no lesser size. Hence, $\mathrm{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)$
- $\left\lfloor x_{j}\right\rfloor$ is feasible solution for I_{1} (even integral).
- $x_{j}-\left\lfloor x_{j}\right\rfloor$ is feasible solution for I_{2}.

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.
2. Pieces scheduled because they are in I_{1}.
3. Pieces in I_{2} are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mathrm{OPT}_{\mathrm{LP}}$ many bins.

Pieces of type 1 are packed into at most

$$
\mathcal{O}(\log (\operatorname{SIZE}(I))) \cdot L
$$

many bins where L is the number of recursion levels.

How to solve the LP?

Let T_{1}, \ldots, T_{N} be the sequence of all possible configurations (a configuration T_{j} has $T_{j i}$ pieces of size s_{i}).
In total we have b_{i} pieces of size s_{i}.

Primal

$$
\begin{array}{|crrl}
\hline \text { min } & & \sum_{j=1}^{N} x_{j} & \\
\mathrm{s.t.} & \forall i \in\{1 \ldots m\} & \sum_{j=1}^{N} T_{j i} x_{j} \geq b_{i} \\
& \forall j \in\{1, \ldots, N\} & x_{j} \geq 0
\end{array}
$$

Dual

$$
\begin{array}{|ccrl}
\hline \max & & \sum_{i=1}^{m} y_{i} b_{i} & \\
\text { s.t. } & \forall j \in\{1, \ldots, N\} & \sum_{i=1}^{m} T_{j i} y_{i} \leq 1 \\
& \forall i \in\{1, \ldots, m\} & y_{i} \geq 0 \\
\hline
\end{array}
$$

Analysis

We can show that $\operatorname{SIZE}\left(I_{2}\right) \leq \operatorname{SIZE}(I) / 2$. Hence, the number of recursion levels is only $\mathcal{O}\left(\log \left(\operatorname{SIZE}\left(I_{\text {original }}\right)\right)\right)$ in total.

- The number of non-zero entries in the solution to the configuration LP for I^{\prime} is at most the number of constraints, which is the number of different sizes $(\leq \operatorname{SIZE}(I) / 2)$.
- The total size of items in I_{2} can be at most $\sum_{j=1}^{N} x_{j}-\left\lfloor x_{j}\right\rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

Separation Oracle

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_{j}=\left(T_{j 1}, \ldots, T_{j m}\right)$ that

- is feasible, i.e.,

$$
\sum_{i=1}^{m} T_{j i} \cdot s_{i} \leq 1
$$

- and has a large profit

$$
\sum_{i=1}^{m} T_{j i} y_{i}>1
$$

But this is the Knapsack problem.
the total weight of clauses that are satisfied is maximum.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon^{\prime}=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:
Dual ${ }^{\prime}$

\max		$\sum_{i=1}^{m} y_{i} b_{i}$	
s.t.	$\forall j \in\{1, \ldots, N\}$	$\sum_{i=1}^{m} T_{j i} y_{i} \leq 1+\epsilon^{\prime}$	
	$\forall i \in\{1, \ldots, m\}$	$y_{i} \geq 0$	

Primal ${ }^{\prime}$

min		$\left(1+\epsilon^{\prime}\right) \sum_{j=1}^{N} x_{j}$	
s.t.	$\forall i \in\{1 \ldots m\}$	$\sum_{j=1}^{N} T_{j i} x_{j}$	$\geq b_{i}$
	$\forall j \in\{1, \ldots, N\}$	x_{j}	≥ 0

18 MAXSAT

Problem definition:

- n Boolean variables
- m clauses C_{1}, \ldots, C_{m}. For example

$$
C_{7}=x_{3} \vee \bar{x}_{5} \vee \bar{x}_{9}
$$

- Non-negative weight w_{j} for each clause C_{j}.
- Find an assignment of true/false to the variables sucht that

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL" is at most $\left(1+\epsilon^{\prime}\right)$ OPT.
- We can compute the corresponding solution in polytime.

We can choose $\epsilon^{\prime}=\frac{1}{\text { OPT }}$ as OPT $\leq \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

18 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).
- We assume a clause does not contain x_{i} and \bar{x}_{i} for any i.
- x_{i} is called a positive literal while the negation \bar{x}_{i} is called a negative literal.
- For a given clause C_{j} the number of its literals is called its length or size and denoted with ℓ_{j}.
- Clauses of length one are called unit clauses.

MAXSAT: Flipping Coins

Set each x_{i} independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

Define random variable X_{j} with

$$
X_{j}= \begin{cases}1 & \text { if } C_{j} \text { satisfied } \\ 0 & \text { otw. }\end{cases}
$$

Then the total weight W of satisfied clauses is given by

$$
W=\sum_{j} w_{j} X_{j}
$$

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} E\left[X_{j}\right] \\
& =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisified }\right] \\
& =\sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \frac{1}{2} \sum_{j} w_{j} \\
& \geq \frac{1}{2} \mathrm{OPT}
\end{aligned}
$$

MAXSAT: LP formulation

- Let for a clause C_{j}, P_{j} be the set of positive literals and N_{j} the set of negative literals.

$$
C_{j}=\bigvee_{j \in P_{j}} x_{i} \vee \bigvee_{j \in N_{j}} \bar{x}_{i}
$$

\[

\]

MAXSAT: Randomized Rounding

Set each x_{i} independently to true with probability y_{i} (and, hence, to false with probability $\left(1-y_{i}\right)$).

Definition 65

A function f on an interval I is concave if for any two points s
and r from I and any $\lambda \in[0,1]$ we have

$$
f(\lambda s+(1-\lambda) r) \geq \lambda f(s)+(1-\lambda) f(r)
$$

Lemma 66
Let f be a concave function on the interval $[0,1]$, with $f(0)=a$
and $f(1)=a+b$. Then

$$
\begin{aligned}
f(\lambda) & =f((1-\lambda) 0+\lambda 1) \\
& \geq(1-\lambda) f(0)+\lambda f(1) \\
& =a+\lambda b
\end{aligned}
$$

for $\lambda \in[0,1]$.
$\operatorname{Pr}\left[C_{j}\right.$ not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}\right) \prod_{i \in N_{j}} y_{i}$

$$
\begin{aligned}
& \leq\left[\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}\right)+\sum_{i \in N_{j}} y_{i}\right)\right]^{\ell_{j}} \\
& =\left[1-\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)\right]^{\ell_{j}} \\
& \leq\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}} .
\end{aligned}
$$

The function $f(z)=1-\left(1-\frac{z}{\ell}\right)^{\ell}$ is concave. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] & \geq 1-\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}} \\
& \geq\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \cdot z_{j} .
\end{aligned}
$$

$f^{\prime \prime}(z)=-\frac{\ell-1}{\ell}\left[1-\frac{z}{\ell}\right]^{\ell-2} \leq 0$ for $z \in[0,1]$. Therefore, f is concave.

MAXSAT: The better of two

Theorem 67
Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$-approximation.

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.
$E\left[\max \left\{W_{1}, W_{2}\right\}\right]$

$$
\begin{aligned}
& \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]+\frac{1}{2} \sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \sum_{j} w_{j} z_{j}[\underbrace{\frac{1}{2}\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right)+\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)}_{\geq \frac{3}{4} \text { for all integers }}] \\
& \geq \frac{3}{4} \mathrm{OPT}
\end{aligned}
$$

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1 /true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \rightarrow[0,1]$ and set x_{i} to true with probability $f\left(y_{i}\right)$.

MAXSAT: Nonlinear Randomized Rounding

Let $f:[0,1] \rightarrow[0,1]$ be a function with

$$
1-4^{-x} \leq f(x) \leq 4^{x-1}
$$

Theorem 68
Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$-approximation.

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-f\left(y_{i}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}\right) \\
& \leq \prod_{i \in P_{j}} 4^{-y_{i}} \prod_{i \in N_{j}} 4^{y_{i}-1} \\
& =4^{-\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)} \\
& \leq 4^{-z_{j}}
\end{aligned}
$$

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 69 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

Lemma 70

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

\[

\]

Consider: $\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right)$

- any solution can satisfy at most 3 clauses
- we can set $y_{1}=y_{2}=1 / 2$ in the LP; this allows to set $z_{1}=z_{2}=z_{3}=z_{4}=1$
- hence, the LP has value 4 .

Facility Location

Integer Program

\min	$\forall j \in D$	$\sum_{i \in F} f_{i} y_{i}+\sum_{i \in F} \sum_{j \in D} c_{i j} x_{i j}$	
$\mathrm{s.t}$.	$\sum_{i \in F} x_{i j}$	$=1$	
	$\forall i \in F, j \in D$	$x_{i j} \leq$	y_{i}
$\forall i \in F, j \in D$	$x_{i j}$	$\in\{0,1\}$	
	$\forall i \in F$	y_{i}	$\in\{0,1\}$

As usual we get an LP by relaxing the integrality constraints.

Facility Location

Given a set L of (possible) locations for placing facilities and a set D of customers together with cost functions $s: D \times L \rightarrow \mathbb{R}^{+}$ and $o: L \rightarrow \mathbb{R}^{+}$find a set of facility locations F together with an assignment $\phi: D \rightarrow F$ of customers to open facilities such that

$$
\sum_{f \in F} o(f)+\sum_{c} s(c, \phi(c))
$$

is minimized.
In the metric facility location problem we have

$$
s(c, f) \leq s\left(c, f^{\prime}\right)+s\left(c^{\prime}, f\right)+s\left(c^{\prime}, f^{\prime}\right)
$$

Facility Location

Dual Linear Program

\max		$\sum_{j \in D} v_{j}$	
s.t.	$\forall i \in F$	$\sum_{j \in D} w_{i j}$	$\leq f_{i}$
	$\forall i \in F, j \in D$	$v_{j}-w_{i j} \leq$	$c_{i j}$
	$\forall i \in F, j \in D$	$w_{i j}$	≥ 0

Facility Location

Definition 71
Given an LP solution $\left(x^{*}, y^{*}\right)$ we say that facility i neighbours client j if $x_{i j}>0$. Let $N(j)=\left\{i \in F: x_{i j}^{*}>0\right\}$
\square

Suppose we open set $S \subseteq F$ of facilities s.t. for all clients we have $S \cap N(j) \neq \emptyset$

Then every client j has a facility i s.t. assignment cost for this client is at most $c_{i j} \leq v_{j}^{*}$.

Hence, the total assignment cost is

$$
\sum_{j} c_{i_{j} j} \leq \sum_{j} v_{j}^{*} \leq \mathrm{OPT}
$$

where i_{j} is the facility that client j is assigned to.

Lemma 72
If $\left(x^{*}, y^{*}\right)$ is an optimal solution to the facility location LP and
$\left(v^{*}, w^{*}\right)$ is an optimal dual solution, then $x_{i j}^{*}>0$ implies
$c_{i j} \leq v_{j}^{*}$.
Follows from slackness conditions.

Problem: Facility cost may be huge!

Suppose we can partition a subset $F^{\prime} \subseteq F$ of facilities into neighbour sets of some clients. I.e.

$$
F^{\prime}=\biguplus_{k} N\left(j_{k}\right)
$$

where j_{1}, j_{2}, \ldots form a subset of the clients.

Now in each set $N\left(j_{k}\right)$ we open the cheapest facility. Call it $f_{i_{k}}$.

We have

$$
f_{i_{k}}=f_{i_{k}} \sum_{i \in N\left(j_{k}\right)} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*}
$$

Summing over all k gives

$$
\sum_{k} f_{i_{k}} \leq \sum_{k} \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*}=\sum_{i \in F^{\prime}} f_{i} y_{i}^{*} \leq \sum_{i \in F} f_{i} y_{i}^{*}
$$

Facility cost is at most the facility cost in an optimum solution.

Problem: so far clients $\boldsymbol{j}_{1}, \boldsymbol{j}_{2}, \ldots$ have a neighboring facility. What about the others?

Definition 73
Let $N^{2}(j)$ denote all neighboring clients of the neighboring facilities of client j.

Note that $N(j)$ is a set of facilities while $N^{2}(j)$ is a set of clients.

Facility cost of this algorithm is at most OPT because the sets $N\left(j_{k}\right)$ are disjoint.

Total assignment cost

- Fix k; set $j=j_{k}$ and $i=i_{k}$. We know that $c_{i j} \leq v_{j}^{*}$.
- Let $\ell \in N^{2}(j)$ and h (one of its neighbour(s) in $N(j)$.

$$
c_{i \ell} \leq c_{i j}+c_{h j}+c_{h \ell} \leq v_{j}^{*}+v_{j}^{*}+v_{\ell}^{*} \leq 3 v_{\ell}^{*}
$$

Summing this over all facilities gives that the total assignment cost is at most 3 - OPT. Hence, we get a 4 -approximation.

In the above analysis we use the inequality

$$
\sum_{i \in F} f_{i} y_{i}^{*} \leq \mathrm{OPT}
$$

We know something stronger namely

$$
\sum_{i \in F} f_{i} y_{i}^{*}+\sum_{i \in F} \sum_{j \in D} c_{i j} x_{i j}^{*} \leq \mathrm{OPT}
$$

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of some j_{k}). (recall that neighborhoods of different $j_{k}^{\prime} s$ are disjoint).
We open facility i with probability $x_{i j_{k}} \leq y_{i}$ (in case it is in some neighborhood; otw. we open it with probability zero).
Hence, the expected facility cost is at most

$$
\sum_{i \in F} f_{i} y_{i} .
$$

Observation

- Suppose when choosing a client j_{k}, instead of opening the cheapest facility in its neighborhood we choose a random facility according to $x_{i j_{k}}^{*}$.
- Then we incur connection cost

$$
\sum_{i} c_{i j_{k}} x_{i j_{k}}^{*}
$$

for client j_{k}. (In the previous algorithm we estimated this by $v_{j_{k}}^{*}$.

- Define

$$
C_{j}^{*}=\sum_{i} c_{i j} x_{i j}^{*}
$$

to be the connection cost for client j.

```
Algorithm 1 FacilityLocation
    \(C \leftarrow D / /\) unassigned clients
    \(k \leftarrow 0\)
    while \(C \neq 0\) do
        \(k \leftarrow k+1\)
        choose \(j_{k} \in C\) that minimizes \(v_{j}^{*}+C_{j}^{*}\)
        choose \(i_{k} \in N\left(j_{k}\right)\) according to probability \(x_{i j_{k}}\).
        assign \(j_{k}\) and all unassigned clients in \(N^{2}\left(j_{k}\right)\) to \(i_{k}\)
        \(C \leftarrow C-\left\{j_{k}\right\}-N^{2}\left(j_{k}\right)\)
```


Total assignment cost:

- Fix k; set $j=j_{k}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.
- If we assign a client ℓ to the same facility as i we pay at most

$$
\sum_{i} c_{i j} x_{i j_{k}}^{*}+c_{h j}+c_{h \ell} \leq C_{j}^{*}+v_{j}^{*}+v_{\ell}^{*} \leq C_{\ell}^{*}+2 v_{\ell}^{*}
$$

Summing this over all clients gives that the total assignment cost is at most

$$
\sum_{j} C_{j}^{*}+\sum_{j} 2 v_{j}^{*} \leq \sum_{j} C_{j}^{*}+2 \mathrm{OPT}
$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

Adding the facility cost gives a 3-approximation.

Lemma 74 (Chernoff Bounds)

Let X_{1}, \ldots, X_{n} be n independent 0-1 random variables, not necessarily identically distributed. Then for $X=\sum_{i=1}^{n} X_{i}$ and $\mu=E[X], L \leq \mu \leq U$, and $\delta>0$

$$
\operatorname{Pr}[X \geq(1+\delta) U]<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U}
$$

and

$$
\operatorname{Pr}[X \leq(1-\delta) L]<\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{L}
$$

Integer Multicommodity Flows

- Given $s_{i}-t_{i}$ pairs in a graph.
- Connect each pair by a paths such that not too many path use any given edge.

\min			
s.t.	$\forall i$	$\sum_{p \in \mathcal{P}_{i}} x_{p}$	$=1$
		$\sum_{p: e \in p} x_{p}$	$\leq W$
		x_{p}	$\in\{0,1\}$

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set \mathcal{P}_{i} at random according to the probability distribution given by the Linear Programming Solution.

Integer Multicommodity Flows

Let X_{e}^{i} be a random variable that indicates whether the path for $s_{i}-t_{i}$ uses edge e.

Then the number of paths using edge e is $Y_{e}=\sum_{i} X_{e}^{i}$.

$$
E\left[Y_{e}\right]=\sum_{i} \sum_{p \in \mathcal{P}_{i}: e \in p} x_{p}^{*}=\sum_{p: e \in P} x_{p}^{*} \leq W^{*}
$$

Theorem 76
If $W^{*} \geq c \ln n$ for some constant c, then with probability at least $n^{-c / 3}$ the total number of paths using any edge is at most $W^{*}+\sqrt{c W^{*} \ln n}$.

Integer Multicommodity Flows

Choose $\delta=\sqrt{(c \ln n) / W^{*}}$.

Then

$$
\operatorname{Pr}\left[Y_{e} \geq(1+\delta) W^{*}\right]<e^{-W^{*} \delta^{2} / 3}=\frac{1}{n^{c / 3}}
$$

Repetition: Primal Dual for Set Cover

Primal Relaxation:

\[

\]

Dual Formulation:

\max	
s.t.	$\forall i \in\{1, \ldots, k\} \quad$$\sum_{u \in U} y_{u}$ $\sum_{u: u \in S_{i}} y_{u}$ $\leq w_{i}$ y_{u} ≥ 0,$r l$

Repetition: Primal Dual for Set Cover

Analysis:

- For every set S_{j} with $x_{j}=1$ we have

$$
\sum_{e \in S_{j}} y_{e}=w_{j}
$$

- Hence our cost is

$$
\sum_{j} w_{j}=\sum_{j} \sum_{e \in S_{j}} y_{e}=\sum_{e}\left|\left\{j: e \in S_{j}\right\}\right| \cdot y_{e} \leq f \cdot \sum_{e} y_{e} \leq f \cdot \mathrm{OPT}
$$

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with $y=0$ (feasible dual solution).

Start with $x=0$ (integral primal solution that may be infeasible).

- While x not feasible
- Identify an element e that is not covered in current primal integral solution.
- Increase dual variable y_{e} until a dual constraint becomes tight (maybe increase by 0 !).
- If this is the constraint for set S_{j} set $x_{j}=1$ (add this set to your solution).

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$
x_{j}>0 \Rightarrow \sum_{e \in S_{j}} y_{e}=w_{j}
$$

If we would also fulfill dual slackness conditions

$$
y_{e}>0 \Rightarrow \sum_{j: e \in S_{j}} x_{j}=1
$$

then the solution would be optimal!!!

We don't fulfill these constraint but we fulfill an approximate version:

$$
y_{e}>0 \Rightarrow 1 \leq \sum_{j: e \in S_{j}} x_{j} \leq f
$$

This is sufficient to show that the solution is an f-approximation.

Suppose we have a primal/dual pair

min		$\sum_{j} c_{j} x_{j}$		\max		$\sum_{i} b_{i} y_{i}$		
s.t.	$\forall i$	$\sum_{j:} a_{i j} x_{j}$	\geq	b_{i}	s.t.	$\forall j$	$\sum_{i} a_{i j} y_{i}$	\leq
	$\forall j$	x_{j}	\geq	c_{j}				
	$\forall j$		$\forall i$	y_{i}	\geq	0		

and solutions that fulfill approximate slackness conditions:

$$
\begin{aligned}
x_{j}>0 \Rightarrow \sum_{i} a_{i j} y_{i} \geq \frac{1}{\alpha} c_{j} \\
y_{i}>0 \Rightarrow \sum_{j} a_{i j} x_{j} \leq \beta b_{i}
\end{aligned}
$$

Feedback Vertex Set for Undirected Graphs

- Given a graph $G=(V, E)$ and non-negative weights $w_{v} \geq 0$ for vertex $v \in V$.
- Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.
- The $O(\log n)$-approximation for Set Cover does not help us to get a good solution.

Let C denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

$$
\geq 11
$$

Dual Formulation:

\max			
s.t.	$\forall v \in V$	$\sum_{C \in C} y_{C}$	
	$\forall C$	$\sum_{C: v \in C} y_{C}$	

Then

$$
\begin{aligned}
\sum_{v} w_{v} x_{v} & =\sum_{v} \sum_{C: v \in C} y_{C} x_{v} \\
& =\sum_{v \in S} \sum_{C: v \in C} y_{C} \\
& =\sum_{C}|S \cap C| \cdot y_{C}
\end{aligned}
$$

where S is the set of vertices we choose.
If every cycle is short we get a good approximation ratio, but this is unrealistic.

\square

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get an α-approximation.

Theorem 77
In any graph with no vertices of degree 1 , there always exists a cycle that has at most $\mathcal{O}(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

$$
y_{C}>0 \Rightarrow|S \cap C| \leq \mathcal{O}(\log n)
$$

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α-approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses at most one vertex from P.

Primal Dual for Shortest Path

The Dual:

\max	$\sum_{S} y_{S}$		
s.t.	$\forall e \in E$	$\sum_{S: e \in \delta(S)} y_{S} \leq c(e)$	
	$\forall S \in S$	$y_{S} \geq 0$	

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S=\{S \subseteq V: s \in S, t \notin S\}$.

Primal Dual for Shortest Path

We can interpret the value y_{S} as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

Lemma 78
At each point in time the set F forms a tree.

Proof:

- In each iteration we take the current connected component from (V, F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- Since, at most one end-point of the new edge is in C the edge cannot close a cycle.

$$
\begin{aligned}
\sum_{e \in P} c(e) & =\sum_{e \in P} \sum_{S: e \in \delta(S)} y_{S} \\
& =\sum_{S: s \in S, t \notin S}|P \cap \delta(S)| \cdot y_{S} .
\end{aligned}
$$

If we can show that $y_{S}>0$ implies $|P \cap \delta(S)|=1$ gives

$$
\sum_{e \in P} c(e)=\sum_{S} y_{S} \leq \mathrm{OPT}
$$

by weak duality.
Hence, we find a shortest path.

If S contains two edges from P then there must exist a subpath P^{\prime} of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_{S}, S was a connected component of the set of edges F^{\prime} that we had chosen till this point.
$F^{\prime} \cup P^{\prime}$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

Forest Problem
Given a graph $G=(V, E)$, together with source-target pairs
$s_{i}, t_{i}, i=1, \ldots, k$, and a cost function $c: E \rightarrow \mathbb{R}^{+}$on the edges.
Find a subset $F \subseteq E$ of the edges such that for every
$i \in\{1, \ldots, k\}$ there is a path between s_{i} and t_{i} only using edges
in F.

\min			
s.t.	$\forall S \subseteq V: S \in S_{i} c(e) x_{e}$		
	$\forall e r$ some i	$\sum_{e \in \delta(S)} x_{e}$	≥ 1
	$x_{e} \in E$	$\in\{0,1\}$	

Here S_{i} contains all sets S such that $s_{i} \in S$ and $t_{i} \notin S$.
The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width).

```
Algorithm 1 FirstTry
    : \(y \leftarrow 0\)
    \(F \leftarrow \emptyset\)
    while not all \(s_{i}-t_{i}\) pairs connected in \(F\) do
            Let \(C\) be some connected component of \((V, F)\)
            such that \(\left|C \cap\left\{s_{i}, t_{i}\right\}\right|=1\) for some \(i\).
5: Increase \(y_{C}\) until there is an edge \(e^{\prime} \in \delta(C)\) s.t.
            \(\sum_{S \in S_{i}: e^{\prime} \in \delta(S)} y_{S}=c_{e}\)
            \(F \leftarrow F \cup\left\{e^{\prime}\right\}\)
    7: Let \(P_{i}\) be an \(s_{i}-t_{i}\) path in \((V, F)\)
    8: return \(\bigcup_{i} P_{i}\)
```

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S}
$$

If we show that $y_{S}>0$ implies that $|\delta(S) \cap F| \leq \alpha$ we are in good shape.

However, this is not true:

- Take a graph on $k+1$ vertices $v_{0}, v_{1}, \ldots, v_{k}$.
- The i-th pair is $v_{0}-v_{i}$.
- The first component C could be $\left\{v_{0}\right\}$.
- We only set $y_{\left\{v_{0}\right\}}=1$. All other dual variables stay 0
- The final set F contains all edges $\left\{v_{0}, v_{i}\right\}, i=1, \ldots, k$.
- $\mathcal{Y}_{\left\{v_{0}\right\}}>0$ but $\left|\delta\left(\left\{v_{0}\right\}\right) \cap F\right|=k$.

The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

$$
\sum_{e \in F^{\prime}} c_{e}=\sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S} .
$$

We want to show that

$$
\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S} \leq 2 \sum_{S} y_{S}
$$

- In the i-th iteration the increase of the left-hand side is

$$
\epsilon \sum_{C \in C}\left|F^{\prime} \cap \delta(C)\right|
$$

and the increase of the right hand side is $2 \epsilon|C|$.

- Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

Lemma 79
For any C in any iteration of the algorithm

$$
\sum_{C \in C}\left|\delta(C) \cap F^{\prime}\right| \leq 2|C|
$$

This means that the number of times a moat from C is crossed in the final solution is at most twice the number of moats.

Proof: later..

Lemma 80

For any set of connected components C in any iteration of the algorithm

$$
\sum_{C \in C}\left|\delta(C) \cap F^{\prime}\right| \leq 2|C|
$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration $i . e_{i}$ is the set we add to F. Let F_{i} be the set of edges in F at the beginning of the iteration.
- Let $H=F^{\prime}-F_{i}$.
- All edges in H are necessary for the solution.
- Contract all edges in F_{i} into single vertices V^{\prime}.
- We can consider the forest H on the set of vertices V^{\prime}.
- Let $\operatorname{deg}(v)$ be the degree of a vertex $v \in V^{\prime}$ within this forest.
- Color a vertex $v \in V^{\prime}$ red if it corresponds to a component from C (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- We have

$$
\sum_{v \in R} \operatorname{deg}(v) \geq \sum_{C \in C}\left|\delta(C) \cap F^{\prime}\right| \stackrel{?}{\leq} 2|C|=2|R|
$$

- Suppose that no node in B has degree one.
- Then

$$
\begin{aligned}
\sum_{v \in R} \operatorname{deg}(v) & =\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \leq 2(|R|+|B|)-2|B|=2|R|
\end{aligned}
$$

- Every blue vertex with non-zero degree must have degree at least two.
- Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
- But this means that the cluster corresponding to b must separate a source-target pair.
- But then it must be a red node.

