
Part III

Approximation Algorithms

EADS II

© Harald Räcke 243

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

EADS II 11 Introduction

© Harald Räcke 244

Definition 2

An α-approximation for an optimization problem is a

polynomial-time algorithm that for all instances of the problem

produces a solution whose value is within a factor of α of the

value of an optimal solution.

EADS II 11 Introduction

© Harald Räcke 245

Minimization Problem:

Let I denote the set of problem instances, and let for a given

instance I ∈ I, F(I) denote the set of feasible solutions. Further

let cost(F) denote the cost of a feasible solution F ∈ F .

Let for an algorithm A and instance I ∈ I, A(I) ∈ F(I) denote

the feasible solution computed by A. Then A is an

approximation algorithm with approximation guarantee α ≥ 1 if

∀I ∈ I : cost(A(I)) ≤ α · min
F∈F(I)

{cost(F)} = α ·OPT(I)

EADS II 11 Introduction

© Harald Räcke 246

Maximization Problem:

Let I denote the set of problem instances, and let for a given

instance I ∈ I, F(I) denote the set of feasible solutions. Further

let profit(F) denote the profit of a feasible solution F ∈ F .

Let for an algorithm A and instance I ∈ I, A(I) ∈ F(I) denote

the feasible solution computed by A. Then A is an

approximation algorithm with approximation guarantee α ≤ 1 if

∀I ∈ I : cost(A(I)) ≥ α · max
F∈F(I)

{profit(F)} = α ·OPT(I)

EADS II 11 Introduction

© Harald Räcke 247

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying

heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum

solution on every instance.

EADS II 11 Introduction

© Harald Räcke 248

What can we hope for?

Definition 3

A polynomial-time approximation scheme (PTAS) is a family of

algorithms {Aε}, such that Aε is a (1+ ε)-approximation

algorithm (for minimization problems) or a

(1− ε)-approximation algorithm (for maximization problems).

Many NP-complete problems have polynomial time

approximation schemes.

EADS II 11 Introduction

© Harald Räcke 249

There are difficult problems!

The class MAX SNP (which we do not define) contains

optimization problems like maximum cut or MAX-3SAT.

Theorem 4

For any MAX SNP-hard problem, there does not exist a

polynomial-time approximation scheme, unless P = NP.

MAXCUT. Given a graph G = (V , E); partition V into two disjoint
pieces A and B s. t. the number of edges between both pieces is
maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the

variables that satisfies the maximum number of clauses.

EADS II 11 Introduction

© Harald Räcke 250

There are really difficult problems!

Theorem 5

For any constant ε > 0 there does not exist an

Ω(nε−1)-approximation algorithm for the maximum clique

problem on a given graph G with n nodes unless P = NP.

Note that an 1/n-approximation is trivial.

EADS II 11 Introduction

© Harald Räcke 251

A crucial ingredient for the design and analysis of approximation

algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization

problems).

Therefore Linear Programs or Integer Linear Programs play a

vital role in the design of many approximation algorithms.

EADS II 12 Integer Programs

© Harald Räcke 252

Definition 6

An Integer Linear Program or Integer Program is a Linear

Program in which all variables are required to be integral.

Definition 7

A Mixed Integer Program is a Linear Program in which a subset

of the variables are required to be integral.

EADS II 12 Integer Programs

© Harald Räcke 253

Many important combinatorial optimization problems can be

formulated in the form of an Integer Program.

Note that solving Integer Programs in general is

NP-complete!

EADS II 12 Integer Programs

© Harald Räcke 254

Set Cover

Given a ground set U , a collection of subsets S1, . . . , Sk ⊆ U ,

where the i-th subset Si has weight/cost wi. Find a collection

I ⊆ {1, . . . , k} such that

∀u ∈ U∃i ∈ I : u ∈ Si (every element is covered)

and ∑
i∈I
wi is minimized.

EADS II 12 Integer Programs

© Harald Räcke 255

IP-Formulation of Set Cover

min
∑
iwixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ≥ 0

∀i ∈ {1, . . . , k} xi integral

EADS II 12 Integer Programs

© Harald Räcke 256

IP-Formulation of Set Cover

min
∑
iwixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ {0,1}

EADS II 12 Integer Programs

© Harald Räcke 257

Vertex Cover

Given a graph G = (V , E) and a weight wv for every node. Find a

vertex subset S ⊆ V of minimum weight such that every edge is

incident to at least one vertex in S.

EADS II 12 Integer Programs

© Harald Räcke 258

IP-Formulation of Vertex Cover

min
∑
v∈V wvxv

s.t. ∀e = (i, j) ∈ E xi + xj ≥ 1

∀v ∈ V xv ∈ {0,1}

EADS II 12 Integer Programs

© Harald Räcke 259

Maximum Weighted Matching

Given a graph G = (V , E), and a weight we for every edge e ∈ E.

Find a subset of edges of maximum weight such that no vertex

is incident to more than one edge.

max
∑
e∈Ewexe

s.t. ∀v ∈ V ∑
e:v∈e xe ≤ 1

∀e ∈ E xe ∈ {0,1}

EADS II 12 Integer Programs

© Harald Räcke 260

Maximum Independent Set

Given a graph G = (V , E), and a weight wv for every node v ∈ V .

Find a subset S ⊆ V of nodes of maximum weight such that no

two vertices in S are adjacent.

max
∑
v∈V wvxv

s.t. ∀e = (i, j) ∈ E xi + xj ≤ 1

∀v ∈ V xv ∈ {0,1}

EADS II 12 Integer Programs

© Harald Räcke 261

Knapsack

Given a set of items {1, . . . , n}, where the i-th item has weight

wi and profit pi, and given a threshold K. Find a subset

I ⊆ {1, . . . , n} of items of total weight at most K such that the

profit is maximized.

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ K

∀i ∈ {1, . . . , n} xi ∈ {0,1}

EADS II 12 Integer Programs

© Harald Räcke 262

Facility Location

Given a set L of (possible) locations for placing facilities and a

set C of customers together with cost functions s : C × L→ R+

and o : L→ R+ find a set of facility locations F together with an

assignment φ : C → F of customers to open facilities such that∑
f∈F

o(f)+
∑
c
s(c,φ(c))

is minimized.

In the metric facility location problem we have

s(c, f) ≤ s(c, f ′)+ s(c′, f)+ s(c′, f ′) .

EADS II 12 Integer Programs

© Harald Räcke 263

Facility Location

min
∑
f xfo(f)+

∑
c
∑
f ycf s(c, f)

s.t. ∀c ∈ C, f ∈ L ycf ≤ xf
∀c ∈ C ∑

f ycf ≥ 1

∀f ∈ L xf ∈ {0,1}
∀c ∈ C, f ∈ L ycf ∈ {0,1}

ñ y+cf ≤ xf ensures that we cannot assign customers to

facilities that are not open.

ñ
∑
f ycf ≥ 1 ensures that every customer is assigned to a

facility.

EADS II 12 Integer Programs

© Harald Räcke 264

Relaxations

Definition 8

A linear program LP is a relaxation of an integer program IP if

any feasible solution for IP is also feasible for LP and if the

objective values of these solutions are identical in both

programs.

We obtain a relaxation for all examples by writing xi ∈ [0,1]
instead of xi ∈ {0,1}.

EADS II 12 Integer Programs

© Harald Räcke 265

By solving a relaxation we obtain an upper bound for a

maximization problem and a lower bound for a minimization

problem.

EADS II 12 Integer Programs

© Harald Räcke 266

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional

values so that we obtain an integral solution.

Set Cover relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ [0,1]

Let fu be the number of sets that the element u is contained in

(the frequency of u). Let f =maxu{fu} be the maximum

frequency.

EADS II 13.1 Deterministic Rounding

© Harald Räcke 267

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all xi-values with xi ≥ 1
f to 1. Set all other xi-values to 0.

EADS II 13.1 Deterministic Rounding

© Harald Räcke 268

Technique 1: Round the LP solution.

Lemma 9

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

EADS II 13.1 Deterministic Rounding

© Harald Räcke 269

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi ≤

k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

EADS II 13.1 Deterministic Rounding

© Harald Räcke 270

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

min
∑
i∈Iwixi

s.t. ∀u ∑
i:u∈Si xi ≥ 1

xi ≥ 0

Dual:

max
∑
u∈U yu

s.t. ∀i ∑u:u∈Si yu ≤ wi
yu ≥ 0

EADS II 13.2 Rounding the Dual

© Harald Räcke 271

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is

tight. This means for all i ∈ I∑
u:u∈Si

yu = wi

EADS II 13.2 Rounding the Dual

© Harald Räcke 272

Technique 2: Rounding the Dual Solution.

Lemma 10

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

EADS II 13.2 Rounding the Dual

© Harald Räcke 273

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

EADS II 13.2 Rounding the Dual

© Harald Räcke 274

Let I denote the solution obtained by the first rounding

algorithm and I′ be the solution returned by the second

algorithm. Then

I ⊆ I′ .
This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

EADS II 13.2 Rounding the Dual

© Harald Räcke 275

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage

that it is necessary to solve the LP. The following method also

gives an f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

EADS II 13.3 Primal Dual Technique

© Harald Räcke 276

Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual
1: y ← 0

2: I ← �
3: while exists u ∉

⋃
i∈I Si do

4: increase dual variable yi until constraint for some

new set S` becomes tight

5: I ← I ∪ {`}

EADS II 13.3 Primal Dual Technique

© Harald Räcke 277

Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

1: I ← �
2: Ŝj ← Sj for all j
3: while I not a set cover do

4: ` ← arg minj:Ŝj≠0
wj
|Ŝj|

5: I ← I ∪ {`}
6: Ŝj ← Ŝj − S` for all j

In every round the Greedy algorithm takes the set that covers

remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still

uncovered elements in the set is minimized.

EADS II 13.4 Greedy

© Harald Räcke 278

Technique 4: The Greedy Algorithm

Lemma 11

Given positive numbers a1, . . . , ak and b1, . . . , bk then

min
i

ai
bi
≤
∑
i ai∑
i bi

≤max
i

ai
bi

EADS II 13.4 Greedy

© Harald Räcke 279

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

EADS II 13.4 Greedy

© Harald Räcke 280

Technique 4: The Greedy Algorithm

Adding this set to our solution means n`+1 = n` − |Ŝj|.

wj ≤
|Ŝj|OPT

n`
= n` −n`+1

n`
·OPT

EADS II 13.4 Greedy

© Harald Räcke 281

Technique 4: The Greedy Algorithm

∑
j∈I
wj ≤

s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
k∑
i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

EADS II 13.4 Greedy

© Harald Räcke 282

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set Sj uniformly at random with probability 1−xj (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.

EADS II 13.5 Randomized Rounding

© Harald Räcke 283

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

EADS II 13.5 Randomized Rounding

© Harald Räcke 284

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 12

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.

EADS II 13.5 Randomized Rounding

© Harald Räcke 285

Proof: We have

Pr[#rounds ≥ (α+ 1) lnn] ≤ ne−(α+1) lnn = n−α .

EADS II 13.5 Randomized Rounding

© Harald Räcke 286

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take all sets.

E[cost] ≤ (α+1) lnn·cost(LP)+(
∑
j
wj)n−α = O(lnn)·OPT

If the weights are polynomially bounded (smallest weight is

1), sufficiently large α and OPT at least 1.

EADS II 13.5 Randomized Rounding

© Harald Räcke 287

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[sucess]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 13.5 Randomized Rounding

© Harald Räcke 288

Randomized rounding gives an O(logn) approximation. The

running time is polynomial with high probability.

Theorem 13 (without proof)

There is no approximation algorithm for set cover with

approximation guarantee better than 1
2 logn unless NP has

quasi-polynomial time algorithms (algorithms with running time

2poly(logn)).

EADS II 13.5 Randomized Rounding

© Harald Räcke 289

Techniques:

ñ Deterministic Rounding

ñ Rounding of the Dual

ñ Primal Dual

ñ Greedy

ñ Randomized Rounding

ñ Local Search

ñ Rounding the Data + Dynamic Programming

EADS II 13.5 Randomized Rounding

© Harald Räcke 290

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j ∈ {1, . . . , n} has processing time pj.
Schedule the jobs on m identical parallel machines such that the

Makespan (finishing time of the last job) is minimized.

min L
s.t. ∀machines i

∑
j pj · xj,i ≤ L

∀jobs j
∑
i xj,i ≥ 1

∀i, j xj,i ∈ {0,1}

Here the variable xj,i is the decision variable that describes

whether job j is assigned to machine i.

EADS II 14 Scheduling on Identical Machines: Local Search

© Harald Räcke 291

Lower Bounds on the Solution

Let for a given schedule Cj denote the finishing time of machine

j, and let Cmax be the makespan.

Let C∗max denote the makespan of an optimal solution.

Clearly

C∗max ≥max
j
pj

as the longest job needs to be scheduled somewhere.

EADS II 14 Scheduling on Identical Machines: Local Search

© Harald Räcke 292

Lower Bounds on the Solution

The average work performed by a machine is 1
m
∑
j pj.

Therefore,

C∗max ≥
1
m

∑
j
pj

EADS II 14 Scheduling on Identical Machines: Local Search

© Harald Räcke 293

Local Search

A local search algorithm successivley makes certain small

(cost/profit improving) changes to a solution until it does not

find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a

feasible solution is always maintained.

Sometimes the running time is difficult to prove.

EADS II 14 Scheduling on Identical Machines: Local Search

© Harald Räcke 294

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to

move it to another machine. If there is such a move that reduces

the makespan, perform the switch.

REPEAT

EADS II 14 Scheduling on Identical Machines: Local Search

© Harald Räcke 295

Local Search Analysis

Let ` be the job that finishes last in the produced schedule.

Let S` be its start time, and let C` be its completion time.

Note that every machine is busy before time S`, because

otherwise we could move the job ` and hence our schedule

would not be locally optimal.

EADS II 14 Scheduling on Identical Machines: Local Search

© Harald Räcke 296

We can split the total processing time into two intervals one

from 0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1− 1
m
)p` +

1
m

∑
j
pj ≤ (2− 1

m
)C∗max

EADS II 14 Scheduling on Identical Machines: Local Search

© Harald Räcke 297

A Tight Example

p` ≈ S` +
S`

m− 1

ALG
OPT

= S` + p`
p`

≈ 2+ 1
m−1

1+ 1
m−1

= 2− 1
m

p`

p`

S`

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign

the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the

least loaded machine.

It is easy to see that the result of these greedy strategies fulfill

the local optimally condition of our local search algorithm.

Hence, these also give 2-approximations.

EADS II 15 Scheduling on Identical Machines: Greedy

© Harald Räcke 299

A Greedy Strategy

Lemma 14

If we order the list according to non-increasing processing times

the approximation guarantee of the list scheduling strategy

improves to 4/3.

EADS II 15 Scheduling on Identical Machines: Greedy

© Harald Räcke 300

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n (otw. deleting this job gives

another counter-example with fewer jobs).

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + pn ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time

> C∗max/3.

ñ But then any machine in the optimum schedule can handle

at most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

EADS II 15 Scheduling on Identical Machines: Greedy

© Harald Räcke 301

When in an optimal solution a machine can have at most 2 jobs

the optimal solution looks as follows.

p1 p2 p3 p4 p5 p6 p7

p8p9p10p11p12p13p14

EADS II 15 Scheduling on Identical Machines: Greedy

© Harald Räcke 302

ñ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

ñ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

ñ Let pA and pB be the other job scheduled on A and B,

respectively.

ñ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

ñ Repeat the above argument for the remaining machines.

EADS II 15 Scheduling on Identical Machines: Greedy

© Harald Räcke 303

Traveling Salesman

Given a set of cities ({1, . . . , n}) and a symmetric matrix

C = (cij), cij ≥ 0 that specifies for every pair (i, j) ∈ [n]× [n]
the cost for travelling from city i to city j. Find a permutation π
of the cities such that the round-trip cost

cπ(1)π(n) +
n−1∑
i=1

cπ(i)π(i+1)

is minimized.

EADS II 16 TSP

© Harald Räcke 304

Traveling Salesman

Theorem 15

There does not exist an O(2n)-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V , E) decide whether there

exists a simple cycle that contains all nodes in G.

ñ Given an instance to HAMPATH we create an instance for

TSP.
ñ If (i, j) ∉ E then set cij to n2n otw. set cij to 1. This

instance has polynomial size.
ñ There exists a Hamiltonian Path iff there exists a tour with

cost n. Otw. any tour has cost strictly larger than 2n.
ñ An O(2n)-approximation algorithm could decide btw. these

cases. Hence, cannot exist unless P = NP .

EADS II 16 TSP

© Harald Räcke 305

Metric Traveling Salesman

In the metric version we assume for every triple

i, j, k ∈ {1, . . . , n}
cij ≤ cij + cjk .

It is convenient to view the input as a complete undirected graph

G = (V , E), where cij for an edge (i, j) defines the distance

between nodes i and j.

EADS II 16 TSP

© Harald Räcke 306

TSP: Lower Bound I

Lemma 16

The cost OPTTSP(G) of an optimum traveling salesman tour is at

least as large as the weight OPTMST(G) of a minimum spanning

tree in G.

Proof:

ñ Take the optimum TSP-tour.

ñ Delete one edge.

ñ This gives a spanning tree of cost at most OPTTSP(G).

EADS II 16 TSP

© Harald Räcke 307

TSP: Greedy Algorithm

ñ Start with a tour on a subset S containing a single node.

ñ Take the node v closest to S. Add it S and expand the

existing tour on S to include v.

ñ Repeat until all nodes have been processed.

EADS II 16 TSP

© Harald Räcke 308

TSP: Greedy Algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

The gray edges form an MST, because exactly these edges are

taken in Prims algorithm.

EADS II 16 TSP

© Harald Räcke 309

TSP: Greedy Algorithm

Lemma 17

The Greedy algorithm is a 2-approximation algorithm.

Let Si be the set at the start of the i-th iteration, and let vi
denote the node added during the iteration.

Further let si ∈ Si be the node closest to vi ∈ Si.

Let ri denote the successor of si in the tour before inserting vi.

We replace the edge (si, ri) in the tour by the two edges (si, vi)
and (vi, ri).

This increases the cost by

csi,vi + cvi,ri − csi,ri ≤ 2csi,vi

EADS II 16 TSP

© Harald Räcke 310

TSP: Greedy Algorithm

The edges (si, vi) considered during the Greedy algorithm are

exactly the edges considered during PRIMs MST algorithm.

Hence, ∑
i
csi,vi = OPTMST(G)

which with the previous lower bound gives a 2-approximation.

EADS II 16 TSP

© Harald Räcke 311

TSP: A different approach

Suppose that we are given an Eulerian graph G′ = (V , E′, c′) of

G = (V , E, c) such that for any edge (i, j) ∈ E′ c′(i, j) ≥ c(i, j).

Then we can find a TSP-tour of cost at most∑
e∈E′

c′(e)

ñ Find an Euler tour of G′.
ñ Fix a permutation of the cities (i.e., a TSP-tour) by traversing

the Euler tour and only note the first occurrence of a city.

ñ The cost of this TSP tour is at most the cost of the Euler tour

because of triangle inequality.

This technique is known as short cutting the Euler tour.

EADS II 16 TSP

© Harald Räcke 312

TSP: A different approach

2

1

4

9

5

12

7

13

8

10

11

3

6

1

2

3

4

5

6

7

8

9

10

11

1
2

13

1
4

1
5

16

1
7

18
19

EADS II 16 TSP

© Harald Räcke 313

TSP: A different approach

Consider the following graph:

ñ Compute an MST of G.

ñ Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most

2 ·OPTMST(G).

Hence, short-cutting gives a tour of cost no more than

2 ·OPTMST(G) which means we have a 2-approximation.

EADS II 16 TSP

© Harald Räcke 314

TSP: Can we do better?

1

2

3

4

5

6

7

8

9

10

11

12

13

EADS II 16 TSP

© Harald Räcke 315

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd

degree vertices in the MST (note that there are an even number

of them).

EADS II 16 TSP

© Harald Räcke 316

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most

OPTTSP(G).

However, the edges of this tour give rise to two disjoint

matchings. One of these matchings must have weight less than

OPTTSP(G)/2.

Adding this matching to the MST gives an Eulerian graph with

edge weight at most

OPTMST(G)+OPTTSP(G)/2 ≤ 3
2

OPTTSP(G) ,

Short cutting gives a 3
2 -approximation for metric TSP.

This is the best that is known.

EADS II 16 TSP

© Harald Räcke 317

Christofides. Tight Example

ñ optimal tour: n edges.

ñ MST: n− 1 edges.

ñ weight of matching (n+ 1)/2− 1

ñ MST+matching ≈ 3/2 ·n

EADS II 16 TSP

© Harald Räcke 318

Tree shortcutting. Tight Example

ε ε ε ε ε

ñ edges have Euclidean distance.

EADS II 16 TSP

© Harald Räcke 319

17 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1, . . . , n}, where the i-th item has weight

wi ∈ N and profit pi ∈ N, and given a threshold W . Find a

subset I ⊆ {1, . . . , n} of items of total weight at most W such

that the profit is maximized (we can assume each wi ≤ W).

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ W

∀i ∈ {1, . . . , n} xi ∈ {0,1}

EADS II 17.1 Knapsack

© Harald Räcke 320

17 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack

1: A(1)← [(0,0), (p1,w1)]
2: for j ← 2 to n do

3: A(j)← A(j − 1)
4: for each (p,w) ∈ A(j − 1) do

5: if w +wj ≤ W then

6: add (p + pj ,w +wj) to A(j)
7: remove dominated pairs from A(j)
8: return max(p,w)∈A(n) p

The running time is O(n ·min{W,P}), where P =∑i pi is the

total profit of all items. This is only pseudo-polynomial.

EADS II 17.1 Knapsack

© Harald Räcke 321

17 Rounding Data + Dynamic Programming

Definition 18

An algorithm is said to have pseudo-polynomial running time if

the running time is polynomial when the numerical part of the

input is encoded in unary.

EADS II 17.1 Knapsack

© Harald Räcke 322

17 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O(n
∑
i
p′i) = O(n

∑
i
b pi
εM/n

c) ≤ O(n
3

ε
) .

EADS II 17.1 Knapsack

© Harald Räcke 323

17 Rounding Data + Dynamic Programming
Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
pi ≥ µ

∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

EADS II 17.1 Knapsack

© Harald Räcke 324

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a

makespan of
1
m

∑
j≠`

pj + p`

where ` is the last job to complete.

Together with the obervation that if each pi ≥ 1
3C
∗
max then LPT is

optimal this gave a 4/3-approximation.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 325

17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

pj ≤ 1
km

∑
i
pi

Idea:

1. Find the optimum Makespan for the long jobs by brute

force.

2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 326

We still have the inequality

1
m

∑
j≠`

pj + p`

where ` is the last job (this only requires that all machines are

busy before time S`).

If ` is a long job, then the schedule must be optimal, as it

consists of an optimal schedule of long jobs plus a schedule for

short jobs.

If ` is a short job its length is at most

p` ≤
∑
j
pj/(mk)

which is at most C∗max/k.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 327

Hence we get a schedule of length at most

(1+ 1
k
)C∗max

There are at most km long jobs. Hence, the number of

possibilities of scheduling these jobs on m machines is at most

mkm, which is constant if m is constant. Hence, it is easy to

implement the algorithm in polynomial time.

Theorem 19

The above algorithm gives a polynomial time approximation

scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = d1
ε e.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 328

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1+ 1
k)T or

certifies that no schedule of length at most T exists (assume

T ≥ 1
m
∑
j pj).

We partition the jobs into long jobs and short jobs:

ñ A job is long if its size is larger than T/k.

ñ Otw. it is a short job.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 329

ñ We round all long jobs down to multiples of T/k2.

ñ For these rounded sizes we first find an optimal schedule.

ñ If this schedule does not have length at most T we conclude

that also the original sizes don’t allow such a schedule.

ñ If we have a good schedule we extend it by adding the short

jobs according to the LPT rule.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 330

After the first phase the rounded sizes of the long jobs assigned

to a machine add up to at most T .

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the

rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k2 going from

rounded sizes to original sizes gives that the Makespan is at

most

(1+ 1
k
)T .

EADS II 17.2 Scheduling Revisited

© Harald Räcke 331

During the second phase there always must exist a machine with

load at most T , since T is larger than the average load.

Assigning the current (short) job to such a machine gives that

the new load is at most

T + T
k
≤ (1+ 1

k
)T .

EADS II 17.2 Scheduling Revisited

© Harald Räcke 332

Running Time for scheduling large jobs: There should not be

a job with rounded size more than T as otw. the problem

becomes trivial.

Hence, any large job has rounded size of i
k2T for i ∈ {k, . . . , k2}.

Therefore the number of different inputs is at most nk2

(described by a vector of length k2 where, the i-th entry

describes the number of jobs of size i
k2T). This is polynomial.

The schedule/configuration of a particular machine x can be

described by a vector of length k2 where the i-th entry describes

the number of jobs of rounded size i
k2T assigned to x. There

are only (k+ 1)k2
different vectors.

This means there are a constant number of different machine

configurations.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 333

Let OPT(n1, . . . , nk2) be the number of machines that are

required to schedule input vector (n1, . . . , nk2) with Makespan at

most T .

If OPT(n1, . . . , nk2) ≤ m we can schedule the input.

We have

OPT(n1, . . . , nk2)

=

0 (n1, . . . , nk2) = 0
1+ min

(s1,...,sk2)∈C
OPT(n1 − s1, . . . , nk2 − sk2) (n1, . . . , nk2) Û 0

∞ otw.

where C is the set of all configurations.

Hence, the running time is roughly (k+ 1)k2nk2 ≈ (nk)k2
.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 334

We can turn this into a PTAS by choosing k = d1/εe and using

binary search. This gives a running time that is exponential in

1/ε.

Can we do better?

Scheduling on identical machines with the goal of minimizing

Makespan is a strongly NP-complete problem.

Theorem 20

There is no FPTAS for problems that are strongly NP-hard.

EADS II 17.2 Scheduling Revisited

© Harald Räcke 335

More General
Let OPT(n1, . . . , nA) be the number of machines that are required to
schedule input vector (n1, . . . , nA) with Makespan at most T
(A: number of different sizes).

If OPT(n1, . . . , nA) ≤m we can schedule the input.

OPT(n1, . . . , nA)

=

0 (n1, . . . , nA) = 0
1+ min

(s1,...,sA)∈C
OPT(n1 − s1, . . . , nA − sA) (n1, . . . , nA) Û 0

∞ otw.

where C is the set of all configurations.

|C| ≤ (B + 1)A, where B is the number of jobs that possibly can fit on
the same machine.

The running time is then O((B + 1)AnA) because the dynamic

programming table has just nA entries.

Bin Packing

Given n items with sizes s1, . . . , sn where

1 > s1 ≥ · · · ≥ sn > 0 .

Pack items into a minimum number of bins where each bin can

hold items of total size at most 1.

Theorem 21

There is no ρ-approximation for Bin Packing with ρ < 3/2 unless

P = NP.

EADS II 17.3 Bin Packing

© Harald Räcke 337

Bin Packing

Proof

ñ In the partition problem we are given positive integers

b1, . . . , bn with B =∑i bi even. Can we partition the integers

into two sets S and T s.t.∑
i∈S
bi =

∑
i∈T
bi ?

ñ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

ñ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

ñ Hence, such an algorithm can solve Partition.

EADS II 17.3 Bin Packing

© Harald Räcke 338

Bin Packing

Definition 22

An asymptotic polynomial-time approximation scheme (APTAS)

is a family of algorithms {Aε} along with a constant c such that

Aε returns a solution of value at most (1+ ε)OPT+ c for

minimization problems.

ñ Note that for Set Cover or for Knapsack it makes no sense

to differentiate between the notion of a PTAS or an APTAS

because of scaling.

ñ However, we will develop an APTAS for Bin Packing.

EADS II 17.3 Bin Packing

© Harald Räcke 339

Bin Packing

Again we can differentiate between small and large items.

Lemma 23

Any packing of items of size at most γ into ` bins can be

extended to a packing of all items into max{`, 1
1−γ SIZE(I)+ 1}

bins, where SIZE(I) =∑i si is the sum of all item sizes.

ñ If after Greedy we use more than ` bins, all bins (apart from

the last) must be full to at least 1− γ.

ñ Hence, r(1− γ) ≤ SIZE(I) where r is the number of

nearly-full bins.

ñ This gives the lemma.

EADS II 17.3 Bin Packing

© Harald Räcke 340

Choose γ = ε/2. Then we either use ` bins or at most

1
1− ε/2 ·OPT+ 1 ≤ (1+ ε) ·OPT+ 1

bins.

It remains to find an algorithm for the large items.

EADS II 17.3 Bin Packing

© Harald Räcke 341

Bin Packing

Linear Grouping:

Generate an instance I′ (for large items) as follows.

ñ Order large items according to size.

ñ Let the first k items belong to group 1; the following k
items belong to group 2; etc.

ñ Delete items in the first group;

ñ Round items in the remaining groups to the size of the

largest item in the group.

EADS II 17.3 Bin Packing

© Harald Räcke 342

Lemma 24

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

EADS II 17.3 Bin Packing

© Harald Räcke 343

Lemma 25

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 2:

ñ Any bin packing for I′ gives a bin packing for I as follows.

ñ Pack the items of group 1 into k new bins;

ñ Pack the items of groups 2, where in the packing for I′ the

items for group 2 have been packed;

ñ . . .

EADS II 17.3 Bin Packing

© Harald Räcke 344

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ 2n/bε2n/2c ≤ 4/ε2 (here we used bαc ≥ α/2 for

α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the

previous Dynamic Programming approach.

ñ cost (for large items) at most

OPT(I′)+ k ≤ OPT(I)+ εSIZE(I) ≤ (1+ ε)OPT(I)

ñ running time O((2
εn)

4/ε2).

Can we do better?

In the following we show how to obtain a solution where the

number of bins is only

OPT(I)+O(log2(SIZE(I))) .

Note that this is usually better than a guarantee of

(1+ ε)OPT(I)+ 1 .

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 346

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 347

Configuration LP

A possible packing of a bin can be described by an m-tuple

(t1, . . . , tm), where ti describes the number of pieces of size si.
Clearly, ∑

i
ti · si ≤ 1 .

We call a vector that fulfills the above constraint a configuration.

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 348

Configuration LP

Let N be the number of configurations (exponential).

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

∀j ∈ {1, . . . ,N} xj integral

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 349

How to solve this LP?

later...

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 350

We can assume that each item has size at least 1/SIZE(I).

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 351

Harmonic Grouping

ñ Sort items according to size (monotonically decreasing).

ñ Process items in this order; close the current group if size

of items in the group is at least 2 (or larger). Then open new

group.

ñ I.e., G1 is the smallest cardinality set of largest items s.t.

total size sums up to at least 2. Similarly, for G2, . . . , Gr−1.

ñ Only the size of items in the last group Gr may sum up to

less than 2.

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 352

Harmonic Grouping

From the grouping we obtain instance I′ as follows:

ñ Round all items in a group to the size of the largest group

member.

ñ Delete all items from group G1 and Gr .
ñ For groups G2, . . . , Gr−1 delete ni −ni−1 items.

ñ Observe that ni ≥ ni−1.

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 353

Lemma 26

The number of different sizes in I′ is at most SIZE(I)/2.

ñ Each group that survives (recall that G1 and Gr are deleted)

has total size at least 2.

ñ Hence, the number of surviving groups is at most SIZE(I)/2.

ñ All items in a group have the same size in I′.

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 354

Lemma 27

The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.
ñ Consider a group Gi that has strictly more items than Gi−1.
ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑
j=ni−1+1

3
j

since the smallest piece has size at most 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most
nr−1∑
j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of

each item is at least 1/SIZE(I)).

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 355

Algorithm 1 BinPack

1: if SIZE(I) < 10 then

2: pack remaining items greedily

3: Apply harmonic grouping to create instance I′; pack

discarded items in at most O(log(SIZE(I))) bins.

4: Let x be optimal solution to configuration LP

5: Pack bxjc bins in configuration Tj for all j; call the

packed instance I1.

6: Let I2 be remaining pieces from I′

7: Pack I2 via BinPack(I2)

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 356

Analysis

OPTLP(I1)+OPTLP(I2) ≤ OPTLP(I′) ≤ OPTLP(I)

Proof:

ñ Each piece surviving in I′ can be mapped to a piece in I of

no lesser size. Hence, OPTLP(I′) ≤ OPTLP(I)
ñ bxjc is feasible solution for I1 (even integral).

ñ xj − bxjc is feasible solution for I2.

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 357

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed

into at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 358

Analysis

We can show that SIZE(I2) ≤ SIZE(I)/2. Hence, the number of

recursion levels is only O(log(SIZE(Ioriginal))) in total.

ñ The number of non-zero entries in the solution to the

configuration LP for I′ is at most the number of constraints,

which is the number of different sizes (≤ SIZE(I)/2).

ñ The total size of items in I2 can be at most
∑N
j=1 xj − bxjc

which is at most the number of non-zero entries in the

solution to the configuration LP.

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 359

How to solve the LP?

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).
In total we have bi pieces of size si.

Primal

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

Dual
max

∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1

∀i ∈ {1, . . . ,m} yi ≥ 0

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 360

Separation Oracle

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration Tj = (Tj1, . . . , Tjm) that

ñ is feasible, i.e.,
m∑
i=1

Tji · si ≤ 1 ,

ñ and has a large profit

m∑
i=1

Tjiyi > 1

But this is the Knapsack problem.

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 361

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is

violated with 1+ ε′ = 1+ ε
1−ε we find it, since we can obtain at

least (1− ε) of the optimal profit.

The solution we get is feasible for:

Dual′

max
∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1+ ε′

∀i ∈ {1, . . . ,m} yi ≥ 0

Primal′

min (1+ ε′)∑Nj=1 xj
s.t. ∀i ∈ {1 . . .m} ∑N

j=1 Tjixj ≥ bi
∀j ∈ {1, . . . ,N} xj ≥ 0

Separation Oracle

If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ε′)OPT

How do we get good primal solution (not just the value)?

ñ The constraints used when computing z certify that the

solution is feasible for DUAL′.
ñ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
ñ Let DUAL′′ be DUAL without unused constraints.

ñ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

ñ The optimum value for PRIMAL′′ is at most (1+ ε′)OPT.

ñ We can compute the corresponding solution in polytime.

This gives that overall we need at most

(1+ ε′)OPTLP(I)+O(log2(SIZE(I)))

bins.

We can choose ε′ = 1
OPT as OPT ≤ #items and since we have a

fully polynomial time approximation scheme (FPTAS) for

knapsack.

EADS II 17.4 Advanced Rounding for Bin Packing

© Harald Räcke 364

18 MAXSAT

Problem definition:

ñ n Boolean variables

ñ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

ñ Non-negative weight wj for each clause Cj.
ñ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.

EADS II 18 MAXSAT

© Harald Räcke 365

18 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

EADS II 18 MAXSAT

© Harald Räcke 366

MAXSAT: Flipping Coins

Set each xi independently to true with probability 1
2 (and, hence,

to false with probability 1
2 , as well).

EADS II 18 MAXSAT

© Harald Räcke 367

Define random variable Xj with

Xj =
{

1 if Cj satisfied

0 otw.

Then the total weight W of satisfied clauses is given by

W =
∑
j
wjXj

EADS II 18 MAXSAT

© Harald Räcke 368

E[W] =
∑
j
wjE[Xj]

=
∑
j
wjPr[Cj is satisified]

=
∑
j
wj
(
1−

(1
2

)`j)
≥ 1

2

∑
j
wj

≥ 1
2

OPT

EADS II 18 MAXSAT

© Harald Räcke 369

MAXSAT: LP formulation

ñ Let for a clause Cj, Pj be the set of positive literals and Nj
the set of negative literals.

Cj =
∨
j∈Pj

xi ∨
∨
j∈Nj

x̄i

max
∑
jwjzj

s.t. ∀j ∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

EADS II 18 MAXSAT

© Harald Räcke 370

MAXSAT: Randomized Rounding

Set each xi independently to true with probability yi (and,

hence, to false with probability (1−yi)).

EADS II 18 MAXSAT

© Harald Räcke 371

Lemma 28 (Geometric Mean ≤ Arithmetic Mean)

For any nonnegative a1, . . . , ak k∏
i=1

ai

1/k

≤ 1
k

k∑
i=1

ai

EADS II 18 MAXSAT

© Harald Räcke 372

Definition 29

A function f on an interval I is concave if for any two points s
and r from I and any λ ∈ [0,1] we have

f(λs + (1− λ)r) ≥ λf(s)+ (1− λ)f(r)

Lemma 30

Let f be a concave function on the interval [0,1], with f(0) = a
and f(1) = a+ b. Then

f(λ) = f((1− λ)0+ λ1)

≥ (1− λ)f(0)+ λf(1)
= a+ λb

for λ ∈ [0,1].

EADS II 18 MAXSAT

© Harald Räcke 373

Pr[Cj not satisfied] =
∏
i∈Pj
(1−yi)

∏
i∈Nj

yi

≤
 1
`j

 ∑
i∈Pj
(1−yi)+

∑
i∈Nj

yi

`j

=
1− 1

`j

 ∑
i∈Pj

yi +
∑
i∈Nj

(1−yi)

`j

≤
(

1− zj
`j

)`j
.

EADS II 18 MAXSAT

© Harald Räcke 374

The function f(z) = 1− (1− z
`)
` is concave. Hence,

Pr[Cj satisfied] ≥ 1−
(

1− zj
`j

)`j

≥
1−

(
1− 1

`j

)`j · zj .

f ′′(z) = −`−1
`

[
1− z

`

]`−2 ≤ 0 for z ∈ [0,1]. Therefore, f is

concave.

EADS II 18 MAXSAT

© Harald Räcke 375

E[W] =
∑
j
wjPr[Cj is satisfied]

≥
∑
j
wjzj

1−
(

1− 1
`j

)`j
≥
(

1− 1
e

)
OPT .

EADS II 18 MAXSAT

© Harald Räcke 376

MAXSAT: The better of two

Theorem 31

Choosing the better of the two solutions given by randomized

rounding and coin flipping yields a 3
4 -approximation.

EADS II 18 MAXSAT

© Harald Räcke 377

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}]
≥ E[1

2W1 + 1
2W2]

≥ 1
2

∑
j
wjzj

1−
(

1− 1
`j

)`j+ 1
2

∑
j
wj

(
1−

(
1
2

)`j)

≥
∑
j
wjzj

 1
2

1−
(

1− 1
`j

)`j+ 1
2

(
1−

(
1
2

)`j)
︸ ︷︷ ︸

≥ 3
4 for all integers

≥ 3
4

OPT

EADS II 18 MAXSAT

© Harald Räcke 378

1 2 3 4 5 6

0.5

0.6

0.7

0.8

0.9

1

`

f(`)

randomized rounding

flipping coins
average

EADS II 18 MAXSAT

© Harald Räcke 379

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability

that a variable is set to 1/true was exactly the value of the

corresponding variable in the linear program.

We could define a function f : [0,1]→ [0,1] and set xi to true

with probability f(yi).

EADS II 18 MAXSAT

© Harald Räcke 380

MAXSAT: Nonlinear Randomized Rounding

Let f : [0,1]→ [0,1] be a function with

1− 4−x ≤ f(x) ≤ 4x−1

Theorem 32

Rounding the LP-solution with a function f of the above form

gives a 3
4 -approximation.

EADS II 18 MAXSAT

© Harald Räcke 381

0 0.5 1

0.5

1

4x−1

1− 4−x

EADS II 18 MAXSAT

© Harald Räcke 382

Pr[Cj not satisfied] =
∏
i∈Pj
(1− f(yi))

∏
i∈Nj

f(yi)

≤
∏
i∈Pj

4−yi
∏
i∈Nj

4yi−1

= 4
−(∑i∈Pj yi+∑i∈Nj (1−yi))

≤ 4−zj

EADS II 18 MAXSAT

© Harald Räcke 383

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥ 3

4
OPT

EADS II 18 MAXSAT

© Harald Räcke 384

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 33 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

Lemma 34

Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3
4 .

max
∑
jwjzj

s.t. ∀j ∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

Consider: (x1 ∨ x2)∧ (x̄1 ∨ x2)∧ (x1 ∨ x̄2)∧ (x̄1 ∨ x̄2)

ñ any solution can satisfy at most 3 clauses

ñ we can set y1 = y2 = 1/2 in the LP; this allows to set

z1 = z2 = z3 = z4 = 1

ñ hence, the LP has value 4.

EADS II 18 MAXSAT

© Harald Räcke 386

Facility Location

Given a set L of (possible) locations for placing facilities and a

set D of customers together with cost functions s : D × L→ R+

and o : L→ R+ find a set of facility locations F together with an

assignment φ : D → F of customers to open facilities such that∑
f∈F

o(f)+
∑
c
s(c,φ(c))

is minimized.

In the metric facility location problem we have

s(c, f) ≤ s(c, f ′)+ s(c′, f)+ s(c′, f ′) .

EADS II 19 Facility Location

© Harald Räcke 387

Facility Location

Integer Program

min
∑
i∈F fiyi +

∑
i∈F

∑
j∈D cijxij

s.t. ∀j ∈ D ∑
i∈F xij = 1

∀i ∈ F, j ∈ D xij ≤ yi
∀i ∈ F, j ∈ D xij ∈ {0,1}

∀i ∈ F yi ∈ {0,1}

As usual we get an LP by relaxing the integrality constraints.

EADS II 19 Facility Location

© Harald Räcke 388

Facility Location

Dual Linear Program

max
∑
j∈D vj

s.t. ∀i ∈ F ∑
j∈Dwij ≤ fi

∀i ∈ F, j ∈ D vj −wij ≤ cij
∀i ∈ F, j ∈ D wij ≥ 0

EADS II 19 Facility Location

© Harald Räcke 389

Facility Location

Definition 35

Given an LP solution (x∗, y∗) we say that facility i neighbours

client j if xij > 0. Let N(j) = {i ∈ F : x∗ij > 0}.

EADS II 19 Facility Location

© Harald Räcke 390

Lemma 36

If (x∗, y∗) is an optimal solution to the facility location LP and

(v∗,w∗) is an optimal dual solution, then x∗ij > 0 implies

cij ≤ v∗j .

Follows from slackness conditions.

EADS II 19 Facility Location

© Harald Räcke 391

Suppose we open set S ⊆ F of facilities s.t. for all clients we have

S ∩N(j) ≠ �.

Then every client j has a facility i s.t. assignment cost for this

client is at most cij ≤ v∗j .

Hence, the total assignment cost is∑
j
cijj ≤

∑
j
v∗j ≤ OPT ,

where ij is the facility that client j is assigned to.

EADS II 19 Facility Location

© Harald Räcke 392

Problem: Facility cost may be huge!

Suppose we can partition a subset F ′ ⊆ F of facilities into

neighbour sets of some clients. I.e.

F ′ =
⊎
k
N(jk)

where j1, j2, . . . form a subset of the clients.

EADS II 19 Facility Location

© Harald Räcke 393

Now in each set N(jk) we open the cheapest facility. Call it fik .

We have

fik = fik
∑

i∈N(jk)
x∗ijk ≤

∑
i∈N(jk)

fix∗ijk ≤
∑

i∈N(jk)
fiy∗i .

Summing over all k gives

∑
k
fik ≤

∑
k

∑
i∈N(jk)

fiy∗i =
∑
i∈F ′

fiy∗i ≤
∑
i∈F
fiy∗i

Facility cost is at most the facility cost in an optimum solution.

EADS II 19 Facility Location

© Harald Räcke 394

Problem: so far clients j1, j2, . . . have a neighboring facility.

What about the others?

Definition 37

Let N2(j) denote all neighboring clients of the neighboring

facilities of client j.

Note that N(j) is a set of facilities while N2(j) is a set of clients.

EADS II 19 Facility Location

© Harald Räcke 395

Algorithm 1 FacilityLocation
1: C ← D// unassigned clients

2: k← 0

3: while C ≠ 0 do

4: k← k+ 1

5: choose jk ∈ C that minimizes v∗j
6: choose ik ∈ N(jk) as cheapest facility

7: assign jk and all unassigned clients in N2(jk) to ik
8: C ← C − {jk} −N2(jk)

EADS II 19 Facility Location

© Harald Räcke 396

Facility cost of this algorithm is at most OPT because the sets

N(jk) are disjoint.

Total assignment cost:

ñ Fix k; set j = jk and i = ik. We know that cij ≤ v∗j .

ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).

ci` ≤ cij + chj + ch` ≤ v∗j + v∗j + v∗` ≤ 3v∗`

Summing this over all facilities gives that the total assignment

cost is at most 3 ·OPT. Hence, we get a 4-approximation.

EADS II 19 Facility Location

© Harald Räcke 397

In the above analysis we use the inequality∑
i∈F
fiy∗i ≤ OPT .

We know something stronger namely∑
i∈F
fiy∗i +

∑
i∈F

∑
j∈D

cijx∗ij ≤ OPT .

EADS II 19 Facility Location

© Harald Räcke 398

Observation:

ñ Suppose when choosing a client jk, instead of opening the

cheapest facility in its neighborhood we choose a random

facility according to x∗ijk .
ñ Then we incur connection cost∑

i
cijkx

∗
ijk

for client jk. (In the previous algorithm we estimated this by

v∗jk).
ñ Define

C∗j =
∑
i
cijx∗ij

to be the connection cost for client j.

EADS II 19 Facility Location

© Harald Räcke 399

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of

some jk). (recall that neighborhoods of different j′ks are

disjoint).

We open facility i with probability xijk ≤ yi (in case it is in some

neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most∑
i∈F
fiyi .

EADS II 19 Facility Location

© Harald Räcke 400

Algorithm 1 FacilityLocation
1: C ← D// unassigned clients

2: k← 0

3: while C ≠ 0 do

4: k← k+ 1

5: choose jk ∈ C that minimizes v∗j + C∗j
6: choose ik ∈ N(jk) according to probability xijk .
7: assign jk and all unassigned clients in N2(jk) to ik
8: C ← C − {jk} −N2(jk)

EADS II 19 Facility Location

© Harald Räcke 401

Total assignment cost:

ñ Fix k; set j = jk.
ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).
ñ If we assign a client ` to the same facility as i we pay at

most∑
i
cijx∗ijk + chj + ch` ≤ C

∗
j + v∗j + v∗` ≤ C∗` + 2v∗`

Summing this over all clients gives that the total assignment cost

is at most ∑
j
C∗j +

∑
j

2v∗j ≤
∑
j
C∗j + 2OPT

Hence, it is at most 2OPT plus the total assignment cost in an

optimum solution.

Adding the facility cost gives a 3-approximation.

Lemma 38 (Chernoff Bounds)

Let X1, . . . , Xn be n independent 0-1 random variables, not

necessarily identically distributed. Then for X =∑ni=1Xi and

µ = E[X], L ≤ µ ≤ U , and δ > 0

Pr[X ≥ (1+ δ)U] <
(

eδ

(1+ δ)1+δ
)U

,

and

Pr[X ≤ (1− δ)L] <
(

e−δ

(1− δ)1−δ
)L

,

EADS II 20.1 Chernoff Bounds

© Harald Räcke 403

Lemma 39

For 0 ≤ δ ≤ 1 we have that(
eδ

(1+ δ)1+δ
)U
≤ e−Uδ2/3

and (
e−δ

(1− δ)1−δ
)L
≤ e−Lδ2/2

EADS II 20.1 Chernoff Bounds

© Harald Räcke 404

Integer Multicommodity Flows

ñ Given si-ti pairs in a graph.

ñ Connect each pair by a paths such that not too many path

use any given edge.

min W
s.t. ∀i ∑

p∈Pi xp = 1∑
p:e∈p xp ≤ W

xp ∈ {0,1}

EADS II 20.1 Chernoff Bounds

© Harald Räcke 405

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set Pi at random according

to the probability distribution given by the Linear Programming

Solution.

EADS II 20.1 Chernoff Bounds

© Harald Räcke 406

Theorem 40

If W∗ ≥ c lnn for some constant c, then with probability at least

n−c/3 the total number of paths using any edge is at most

W∗ +√cW∗ lnn.

EADS II 20.1 Chernoff Bounds

© Harald Räcke 407

Integer Multicommodity Flows

Let Xie be a random variable that indicates whether the path for

si-ti uses edge e.

Then the number of paths using edge e is Ye =
∑
iXie.

E[Ye] =
∑
i

∑
p∈Pi:e∈p

x∗p =
∑
p:e∈P

x∗p ≤ W∗

EADS II 20.1 Chernoff Bounds

© Harald Räcke 408

Integer Multicommodity Flows

Choose δ = √(c lnn)/W∗.

Then

Pr[Ye ≥ (1+ δ)W∗] < e−W∗δ2/3 = 1
nc/3

EADS II 20.1 Chernoff Bounds

© Harald Räcke 409

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ≥ 0

Dual Formulation:

max
∑
u∈U yu

s.t. ∀i ∈ {1, . . . , k} ∑
u:u∈Si yu ≤ wi

yu ≥ 0

EADS II 21 Primal Dual Revisited

© Harald Räcke 410

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

EADS II 21 Primal Dual Revisited

© Harald Räcke 411

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is∑
j
wj =

∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}|·ye ≤ f ·

∑
e
ye ≤ f ·OPT

EADS II 21 Primal Dual Revisited

© Harald Räcke 412

Note that the constructed pair of primal and dual solution fulfills

primal slackness conditions.

This means

xj > 0⇒
∑
e∈Sj

ye = wj

If we would also fulfill dual slackness conditions

ye > 0⇒
∑
j:e∈Sj

xj = 1

then the solution would be optimal!!!

EADS II 21 Primal Dual Revisited

© Harald Räcke 413

We don’t fulfill these constraint but we fulfill an approximate

version:

ye > 0⇒ 1 ≤
∑
j:e∈Sj

xj ≤ f

This is sufficient to show that the solution is an

f -approximation.

EADS II 21 Primal Dual Revisited

© Harald Räcke 414

Suppose we have a primal/dual pair

min
∑
j cjxj

s.t. ∀i ∑
j: aijxj ≥ bi

∀j xj ≥ 0

max
∑
i biyi

s.t. ∀j ∑
i aijyi ≤ cj

∀i yi ≥ 0

and solutions that fulfill approximate slackness conditions:

xj > 0⇒
∑
i
aijyi ≥ 1

α
cj

yi > 0⇒
∑
j
aijxj ≤ βbi

EADS II 21 Primal Dual Revisited

© Harald Räcke 415

Then

∑
j
cjxj ≤ α

∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi

∑
j
cjxjcj

primal cost

right hand side of j-th
dual constraint

∑
i
biyi

dual objective

EADS II 21 Primal Dual Revisited

© Harald Räcke 416

Feedback Vertex Set for Undirected Graphs

ñ Given a graph G = (V , E) and non-negative weights wv ≥ 0

for vertex v ∈ V .

ñ Choose a minimum cost subset of vertices s.t. every cycle

contains at least one vertex.

EADS II 21 Primal Dual Revisited

© Harald Räcke 417

We can encode this as an instance of Set Cover

ñ Each vertex can be viewed as a set that contains some

cycles.

ñ However, this encoding gives a Set Cover instance of

non-polynomial size.

ñ The O(logn)-approximation for Set Cover does not help us

to get a good solution.

EADS II 21 Primal Dual Revisited

© Harald Räcke 418

Let C denote the set of all cycles (where a cycle is identified by

its set of vertices)

Primal Relaxation:

min
∑
v wvxv

s.t. ∀C ∈ C ∑
v∈C xv ≥ 1

∀v xv ≥ 0

Dual Formulation:

max
∑
C∈C yC

s.t. ∀v ∈ V ∑
C :v∈C yC ≤ wv

∀C yC ≥ 0

EADS II 21 Primal Dual Revisited

© Harald Räcke 419

If we perform the previous dual technique for Set Cover we get

the following:

ñ Start with x = 0 and y = 0

ñ While there is a cycle C that is not covered (does not contain
a chosen vertex).

ñ Increase ye until dual constraint for some vertex v becomes
tight.

ñ set xv = 1.

EADS II 21 Primal Dual Revisited

© Harald Räcke 420

Then ∑
v
wvxv =

∑
v

∑
C :v∈C

yCxv

=
∑
v∈S

∑
C :v∈C

yC

=
∑
C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but

this is unrealistic.

EADS II 21 Primal Dual Revisited

© Harald Räcke 421

Algorithm 1 FeedbackVertexSet
1: y ← 0

2: x ← 0

3: while exists cycle C in G do

4: increase yC until there is v ∈ C s.t.
∑
C :v∈C yC = wv

5: xv = 1

6: remove v from G
7: repeatedly remove vertices of degree 1 from G

EADS II 21 Primal Dual Revisited

© Harald Räcke 422

Idea:

Always choose a short cycle that is not covered. If we always find

a cycle of length at most α we get an α-approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm

chooses at most one vertex from P .

EADS II 21 Primal Dual Revisited

© Harald Räcke 423

Observation:

If we always choose a cycle for which the number of vertices of

degree at least 3 is at most α we get an α-approximation.

Theorem 41

In any graph with no vertices of degree 1, there always exists a

cycle that has at most O(logn) vertices of degree 3 or more. We

can find such a cycle in linear time.

This means we have

yC > 0⇒ |S ∩ C| ≤ O(logn) .

EADS II 21 Primal Dual Revisited

© Harald Räcke 424

Primal Dual for Shortest Path

Given a graph G = (V , E) with two nodes s, t ∈ V and

edge-weights c : E → R+ find a shortest path between s and t
w.r.t. edge-weights c.

min
∑
e c(e)xe

s.t. ∀S ∈ S ∑
e:δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}
Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.

EADS II 21 Primal Dual Revisited

© Harald Räcke 425

Primal Dual for Shortest Path

The Dual:

max
∑
S yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.

EADS II 21 Primal Dual Revisited

© Harald Räcke 426

Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

EADS II 21 Primal Dual Revisited

© Harald Räcke 427

Algorithm 1 PrimalDualShortestPath
1: y ← 0

2: F ← �
3: while there is no s-t path in (V , F) do

4: Let C be the connected component of (V , F) con-

taining s
5: Increase yC until there is an edge e′ ∈ δ(C) such

that
∑
S:e′∈δ(S)yS = c(e′).

6: F ← F ∪ {e′}
7: Let P be an s-t path in (V , F)
8: return P

EADS II 21 Primal Dual Revisited

© Harald Räcke 428

Lemma 42

At each point in time the set F forms a tree.

Proof:

ñ In each iteration we take the current connected component

from (V , F) that contains s (call this component C) and add

some edge from δ(C) to F .

ñ Since, at most one end-point of the new edge is in C the

edge cannot close a cycle.

EADS II 21 Primal Dual Revisited

© Harald Räcke 429

∑
e∈P
c(e) =

∑
e∈P

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives∑
e∈P
c(e) =

∑
S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

EADS II 21 Primal Dual Revisited

© Harald Räcke 430

If S contains two edges from P then there must exist a subpath

P ′ of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

EADS II 21 Primal Dual Revisited

© Harald Räcke 431

Steiner Forest Problem:

Given a graph G = (V , E), together with source-target pairs

si, ti,i = 1, . . . , k, and a cost function c : E → R+ on the edges.

Find a subset F ⊆ E of the edges such that for every

i ∈ {1, . . . , k} there is a path between si and ti only using edges

in F .

min
∑
e c(e)xe

s.t. ∀S ⊆ V : S ∈ Si for some i
∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here Si contains all sets S such that si ∈ S and ti ∉ S.

EADS II 21 Primal Dual Revisited

© Harald Räcke 432

max
∑
S : ∃i s.t. S ∈ Si yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

yS ≥ 0

The difference to the dual of the shortest path problem is that

we have many more variables (sets for which we can generate a

moat of non-zero width).

EADS II 21 Primal Dual Revisited

© Harald Räcke 433

Algorithm 1 FirstTry
1: y ← 0

2: F ← �
3: while not all si-ti pairs connected in F do

4: Let C be some connected component of (V , F)
such that |C ∩ {si, ti}| = 1 for some i.

5: Increase yC until there is an edge e′ ∈ δ(C) s.t.∑
S∈Si:e′∈δ(S)yS = ce′

6: F ← F ∪ {e′}
7: Let Pi be an si-ti path in (V , F)
8: return

⋃
i Pi

EADS II 21 Primal Dual Revisited

© Harald Räcke 434

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in

good shape.

However, this is not true:

ñ Take a graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

EADS II 21 Primal Dual Revisited

© Harald Räcke 435

Algorithm 1 SecondTry

1: y ← 0; F ← �; ` ← 0

2: while not all si-ti pairs connected in F do

3: ` ← ` + 1

4: Let C be set of all connected components C of (V , F)
such that |C ∩ {si, ti}| = 1 for some i.

5: Increase yC for all C ∈ C uniformly until for some edge

e` ∈ δ(C′), C′ ∈ C s.t.
∑
S:e`∈δ(S)yS = ce`

6: F ← F ∪ {e`}
7: F ′ ← F
8: for k← ` downto 1 do // reverse deletion

9: if F ′ − ek is feasible solution then

10: remove ek from F ′

11: return F ′

EADS II 21 Primal Dual Revisited

© Harald Räcke 436

The reverse deletion step is not strictly necessary this way. It

would also be sufficient to simply delete all unnecessary edges

in any order.

EADS II 21 Primal Dual Revisited

© Harald Räcke 437

Example

s1 s2

s3

t1

t2

t3

EADS II 21 Primal Dual Revisited

© Harald Räcke 438

Lemma 43

For any C in any iteration of the algorithm∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

This means that the number of times a moat from C is crossed

in the final solution is at most twice the number of moats.

Proof: later...

EADS II 21 Primal Dual Revisited

© Harald Räcke 439

∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

EADS II 21 Primal Dual Revisited

© Harald Räcke 440

Lemma 44

For any set of connected components C in any iteration of the

algorithm ∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. ei is the set we add to F . Let Fi be the set of

edges in F at the beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

EADS II 21 Primal Dual Revisited

© Harald Räcke 441

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from
C (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑
v∈R

deg(v) ≥
∑
C∈C
|δ(C)∩ F ′| ?≤ 2|C| = 2|R|

EADS II 21 Primal Dual Revisited

© Harald Räcke 442

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

EADS II 21 Primal Dual Revisited

© Harald Räcke 443

	Approximation Algorithms
	Introduction
	Integer Programs
	Basic Techniques
	Deterministic Rounding
	Rounding the Dual
	Primal Dual Technique
	Greedy
	Randomized Rounding

	Scheduling on Identical Machines: Local Search
	Scheduling on Identical Machines: Greedy
	TSP
	Rounding Data + Dynamic Programming
	Knapsack
	Scheduling Revisited
	Bin Packing
	Advanced Rounding for Bin Packing

	MAXSAT
	Facility Location
	Integer Multicommodity Flows
	Chernoff Bounds

	Primal Dual Revisited

