Part III	
Approximation Algorithms	
EADS II © Harald Räcke	243

There are many practically important optimization problems that are NP-hard.

What can we do?

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

EADS II © Harald Räcke 11 Introduction

Definition 2

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

Minimization Problem:

Let \mathcal{I} denote the set of problem instances, and let for a given instance $I \in \mathcal{I}$, $\mathcal{F}(I)$ denote the set of feasible solutions. Further let cost(F) denote the cost of a feasible solution $F \in \mathcal{F}$.

Let for an algorithm A and instance $I \in \mathcal{I}$, $A(I) \in \mathcal{F}(I)$ denote the feasible solution computed by A. Then A is an approximation algorithm with approximation guarantee $\alpha \ge 1$ if

 $\forall I \in \mathcal{I} : \operatorname{cost}(A(I)) \le \alpha \cdot \min_{F \in \mathcal{F}(I)} \{\operatorname{cost}(F)\} = \alpha \cdot \operatorname{OPT}(I)$

EADS II © Harald Räcke 11 Introduction

245

EADS II © Harald <u>Räcke</u>

Maximization Problem:

Let \mathcal{I} denote the set of problem instances, and let for a given instance $I \in \mathcal{I}$, $\mathcal{F}(I)$ denote the set of feasible solutions. Further let profit(F) denote the profit of a feasible solution $F \in \mathcal{F}$.

Let for an algorithm *A* and instance $I \in \mathcal{I}$, $A(I) \in \mathcal{F}(I)$ denote the feasible solution computed by *A*. Then *A* is an approximation algorithm with approximation guarantee $\alpha \leq 1$ if

 $\forall I \in \mathcal{I} : \operatorname{cost}(A(I)) \ge \alpha \cdot \max_{F \in \mathcal{F}(I)} \{\operatorname{profit}(F)\} = \alpha \cdot \operatorname{OPT}(I)$

EADS II © Harald Räcke 11 Introduction

247

What can we hope for?

Definition 3

A polynomial-time approximation scheme (PTAS) is a family of algorithms $\{A_{\epsilon}\}$, such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm (for minimization problems) or a $(1 - \epsilon)$ -approximation algorithm (for maximization problems).

Many NP-complete problems have polynomial time approximation schemes.

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

```
EADS II
© Harald Räcke
```

11 Introduction

248

There are difficult problems!

The class MAX SNP (which we do not define) contains optimization problems like maximum cut or MAX-3SAT.

Theorem 4

EADS II

© Harald Räcke

For any MAX SNP-hard problem, there does not exist a polynomial-time approximation scheme, unless P = NP.

MAXCUT. Given a graph G = (V, E); partition V into two disjoint pieces A and B s.t. the number of edges between both pieces is maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

There are really difficult problems!

Theorem 5

For any constant $\epsilon > 0$ there does not exist an $\Omega(n^{\epsilon-1})$ -approximation algorithm for the maximum clique problem on a given graph *G* with *n* nodes unless P = NP.

Note that an 1/n-approximation is trivial.

EADS II © Harald Räcke

11 Introduction

251

Definition 6

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 7

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

EADS II © Harald Räcke

EADS II © Harald Räcke 12 Integer Programs

252

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the *i*-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

 $\forall u \in U \exists i \in I : u \in S_i$ (every element is covered)

and

```
\sum_{i\in I} w_i is minimized.
```

255

257

EADS II 12 Integer Programs © Harald Räcke

IP-Formulation	of Set Cove	r		
min		$\sum_{i} w_i x_i$		
s.t.	$\forall u \in U$	$\sum_{i:u\in S_i} x_i$	≥	1
	$\forall i \in \{1,\ldots,k\}$	x_i	\in	{0,1}
	12 Intege	r Programs		

IP-Formul	atior	i of Set Cove	r			
	min s.t.	$orall u \in U$ $orall i \in \{1, \dots, k\}$ $orall i \in \{1, \dots, k\}$	$\frac{\sum_{i} w_{i} x_{i}}{\sum_{i:u \in S_{i}} x_{i}} x_{i}}{x_{i}}$	≥ ≥ integral	10	
EADS II © Harald Ra	äcke	12 Integ	er Programs			256

IP-Formu	latio	n of Vertex C	over			
	min		$\sum_{v \in V} w_v x_v$			
	s.t.	$\forall e = (i, j) \in E$	$x_i + x_j$	\geq	1	
		$\forall v \in V$	x_v	\in	$\{0, 1\}$	
EADS II @Harald R	Räcke	12 Integ	er Programs			259

Maximum Weighted Matching

Given a graph G = (V, E), and a weight w_e for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

max		$\sum_{e\in E} w_e x_e$		
s.t.	$\forall v \in V$	$\sum_{e:v \in e} x_e$	\leq	1
	$\forall e \in E$	x_e	\in	$\{0, 1\}$

EADS II	12 Integer Programs
🛛 🕒 🛛 🖉 Harald Räcke	

Knapsack

Given a set of items $\{1, ..., n\}$, where the *i*-th item has weight w_i and profit p_i , and given a threshold *K*. Find a subset $I \subseteq \{1, ..., n\}$ of items of total weight at most *K* such that the profit is maximized.

Facility Location

Given a set *L* of (possible) locations for placing facilities and a set *C* of customers together with cost functions $s: C \times L \to \mathbb{R}^+$ and $o: L \to \mathbb{R}^+$ find a set of facility locations *F* together with an assignment $\phi: C \to F$ of customers to open facilities such that

$$\sum_{f\in F} o(f) + \sum_c s(c,\phi(c))$$

is minimized.

In the metric facility location problem we have

$$s(c, f) \le s(c, f') + s(c', f) + s(c', f')$$
.

© Harald Räcke

12 Integer Programs

Relaxations

Definition 8

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_i \in [0, 1]$ instead of $x_i \in \{0, 1\}$.

By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

265

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

¦∐||||∐ © Harald Räcke

min		$\sum_{i=1}^k w_i x_i$		
s.t.	$\forall u \in U$	$\sum_{i:u\in S_i} x_i$	\geq	1
	$\forall i \in \{1,\ldots,k\}$	x_i	\in	[0,1]

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

EADS II 13.1 Deterministic Rounding		
26	Selen EADS II	13.1 Deterministic Rounding
	UUU © Harald Räcke	267

269

Lemma 9 The rounding algorithm gives an f-approximation. **Proof:** Every $u \in U$ is covered. • We know that $\sum_{i:u \in S_i} x_i \ge 1$. • The sum contains at most $f_u \le f$ elements. • Therefore one of the sets that contain u must have $x_i \ge 1/f$. • This set will be selected. Hence, u is covered.

Technique 1: Round the LP solution. **Solution Solution S**

Technique 1: Round the LP solution.	
The cost of the rounded solution is at most $f \cdot \text{OPT}$. $\sum_{i \in I} w_i \leq \sum_{i=1}^k w_i (f \cdot x_i)$ $= f \cdot \text{cost}(x)$ $\leq f \cdot \text{OPT}$	
EADS II 13.1 Deterministic Rounding © Harald Räcke	270

Technique 2: Rounding the Dual Solution.

Lemma 10

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a *u* that is not covered.
- This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i} y_u = w_i$$

EADS II © Harald Räcke	13.2 Rounding the Dual	272

Let I denote the solution obtained by the first rounding algorithm and I' be the solution returned by the second algorithm. Then

 $I\subseteq I'$.

This means I' is never better than I.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{f}$.

EADS II

∐||||| © Harald Räcke

- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose S_i .

EADS II	13.2 Rounding the Dual	
🛛 🕒 🗋 🕼 © Harald Räcke		275

Technique 3: The Primal Dual Method
Algorithm 1 PrimalDual
1: $y \leftarrow 0$
$2: I \leftarrow \emptyset$
3: while exists $u \notin \bigcup_{i \in I} S_i$ do
4: increase dual variable y_i until constraint for some
new set S_{ℓ} becomes tight
5: $I \leftarrow I \cup \{\ell\}$

13.3 Primal Dual Technique

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

 $\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

50 00	EADS II
	© Harald Räcke

13.3 Primal Dual Technique

Algorithm 1 Greedy1: $I \leftarrow \emptyset$ 2: $\hat{S}_j \leftarrow S_j$ for all j3: while I not a set cover do4: $\ell \leftarrow \arg \min_{j:\hat{S}_j \neq 0} \frac{w_j}{|\hat{S}_j|}$ 5: $I \leftarrow I \cup \{\ell\}$ 6: $\hat{S}_j \leftarrow \hat{S}_j - S_\ell$ for all j

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

EADS II © Harald Räcke

277

Technique 4: The Greedy Algorithm

Lemma 11

Given positive numbers a_1, \ldots, a_k and b_1, \ldots, b_k then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_i a_i}{\sum_i b_i} \le \max_{i} \frac{a_i}{b_i}$$

EADS II ©Harald Räcke	13.4 Greedy	279

Technique 4: The Greedy Algorithm

 Adding this set to our solution means
$$n_{\ell+1} = n_{\ell} - |\hat{S}_j|$$
.

 $w_j \leq \frac{|\hat{S}_j|\text{OPT}}{n_{\ell}} = \frac{n_{\ell} - n_{\ell+1}}{n_{\ell}} \cdot \text{OPT}$

 Image: EADS II

 WHARAID Racke

281

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

	13.4 Greedy	
UUU GHarald Räcke		280

Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

EADS II 13.5 Randomized Rounding © Harald Räcke

283

 $\Pr[\exists u \in U \text{ not covered after } \ell \text{ round}]$

- = $\Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor \ldots \lor u_n \text{ not covered}]$
- $\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq n e^{-\ell}$.

Lemma 12

With high probability $O(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $O(\log n)$ with probability at least $1 - n^{-\alpha}$.

Probability that $u \in U$ is not covered (in one round):

 $\Pr[u \text{ not covered in one round}]$

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u\in S_j} x_j} \le e^{-1} .$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{e^{\ell}}$$

13.5 Randomized Rounding

Expected Cost

Version A. Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take all sets.

 $E[\cos t] \le (\alpha + 1) \ln n \cdot \cot(LP) + (\sum_{i} w_{j}) n^{-\alpha} = \mathcal{O}(\ln n) \cdot \text{OPT}$

If the weights are polynomially bounded (smallest weight is 1), sufficiently large α and OPT at least 1.

הח EADS II	13.5 Randomized Rounding	
UUU©Harald Räcke	_	287

Randomized rounding gives an $O(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 13 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2^{\operatorname{poly}(\log n)}$).

Expected Cost

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

> $E[\text{cost}] = \Pr[\text{success}] \cdot E[\text{cost} | \text{success}]$ + $\Pr[no success] \cdot E[cost | no success]$

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedv

EADS II

© Harald Räcke

- Randomized Rounding
- Local Search
- Rounding the Data + Dynamic Programming

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in \{1, ..., n\}$ has processing time p_j . Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

Here the variable $x_{j,i}$ is the decision variable that describes whether job j is assigned to machine i.

	14 Scheduling on Identical Machines: Local Search	
	14 Scheduling on Identical Machines. Ebcal Search	
□ □ □ □ □ © Harald Räcke		291
		251

Lower Bounds on the Solution

Let for a given schedule C_j denote the finishing time of machine j, and let C_{max} be the makespan.

Let C^*_{\max} denote the makespan of an optimal solution.

Clearly

$$C_{\max}^* \ge \max_j p_j$$

as the longest job needs to be scheduled somewhere.

EADS II ©Harald Räcke 14 Scheduling on Identical Machines: Local Search

Local Search

A local search algorithm successivley makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

EADS II	14 Scheduling on Identical Machines: Local Search	
UUU © Harald Räcke		295

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ} .

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C^*_{\max}$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_\ell \leq \sum_{j \neq \ell} p_j$$
.

Hence, the length of the schedule is at most

$$p_{\ell} + \frac{1}{m} \sum_{j \neq \ell} p_j = (1 - \frac{1}{m}) p_{\ell} + \frac{1}{m} \sum_j p_j \le (2 - \frac{1}{m}) C_{\max}^*$$

EADS II © Harald Räcke

14 Scheduling on Identical Machines: Local Search

297

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.

Let S_ℓ be its start time, and let C_ℓ be its completion time.

Note that every machine is busy before time S_{ℓ} , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

EADS II 14 Scheduling on Identical Machines: Local Search © Harald Räcke 296

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2-approximations.

	15 Scheduling on Identical Machines: Greedy		חר
🛛 💾 🛛 🖉 © Harald Räcke		299	UL

Proof:

- Let p₁ ≥ · · · ≥ p_n denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If p_n ≤ C^{*}_{max}/3 the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^*$$

Hence, $p_n > C_{\max}^*/3$.

- This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- For such instances Longest-Processing-Time-First is optimal.

15 Scheduling on Identical Machines: Greedy

A Greedy Strategy

Lemma 14

If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to 4/3.

EADS II © Harald Räcke

15 Scheduling on Identical Machines: Greedy

300

When in an optimal solution a machine can have at most 2 jobs the optimal solution looks as follows.

- We can assume that one machine schedules p₁ and p_n (the largest and smallest job).
- If not assume wlog. that p₁ is scheduled on machine A and p_n on machine B.
- Let *p_A* and *p_B* be the other job scheduled on *A* and *B*, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

	15 Scheduling on Identical Machines: Greedy	
© Harald Bäcke	,	303
		505

Traveling Salesman

Theorem 15

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there exists a simple cycle that contains all nodes in G.

- Given an instance to HAMPATH we create an instance for TSP.
- ► If $(i, j) \notin E$ then set c_{ij} to $n2^n$ otw. set c_{ij} to 1. This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than 2ⁿ.
- An $\mathcal{O}(2^n)$ -approximation algorithm could decide btw. these cases. Hence, cannot exist unless P = NP.

305

Traveling Salesman

Given a set of cities $(\{1, ..., n\})$ and a symmetric matrix $C = (c_{ij}), c_{ij} \ge 0$ that specifies for every pair $(i, j) \in [n] \times [n]$ the cost for travelling from city *i* to city *j*. Find a permutation π of the cities such that the round-trip cost

$$c_{\pi(1)\pi(n)} + \sum_{i=1}^{n-1} c_{\pi(i)\pi(i+1)}$$

is minimized.

EADS II © Harald Räcke 16 TSP

Metric Traveling Salesman In the metric version we assume for every triple $i, j, k \in \{1, ..., n\}$ $c_{ij} \leq c_{ij} + c_{jk}$. It is convenient to view the input as a complete undirected graph G = (V, E), where c_{ij} for an edge (i, j) defines the distance between nodes i and j.

EADS II © Harald Räcke

TSP: Lower Bound I

Lemma 16

The cost $OPT_{TSP}(G)$ of an optimum traveling salesman tour is at least as large as the weight $OPT_{MST}(G)$ of a minimum spanning tree in G.

Proof:

- ► Take the optimum TSP-tour.
- Delete one edge.
- This gives a spanning tree of cost at most $OPT_{TSP}(G)$.

EADS II ©Harald Räcke	16 TSP	

TSP: Greedy Algorithm

- Start with a tour on a subset *S* containing a single node.
- Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- Repeat until all nodes have been processed.

EADS II 16 TSP © Harald Räcke 308

TSP: Greedy Algorithm

Lemma 17

307

The Greedy algorithm is a 2-approximation algorithm.

Let S_i be the set at the start of the *i*-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

Let r_i denote the successor of s_i in the tour before inserting v_i .

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i) and (v_i, r_i) .

This increases the cost by

$$c_{s_i,v_i} + c_{v_i,r_i} - c_{s_i,r_i} \le 2c_{s_i,v_i}$$

EADS II © Harald Räcke

TSP: Greedy Algorithm

The edges (s_i, v_i) considered during the Greedy algorithm are exactly the edges considered during PRIMs MST algorithm.

Hence,

$$\sum_{i} c_{s_i, v_i} = \mathrm{OPT}_{\mathrm{MST}}(G)$$

which with the previous lower bound gives a 2-approximation.

EADS II © Harald Räcke 16 TSP

311

<section-header><section-header><section-header><section-header><image>

TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E' c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e\in E'}c'(e)$$

- Find an Euler tour of G'.
- Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.

L L C Harald Kacke	312

TSP: A different approach
Consider the following graph:
 Compute an MST of G.
 Duplicate all edges.
This graph is Eulerian, and the total cost of all edges is at most $2 \cdot OPT_{MST}(G)$.
Hence, short-cutting gives a tour of cost no more than
$2 \cdot OPT_{MST}(G)$ which means we have a 2-approximation.

TSP: Can we do better?

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most $OPT_{TSP}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $OPT_{TSP}(G)/2$.

Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$OPT_{MST}(G) + OPT_{TSP}(G)/2 \le \frac{3}{2}OPT_{TSP}(G)$$
,

Short cutting gives a $\frac{3}{2}$ -approximation for metric TSP.

This is the best that is known.

הם הר	EADS II
	© Harald Räcke

16 TSP

317

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number of them).

EADS II 16 TSP © Harald Räcke 316

17 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack
1: $A(1) \leftarrow [(0,0), (p_1, w_1)]$
2: for $j \leftarrow 2$ to n do
3: $A(j) \leftarrow A(j-1)$
4: for each $(p, w) \in A(j-1)$ do
5: if $w + w_j \le W$ then
6: $add (p + p_j, w + w_j) \text{ to } A(j)$
7: remove dominated pairs from $A(j)$
8: return $\max_{(p,w)\in A(n)} p$

EADS II

|∐|||| © Harald Räcke

The running time is $\mathcal{O}(n \cdot \min\{W, P\})$, where $P = \sum_i p_i$ is the total profit of all items. This is only pseudo-polynomial.

17.1 Knapsack

17 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items $\{1, ..., n\}$, where the *i*-th item has weight $w_i \in \mathbb{N}$ and profit $p_i \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq \{1, ..., n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i \leq W$).

17 Rounding Data + Dynamic Programming

Definition 18

DD EADS II

CHARACTER CONTRACTOR C

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

17 Rounding Data + Dynamic Programming

- Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- Set $p'_i := \lfloor p_i / \mu \rfloor$ for all *i*.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}(n\sum_{i} p'_{i}) = \mathcal{O}(n\sum_{i} \lfloor \frac{p_{i}}{\epsilon M/n} \rfloor) \le \mathcal{O}(\frac{n^{3}}{\epsilon})$$
.

EADS II © Harald Räcke 17.1 Knapsack

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

Together with the obervation that if each $p_i \ge \frac{1}{3}C_{\max}^*$ then LPT is optimal this gave a 4/3-approximation.

Let S be the set of

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

17 Rounding Data + Dynamic Programming

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\ge (1 - \epsilon) \text{OPT} .$$
17.1 Knapsack
324

17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

Idea:

EADS II © Harald Räcke

- 1. Find the optimum Makespan for the long jobs by brute force.
- 2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

EADS II © Harald Räcke 17.2 Scheduling Revisited

323

17.2 Scheduling Revisited

We still have the inequality

 $\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

$$p_{\ell} \leq \sum_{j} p_{j} / (mk)$$

which is at most C^*_{max}/k .

EADS II © Harald Räcke 17.2 Scheduling Revisited

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows: On input of *T* it either finds a schedule of length $(1 + \frac{1}{k})T$ or certifies that no schedule of length at most *T* exists (assume $T \ge \frac{1}{m}\sum_j p_j$).

We partition the jobs into long jobs and short jobs:

- A job is long if its size is larger than T/k.
- Otw. it is a short job.

Hence we get a schedule of length at most

 $(1+\frac{1}{k})C_{\max}^*$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 19

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

EADS II © Harald Räcke

17.2 Scheduling Revisited

328

EADS II © Harald Räcke 17.2 Scheduling Revisited

329

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

 $(1+\frac{1}{k})T$.

EADS II |||||||| © Harald Räcke 17.2 Scheduling Revisited

331

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the *i*-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the *i*-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k + 1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

333

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le (1 + \frac{1}{k})T$$

© Harald Räcke	17.2 Scheduling Revisited

Let $OPT(n_1, ..., n_{k^2})$ be the number of machines that are required to schedule input vector (n_1, \ldots, n_{k^2}) with Makespan at most T_{\cdot}

If $OPT(n_1, \ldots, n_{k^2}) \le m$ we can schedule the input.

We have

 ∞

$$OPT(n_1, \dots, n_{k^2}) = \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0\\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} OPT(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ge 0 \end{cases}$$

 $(..., n_{k^2}) = 0$

where *C* is the set of all configurations.

Hence, the running time is roughly $(k + 1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

We can turn this into a PTAS by choosing $k = \lfloor 1/\epsilon \rfloor$ and using binary search. This gives a running time that is exponential in $1/\epsilon$.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 20

There is no FPTAS for problems that are strongly NP-hard.

EADS II © Harald Räcke EADS II

17.2 Scheduling Revisited

335

Bin Packing

Given *n* items with sizes s_1, \ldots, s_n where

 $1 > s_1 \geq \cdots \geq s_n > 0$.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 21

EADS II

|||||| © Harald Räcke

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector (n_1, \ldots, n_A) with Makespan at most T (A: number of different sizes).

If $OPT(n_1, \ldots, n_A) \le m$ we can schedule the input.

$$OPT(n_1,...,n_A) = \begin{pmatrix} 0 & (n_1,...,n_A) = 0 \\ 1 + \min_{(s_1,...,s_A) \in C} OPT(n_1 - s_1,...,n_A - s_A) & (n_1,...,n_A) \ge 0 \\ \infty & \text{otw.} \end{pmatrix}$$

where C is the set of all configurations.

 $|C| \leq (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

Bin Packing

Proof

EADS II

©Harald Räcke

In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets *S* and *T* s.t.

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.

17.3 Bin Packing

Hence, such an algorithm can solve Partition.

Bin Packing

Definition 22

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_{\epsilon}\}$ along with a constant *c* such that A_{ϵ} returns a solution of value at most $(1 + \epsilon)$ OPT + c for minimization problems.

- ▶ Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

	17.3 Bin Packing		
🛛 🕒 🖉 @ Harald Räcke		339	

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

Bin Packing

Again we can differentiate between small and large items.

Lemma 23

Any packing of items of size at most γ into ℓ bins can be extended to a packing of all items into $\max\{\ell, \frac{1}{1-\gamma}SIZE(I) + 1\}$ bins, where SIZE(I) = $\sum_{i} s_{i}$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least $1 - \gamma$.
- Hence, $r(1 \gamma) \leq \text{SIZE}(I)$ where r is the number of nearly-full bins.
- This gives the lemma.

החו	EADS II
	© Harald Räcke

Τ

17.3 Bin Packing

Bin Packing Linear Grouping: Generate an instance I' (for large items) as follows. Order large items according to size. • Let the first k items belong to group 1; the following k items belong to group 2; etc. Delete items in the first group; • Round items in the remaining groups to the size of the largest item in the group. EADS II 17.3 Bin Packing │ │ │ │ │ │ │ │ │ © Harald Räcke

EADS II ∐||||| © Harald Räcke 17.3 Bin Packing

Lemma 24 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 1:

- Any bin packing for *I* gives a bin packing for *I'* as follows.
- Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;

>

	17.3 Bin Packing	
UUU© Harald Räcke		343

Assume that our instance does not contain pieces smaller than $\epsilon/2$. Then SIZE(I) $\geq \epsilon n/2$.

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le 2n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

```
OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)
```

• running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.

Lemma 25

 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

▶ ...

EADS II © Harald Räcke 17.3 Bin Packing

344

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

 $OPT(I) + O(log^2(SIZE(I)))$.

Note that this is usually better than a guarantee of

 $(1+\epsilon)\operatorname{OPT}(I)+1$.

17.4 Advanced Rounding for Bin Packing

Configuration LP

Change of Notation:

- Group pieces of identical size.
- Let s₁ denote the largest size, and let b₁ denote the number of pieces of size s₁.
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- ▶ ...
- s_m smallest size and b_m number of pieces of size s_m .

Configuration LP

EADS II © Harald Räcke

A possible packing of a bin can be described by an *m*-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

 $\sum_i t_i \cdot s_i \leq 1 \ .$

We call a vector that fulfills the above constraint a configuration.

17.4 Advanced Rounding for Bin Packing

348

EADS II © Harald Räcke	17.4 Advanced Rounding for Bin Packing	347

Configuration LP

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

min		$\sum_{j=1}^{N} x_j$		
s.t.	$\forall i \in \{1 \dots m\}$	$\sum_{j=1}^{N} T_{ji} x_j$	≥	b_i
	$\forall j \in \{1, \dots, N\}$	x_j	\geq	0
	$\forall j \in \{1, \dots, N\}$	x_j	integral	

החוחר	EADS II	
	© Harald	Räcke

— Г		
	We can assume that each item has size at least $1/\text{SIZE}(I)$.	
	EADS II 17.4 Advanced Rounding for Bin Packing © Harald Räcke	35

Harmonic Grouping

From the grouping we obtain instance I' as follows:

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_1 and G_r .
- For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- Observe that $n_i \ge n_{i-1}$.

Harmonic Grouping

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ► I.e., G₁ is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G₂,...,G_{r-1}.
- ► Only the size of items in the last group G_r may sum up to less than 2.

EADS II ©Harald Räcke 17.4 Advanced Rounding for Bin Packing

352

Lemma 26

The number of different sizes in I' is at most SIZE(I)/2.

- ► Each group that survives (recall that *G*₁ and *G*_r are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most SIZE(I)/2.
- All items in a group have the same size in I'.

Lemma 27

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- ► The total size of items in G₁ and G_r is at most 6 as a group has total size at most 3.
- Consider a group G_i that has strictly more items than G_{i-1} .
- It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

Summing over all *i* that have n_i > n_{i-1} gives a bound of at most

$$\sum_{j=1}^{n_{r-1}} \frac{3}{j} \leq \mathcal{O}(\log(\text{SIZE}(I))) .$$

(note that $n_r \leq \text{SIZE}(I)$ since we assume that the size of each item is at least 1/SIZE(I)).

הח הר	EADS II
	© Harald Räcke

17.4 Advanced Rounding for Bin Packing

Analysis

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

Proof:

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, OPT_{LP}(I') ≤ OPT_{LP}(I)
- $\lfloor x_j \rfloor$ is feasible solution for I_1 (even integral).
- $x_j \lfloor x_j \rfloor$ is feasible solution for I_2 .

1:	if $SIZE(I) < 10$ then
2:	pack remaining items greedily
3:	Apply harmonic grouping to create instance I' ; pack
	discarded items in at most $O(\log(SIZE(I)))$ bins.
4:	Let x be optimal solution to configuration LP
5:	Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j ; call the
	packed instance <i>I</i> ₁ .
6:	Let I_2 be remaining pieces from I'
7:	Pack I_2 via BinPack (I_2)

EADS II ©Harald Räcke 17.4 Advanced Rounding for Bin Packing

356

Analysis

EADS II © Harald Räcke

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most OPT_{LP} many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$

many bins where L is the number of recursion levels.

Analysis

We can show that $SIZE(I_2) \le SIZE(I)/2$. Hence, the number of recursion levels is only $O(\log(SIZE(I_{\text{original}})))$ in total.

- ► The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (≤ SIZE(I)/2).
- ► The total size of items in I₂ can be at most ∑_{j=1}^N x_j ⌊x_j⌋ which is at most the number of non-zero entries in the solution to the configuration LP.

EADS II © Harald Räcke	17.4 Advanced Rounding for Bin Packing	

Separation Oracle

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

▶ is feasible, i.e.,

$$\sum_{i=1}^m T_{ji} \cdot s_i \le 1$$

and has a large profit

$$\sum_{i=1}^{m} T_{ji} \mathcal{Y}_i > 1$$

But this is the Knapsack problem.

הח הר	EADS II	
	© Harald	Räcke

17.4 Advanced Rounding for Bin Packing

361

359

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

Dual

mi s	ax .t. $\forall j \in \{1, \dots, N\}$ $\forall i \in \{1, \dots, m\}$	$\frac{\sum_{i=1}^{m} y_i b_i}{\sum_{i=1}^{m} T_{ji} y_i} \leq 1$ $y_i \geq 0$
EADS II ©Harald Räcke	17.4 Advanced Roundi	ng for Bin Packing

360

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1 - \epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

Primal'

min		$(1+\epsilon')\sum_{j=1}^N x_j$		
s.t.	$\forall i \in \{1 \dots m\}$	$\sum_{j=1}^{N} T_{ji} x_j$	\geq	b_i
	$\forall j \in \{1, \dots, N\}$	x_j	\geq	0

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

 $OPT \le z \le (1 + \epsilon')OPT$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- ▶ The dual to DUAL'' is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

18 MAXSAT

Problem definition:

- \blacktriangleright *n* Boolean variables
- *m* clauses C_1, \ldots, C_m . For example

 $C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$

- Non-negative weight w_i for each clause C_i .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

This gives that overall we need at most

 $(1 + \epsilon')$ OPT_{IP} $(I) + O(\log^2(SIZE(I)))$

bins.

We can choose $\epsilon' = \frac{1}{OPT}$ as $OPT \leq \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

EADS II © Harald Räcke EADS II

17.4 Advanced Rounding for Bin Packing

364

18 MAXSAT

Terminology:

- A variable x_i and its negation \bar{x}_i are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \vee x_i \vee \bar{x}_i$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any *i*.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- ► For a given clause C_i the number of its literals is called its length or size and denoted with ℓ_i .
- Clauses of length one are called unit clauses.

365

EADS II

MAXSAT: Flipping Coins

Set each x_i independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

EADS II © Harald Räcke	18 MAXSAT	367

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

= $\sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$
= $\sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$
\ge $\frac{1}{2} \sum_{j} w_{j}$
\ge $\frac{1}{2} OPT$

Define random variable X_i with

 $X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$

Then the total weight W of satisfied clauses is given by

 $W = \sum_{j} w_{j} X_{j}$ The second s

MAXSAT: LP formulation

Let for a clause C_j, P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{j \in P_j} x_i \lor \bigvee_{j \in N_j} \bar{x}_i$$

max		$\sum_j w_j z_j$		
s.t.	$\forall j$	$\sum_{i\in P_i} \mathcal{Y}_i + \sum_{i\in N_i} (1-\mathcal{Y}_i)$	\geq	z_j
	∀i	\mathcal{Y}_i	\in	$\{0, 1\}$
	$\forall j$	z_j	\leq	1
		5		

EADS II © Harald Räcke

369

18 MAXSAT

MAXSAT: Randomized Rounding

Set each x_i independently to true with probability y_i (and, hence, to false with probability $(1 - y_i)$).

EADS II © Harald Räcke	18 MAXSAT	37

Definition 29

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

 $f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$

Lemma 30

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

373

for $\lambda \in [0, 1]$.

EADS II © Harald Räcke	18 MAXSAT
UUU © Harald Räcke	

Lemma 28 (Geometric Mean \leq **Arithmetic Mean)** For any nonnegative a_1, \ldots, a_k

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

	18 MAXSAT	
UUU GHarald Räcke		372

$$Pr[C_{j} \text{ not satisfied}] = \prod_{i \in P_{j}} (1 - y_{i}) \prod_{i \in N_{j}} y_{i}$$

$$\leq \left[\frac{1}{\ell_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}) + \sum_{i \in N_{j}} y_{i} \right) \right]^{\ell_{j}}$$

$$= \left[1 - \frac{1}{\ell_{j}} \left(\sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) \right) \right]^{\ell_{j}}$$

$$\leq \left(1 - \frac{z_{j}}{\ell_{j}} \right)^{\ell_{j}}.$$
EADS II
EADS

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$
$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j .$$

 $f''(z) = -\frac{\ell-1}{\ell} \Big[1 - \frac{z}{\ell} \Big]^{\ell-2} \le 0$ for $z \in [0,1]$. Therefore, f is concave.

EADS II © Harald Räcke	18 MAXSAT	

MAXSAT: The better of two

Theorem 31

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

החוחר	EADS II	
	© Harald	Räcke

377

375

	$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$ $\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right]$ $\geq \left(1 - \frac{1}{e}\right) \text{ OPT }.$	
EADS II ©Harald Räcke	18 MAXSAT	376

Let W_1 be the value of randomized rounding and W_2 the value obtained by coin flipping.

MAXSAT: Nonlinear Randomized Rounding

Let $f : [0,1] \rightarrow [0,1]$ be a function with

$$1 - 4^{-x} \le f(x) \le 4^{x-1}$$

Theorem 32

Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.

EADS II
© Harald Räcke

381

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f : [0,1] \rightarrow [0,1]$ and set x_i to true with probability $f(y_i)$.

EADS II 18 MAXSAT © Harald Räcke 380

$$\Pr[C_{j} \text{ not satisfied}] = \prod_{i \in P_{j}} (1 - f(y_{i})) \prod_{i \in N_{j}} f(y_{i})$$

$$\leq \prod_{i \in P_{j}} 4^{-y_{i}} \prod_{i \in N_{j}} 4^{y_{i}-1}$$

$$= 4^{-(\sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}))}$$

$$\leq 4^{-2j}$$

Can we do better?

5

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 33 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

The function $g(z) = 1 - 4^{-z}$ is concave on [0,1]. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \operatorname{OPT}$$

EADS II © Harald Räcke	18 MAXSAT	384

Lemma 34

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

$$\begin{array}{|c|c|c|c|c|} \hline \max & & \sum_{j} w_{j} z_{j} \\ \text{s.t.} & \forall j & \sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) & \geq & z_{j} \\ & \forall i & & y_{i} & \in & \{0, 1\} \\ & \forall j & & z_{j} & \leq & 1 \end{array}$$

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- we can set $y_1 = y_2 = 1/2$ in the LP; this allows to set $z_1 = z_2 = z_3 = z_4 = 1$
- ▶ hence, the LP has value 4.

EADS II ©Harald Räcke

Facility Location

Given a set *L* of (possible) locations for placing facilities and a set *D* of customers together with cost functions $s: D \times L \to \mathbb{R}^+$ and $o: L \to \mathbb{R}^+$ find a set of facility locations *F* together with an assignment $\phi: D \to F$ of customers to open facilities such that

$$\sum_{f\in F} o(f) + \sum_c s(c,\phi(c))$$

is minimized.

In the metric facility location problem we have

$$s(c, f) \le s(c, f') + s(c', f) + s(c', f')$$
.

EADS II ©Harald Räcke 19 Facility Location

Facility Location

Integer Program

min		$\sum_{i\in F} f_i y_i + \sum_{i\in F} \sum_{j\in D} c_{ij} x_{ij}$		
s.t.	$\forall j \in D$	$\sum_{i\in F} x_{ij}$	=	1
	$\forall i \in F, j \in D$	x_{ij}	\leq	${\mathcal Y}_i$
	$\forall i \in F, j \in D$	x_{ij}	\in	$\{0, 1\}$
	$\forall i \in F$	${\mathcal Y}_i$	\in	$\{0, 1\}$

As usual we get an LP by relaxing the integrality constraints.

EADS II © Harald Räcke

387

19 Facility Location

19 Facility Location

Lemma 36

If (x^*, y^*) is an optimal solution to the facility location LP and (v^*, w^*) is an optimal dual solution, then $x_{ij}^* > 0$ implies $c_{ij} \le v_j^*$.

Follows from slackness conditions.

	19 Facility Location	
G G G G G G G G G G G G G G G G G G G		39

Problem: Facility cost may be huge!

Suppose we can partition a subset $F' \subseteq F$ of facilities into neighbour sets of some clients. I.e.

$$F' = \biguplus_k N(j_k)$$

where j_1, j_2, \ldots form a subset of the clients.

EADS II © Harald Räcke 19 Facility Location

393

Suppose we open set $S \subseteq F$ of facilities s.t. for all clients we have $S \cap N(j) \neq \emptyset$.

Then every client j has a facility i s.t. assignment cost for this client is at most $c_{ij} \le v_i^*$.

Hence, the total assignment cost is

 $\sum_j c_{i_j j} \leq \sum_j v_j^* \leq \mathrm{OPT}$,

where i_j is the facility that client j is assigned to.

EADS II © Harald Räcke 19 Facility Location

392

Now in each set $N(j_k)$ we open the cheapest facility. Call it f_{i_k} .

We have

EADS II © Harald Räcke

$$f_{i_k} = f_{i_k} \sum_{i \in N(j_k)} x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i \mathcal{Y}_i^*$$

Summing over all k gives

$$\sum_{k} f_{i_k} \leq \sum_{k} \sum_{i \in N(j_k)} f_i \mathcal{Y}_i^* = \sum_{i \in F'} f_i \mathcal{Y}_i^* \leq \sum_{i \in F} f_i \mathcal{Y}_i^*$$

Facility cost is at most the facility cost in an optimum solution.

19 Facility Location

Problem: so far clients j_1, j_2, \ldots have a neighboring facility. What about the others?

Definition 37

Let $N^2(j)$ denote all neighboring clients of the neighboring facilities of client *j*.

Note that N(j) is a set of facilities while $N^2(j)$ is a set of clients.

EADS II © Harald Räcke EADS II

19 Facility Location

395

Facility cost of this algorithm is at most OPT because the sets $N(j_k)$ are disjoint.

Total assignment cost:

- Fix k; set $j = j_k$ and $i = i_k$. We know that $c_{ij} \le v_i^*$.
- Let $\ell \in N^2(i)$ and h (one of) its neighbour(s) in N(i).

$$c_{i\ell} \leq c_{ij} + c_{hj} + c_{h\ell} \leq v_j^* + v_j^* + v_\ell^* \leq 3v_\ell^*$$

Summing this over all facilities gives that the total assignment cost is at most $3 \cdot OPT$. Hence, we get a 4-approximation.

2: $k \leftarrow 0$ 3: while $C \neq 0$ do 4: $k \leftarrow k + 1$ 5: choose $j_k \in C$ that minimizes v_i^*	
3: while $C \neq 0$ do 4: $k \leftarrow k + 1$ 5: choose $j_k \in C$ that minimizes v_i^*	
4: $k \leftarrow k + 1$ 5: choose $j_k \in C$ that minimizes v_i^*	
5: choose $j_k \in C$ that minimizes v_i^*	
6: choose $i_k \in N(j_k)$ as cheapest facility	
7: assign j_k and all unassigned clients in N^2 (j_k) to i_k
8: $C \leftarrow C - \{j_k\} - N^2(j_k)$	

In the above analysis we use the inequality $\sum_{i \in F} f_i \gamma_i^* \leq \text{OPT} \ .$ We know something stronger namely $\sum_{i \in F} f_i \mathcal{Y}_i^* + \sum_{i \in F} \sum_{j \in D} c_{ij} \mathbf{x}_{ij}^* \leq \text{OPT} \ .$ EADS II © Harald Räcke 19 Facility Location

397

Observation:

- Suppose when choosing a client jk, instead of opening the cheapest facility in its neighborhood we choose a random facility according to x^{*}_{ijk}.
- Then we incur connection cost

$$\sum_i c_{ij_k} x^*_{ij_k}$$

for client j_k . (In the previous algorithm we estimated this by $v_{j_k}^*$).

Define

$$C_j^* = \sum_i c_{ij} x_{ij}^*$$

to be the connection cost for client *j*.

EADS II ©Harald Räcke	19 Facility Location

1: ($C \leftarrow D//$ unassigned clients
2: k	$c \leftarrow 0$
3: V	vhile $C \neq 0$ do
4:	$k \leftarrow k + 1$
5:	choose $j_k \in C$ that minimizes $v_i^* + C_i^*$
6:	choose $i_k \in N(j_k)$ according to probability x_{ij_k} .
7:	assign j_k and all unassigned clients in $N^2(j_k)$ to i_k
8:	$C \leftarrow C - \{j_k\} - N^2(j_k)$

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of some j_k). (recall that neighborhoods of different $j'_k s$ are disjoint).

We open facility i with probability $x_{ij_k} \leq y_i$ (in case it is in some neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most

 $\sum_{i\in F}f_iy_i$.

EADS II ©Harald Räcke 19 Facility Location

400

Total assignment cost:

- Fix k; set $j = j_k$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).
- \blacktriangleright If we assign a client ℓ to the same facility as i we pay at most

$$\sum_{i} c_{ij} x_{ijk}^* + c_{hj} + c_{h\ell} \le C_j^* + v_j^* + v_\ell^* \le C_\ell^* + 2v_\ell^*$$

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{j} C_j^* + \sum_{j} 2v_j^* \le \sum_{j} C_j^* + 2\text{OPT}$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

Adding the facility cost gives a 3-approximation.

5000	EADS II
	© Harald Räcke

19 Facility Location

401

Lemma 38 (Chernoff Bounds)

Let $X_1, ..., X_n$ be *n* independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$

and

$$\Pr[X \le (1-\delta)L] < \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L$$

EADS II 20.1 Chernoff Bounds © Harald Räcke

Lemma 39

For $0 \le \delta \le 1$ *we have that*

 $\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta^2/3}$

and

403

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

EADS II © Harald Räcke	20.1 Chernoff Bounds	404

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set \mathcal{P}_i at random according to the probability distribution given by the Linear Programming Solution.

Theorem 40

If $W^* \ge c \ln n$ for some constant c, then with probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n}$.

הח EADS II 20.1 Chernoff Bounds	
UUU Barald Räcke	407

Integer Multicommodity Flows
Choose
$$\delta = \sqrt{(c \ln n)/W^*}$$
.
Then
 $\Pr[Y_e \ge (1 + \delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$

Integer Multicommodity Flows

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge *e* is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_i \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

EADS II © Harald Räcke	20.1 Chernoff Bounds	408

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).
- While *x* not feasible
 - Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set x_j = 1 (add this set to your solution).

	21 Primal Dual Revisited	
UUU© Harald Räcke		411

Repetition: Primal Dual for Set Cover

Analysis:

EADS II © Harald Räcke

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e} \le f \cdot \sum_{e} y_{e} \le f \cdot \text{OPT}$$

Solora EADS II 21 Primal Dual Revisited			
UUU © Harald Räcke 412	EADS II © Harald Räcke	21 Primal Dual Revisited	412

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

If we would also fulfill dual slackness conditions

$$y_e > 0 \Rightarrow \sum_{j:e \in S_j} x_j = 1$$

then the solution would be optimal!!!

We don't fulfill these constraint but we fulfill an approximate version:

$$y_e > 0 \Rightarrow 1 \le \sum_{j:e \in S_j} x_j \le f$$

This is sufficient to show that the solution is an f-approximation.

EADS II ©Harald Räcke 21 Primal Dual Revisited

Suppose we have a primal/dual pair

min		$\sum_j c_j x_j$			r	nax		$\sum_i b_i y_i$		
s.t.	∀i	$\sum_{j:} a_{ij} x_j$	\geq	b_i		s.t.	$\forall j$	$\sum_i a_{ij} y_i$	\leq	Cj
	$\forall j$	x_j	\geq	0			∀i	${\mathcal Y}_i$	\geq	0

and solutions that fulfill approximate slackness conditions:

$$x_j > 0 \Rightarrow \sum_{i} a_{ij} y_i \ge \frac{1}{\alpha} c_j$$
$$y_i > 0 \Rightarrow \sum_{j} a_{ij} x_j \le \beta b_i$$

EADS II © Harald Räcke EADS II

21 Primal Dual Revisited

Let *C* denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

Dual Formulation:

EADS II 21 Primal Dual Revisited © Harald Räcke 419 If we perform the previous dual technique for Set Cover we get the following:

- Start with x = 0 and y = 0
- While there is a cycle C that is not covered (does not contain a chosen vertex).
 - Increase y_e until dual constraint for some vertex v becomes tight.
 - set $x_v = 1$.

	21 Primal Dual Revisited	
UUU GHarald Räcke		420

Then

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$
$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this is unrealistic.

Algori	hm 1 FeedbackVertexSet
1: y +	- 0
2: <i>x</i> ←	- 0
3: wh	i le exists cycle <i>C</i> in <i>G</i> do
4:	increase y_C until there is $v \in C$ s.t. $\sum_{C:v \in C} y_C = w_v$
5:	$x_v = 1$
6:	remove v from G
7:	repeatedly remove vertices of degree 1 from G
EADS II	21 Primal Dual Revisited

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses at most one vertex from P.

LADS II
© Harald Räcke

21 Primal Dual Revisited

423

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get an α -approximation.

Theorem 41

In any graph with no vertices of degree 1, there always exists a cycle that has at most $O(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

$$y_C > 0 \Rightarrow |S \cap C| \le \mathcal{O}(\log n)$$
.

424

EADS II 21 Primal Dual Revisited © Harald Räcke

Primal Dual for Shortest Path

We can interpret the value y_S as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

EADS II © Harald Räcke	21 Primal Dual Revisited	427

Lemma 42

At each point in time the set F forms a tree.

Proof:

- ► In each iteration we take the current connected component from (V, F) that contains *s* (call this component *C*) and add some edge from $\delta(C)$ to *F*.
- Since, at most one end-point of the new edge is in C the edge cannot close a cycle.

 4: Let C be the connected component of (V, F) containing s 5: Increase y_C until there is an edge e' ∈ δ(C) such that ∑_{S:e'∈δ(S)} y_S = c(e'). 6: F ← F ∪ {e'} 7: Let P be an s-t path in (V, F) 8: return P 	3: W	while there is no s-t path in (V, F) do
5: Increase y_C until there is an edge $e' \in \delta(C)$ such that $\sum_{S:e' \in \delta(S)} y_S = c(e')$. 6: $F \leftarrow F \cup \{e'\}$ 7: Let P be an s - t path in (V, F) 8: return P	4:	Let <i>C</i> be the connected component of (V, F) containing <i>s</i>
6: $F \leftarrow F \cup \{e'\}$ 7: Let <i>P</i> be an <i>s</i> - <i>t</i> path in (<i>V</i> , <i>F</i>) 8: return <i>P</i>	5:	Increase y_C until there is an edge $e' \in \delta(C)$ such that $\sum_{S:e' \in \delta(S)} y_S = c(e')$.
 7: Let P be an s-t path in (V, F) 8: return P 	6:	$F \leftarrow F \cup \{e'\}$
8: return P	7: L	et P be an s - t path in (V, F)
	8: re	eturn P

$$\sum_{e \in P} c_{(e)} = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_{S}$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_{S}$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \le \text{OPT}$$

by weak duality.

EADS II © Harald Räcke

Hence, we find a shortest path.

EADS II ©Harald Räcke 21 Primal Dual Revisited

If *S* contains two edges from *P* then there must exist a subpath P' of *P* that starts and ends with a vertex from *S* (and all interior vertices are not in *S*).

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

EADS II	21 Primal Dual Revisited	
UUU © Harald Räcke		431

The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width).

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs $s_i, t_i, i = 1, ..., k$, and a cost function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in \{1, ..., k\}$ there is a path between s_i and t_i only using edges in F.

min		$\sum_{e} c(e) x_{e}$		
s.t.	$\forall S \subseteq V : S \in S_i \text{ for some } i$	$\sum_{e \in \delta(S)} x_e$	\geq	1
	$\forall e \in E$	x_e	\in	$\{0, 1\}$

Here S_i contains all sets S such that $s_i \in S$ and $t_i \notin S$.

	21 Primal Dual Revisited	
U 🕒 U U © Harald Räcke		432

Algor	ithm 1 FirstTry
1: Y	<i>←</i> 0
2: F ·	- Ø
3: wł	ile not all s_i - t_i pairs connected in F do
4:	Let C be some connected component of (V, F)
	such that $ C \cap \{s_i, t_i\} = 1$ for some <i>i</i> .
5:	Increase y_C until there is an edge $e' \in \delta(C)$ s.t.
	$\sum_{S \in S_i: e' \in \delta(S)} y_S = c_{e'}$
6:	$F \leftarrow F \cup \{e'\}$
7: Let	t P_i be an s_i - t_i path in (V, F)
8: re t	turn $\bigcup_i P_i$

433

EADS II © Harald Räcke

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S|$$

If we show that $y_S > 0$ implies that $|\delta(S) \cap F| \le \alpha$ we are in good shape.

However, this is not true:

- Take a graph on k + 1 vertices v_0, v_1, \ldots, v_k .
- The *i*-th pair is v_0 - v_i .
- The first component *C* could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- The final set *F* contains all edges $\{v_0, v_i\}, i = 1, ..., k$.
- $y_{\{v_0\}} > 0$ but $|\delta(\{v_0\}) \cap F| = k$.

	21 Primal Dual Revisited	
UUU© Harald Räcke		435

The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

Lemma 43

For any C in any iteration of the algorithm

$$\sum_{C\in C} |\delta(C)\cap F'| \leq 2|C|$$

This means that the number of times a moat from C is crossed in the final solution is at most twice the number of moats.

Proof: later...

EADS II © Harald Räcke EADS II

21 Primal Dual Revisited

439

Lemma 44

For any set of connected components *C* in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|C|$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration *i*. e_i is the set we add to *F*. Let F_i be the set of edges in *F* at the beginning of the iteration.
- Let $H = F' F_i$.
- ► All edges in *H* are necessary for the solution.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} \gamma_S = \sum_S |F' \cap \delta(S)| \cdot \gamma_S .$$

We want to show that

$$\sum_{S} |F' \cap \delta(S)| \cdot y_{S} \le 2 \sum_{S} y_{S}$$

In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |C|$.

• Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

```
EADS II
© Harald Räcke
```

21 Primal Dual Revisited

440

- Contract all edges in F_i into single vertices V'.
- We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from *C* (an active component). Otw. color it blue. (Let *B* the set of blue vertices (with non-zero degree) and *R* the set of red vertices)
- We have

DD EADS II

© Harald Räcke

$$\sum_{\nu \in R} \deg(\nu) \ge \sum_{C \in C} |\delta(C) \cap F'| \stackrel{?}{\le} 2|C| = 2|R|$$

EADS II |||||| © Harald Räcke

- Suppose that no node in *B* has degree one.
- Then

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting b ∈ B comes from H, and, hence, is necessary.
 - But this means that the cluster corresponding to b must separate a source-target pair.
 - But then it must be a red node.

רח (הה) EADS II	21 Primal Dual Revisited	
UUU GHarald Räcke		443

