Part III

Approximation Algorithms

◆ □ ▶ < □ ▶ < □ ▶
 243/443

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

Definition 2

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

Minimization Problem:

Let \mathcal{I} denote the set of problem instances, and let for a given instance $I \in \mathcal{I}$, $\mathcal{F}(I)$ denote the set of feasible solutions. Further let cost(F) denote the cost of a feasible solution $F \in \mathcal{F}$.

Let for an algorithm A and instance $I \in \mathcal{I}$, $A(I) \in \mathcal{F}(I)$ denote the feasible solution computed by A. Then A is an approximation algorithm with approximation guarantee $\alpha \ge 1$ if

$$\forall I \in \mathcal{I} : \operatorname{cost}(A(I)) \le \alpha \cdot \min_{F \in \mathcal{F}(I)} \{\operatorname{cost}(F)\} = \alpha \cdot \operatorname{OPT}(I)$$

Maximization Problem:

Let \mathcal{I} denote the set of problem instances, and let for a given instance $I \in \mathcal{I}$, $\mathcal{F}(I)$ denote the set of feasible solutions. Further let profit(F) denote the profit of a feasible solution $F \in \mathcal{F}$.

Let for an algorithm A and instance $I \in \mathcal{I}$, $A(I) \in \mathcal{F}(I)$ denote the feasible solution computed by A. Then A is an approximation algorithm with approximation guarantee $\alpha \leq 1$ if

 $\forall I \in \mathcal{I} : \operatorname{cost}(A(I)) \ge \alpha \cdot \max_{F \in \mathcal{F}(I)} \{\operatorname{profit}(F)\} = \alpha \cdot \operatorname{OPT}(I)$

We need algorithms for hard problems.

- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

What can we hope for?

Definition 3

A polynomial-time approximation scheme (PTAS) is a family of algorithms $\{A_{\epsilon}\}$, such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm (for minimization problems) or a $(1 - \epsilon)$ -approximation algorithm (for maximization problems).

Many NP-complete problems have polynomial time approximation schemes.

What can we hope for?

Definition 3

A polynomial-time approximation scheme (PTAS) is a family of algorithms $\{A_{\epsilon}\}$, such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm (for minimization problems) or a $(1 - \epsilon)$ -approximation algorithm (for maximization problems).

Many NP-complete problems have polynomial time approximation schemes.

What can we hope for?

Definition 3

A polynomial-time approximation scheme (PTAS) is a family of algorithms $\{A_{\epsilon}\}$, such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm (for minimization problems) or a $(1 - \epsilon)$ -approximation algorithm (for maximization problems).

Many NP-complete problems have polynomial time approximation schemes.

The class MAX SNP (which we do not define) contains optimization problems like maximum cut or MAX-3SAT.

Theorem 4

For any MAX SNP-hard problem, there does not exist a polynomial-time approximation scheme, unless P = NP.

MAXCUT. Given a graph G = (V, E); partition V into two disjoint pieces A and B s.t. the number of edges between both pieces is maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

The class MAX SNP (which we do not define) contains optimization problems like maximum cut or MAX-3SAT.

Theorem 4

For any MAX SNP-hard problem, there does not exist a polynomial-time approximation scheme, unless P = NP.

MAXCUT. Given a graph G = (V, E); partition V into two disjoint pieces A and B s.t. the number of edges between both pieces is maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

The class MAX SNP (which we do not define) contains optimization problems like maximum cut or MAX-3SAT.

Theorem 4

For any MAX SNP-hard problem, there does not exist a polynomial-time approximation scheme, unless P = NP.

MAXCUT. Given a graph G = (V, E); partition V into two disjoint pieces A and B s.t. the number of edges between both pieces is maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

The class MAX SNP (which we do not define) contains optimization problems like maximum cut or MAX-3SAT.

Theorem 4

For any MAX SNP-hard problem, there does not exist a polynomial-time approximation scheme, unless P = NP.

MAXCUT. Given a graph G = (V, E); partition V into two disjoint pieces A and B s.t. the number of edges between both pieces is maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

There are really difficult problems!

Theorem 5

For any constant $\epsilon > 0$ there does not exist an $\Omega(n^{\epsilon-1})$ -approximation algorithm for the maximum clique problem on a given graph G with n nodes unless P = NP.

Note that an 1/n-approximation is trivial.

There are really difficult problems!

Theorem 5

For any constant $\epsilon > 0$ there does not exist an $\Omega(n^{\epsilon-1})$ -approximation algorithm for the maximum clique problem on a given graph *G* with *n* nodes unless P = NP.

Note that an 1/n-approximation is trivial.

There are really difficult problems!

Theorem 5

For any constant $\epsilon > 0$ there does not exist an $\Omega(n^{\epsilon-1})$ -approximation algorithm for the maximum clique problem on a given graph *G* with *n* nodes unless P = NP.

Note that an 1/n-approximation is trivial.

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶
252/443

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

Definition 6

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 7

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

Definition 6

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 7

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the *i*-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

 $\forall u \in U \exists i \in I : u \in S_i$ (every element is covered)

and

$$\sum_{i\in I} w_i$$
 is minimized.

IP-Formulation of Set Cover

$$\begin{array}{c|cccc} \min & & \sum_{i} w_{i} x_{i} \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_{i}} x_{i} & \geq & 1 \\ & \forall i \in \{1, \dots, k\} & x_{i} & \geq & 0 \\ & \forall i \in \{1, \dots, k\} & x_{i} & \text{integral} \end{array}$$

IP-Formulation of Set Cover

$$\begin{array}{c|cccc} \min & & \sum_{i} w_{i} x_{i} \\ \text{s.t.} & \forall u \in U \quad \sum_{i:u \in S_{i}} x_{i} \geq 1 \\ \forall i \in \{1, \dots, k\} & x_{i} \in \{0, 1\} \end{array}$$

Vertex Cover

Given a graph G = (V, E) and a weight w_v for every node. Find a vertex subset $S \subseteq V$ of minimum weight such that every edge is incident to at least one vertex in S.

IP-Formulation of Vertex Cover

$$\begin{array}{c|cccc} \min & & \sum_{v \in V} w_v x_v \\ \text{s.t.} & \forall e = (i, j) \in E & & x_i + x_j & \geq & 1 \\ & \forall v \in V & & x_v & \in & \{0, 1\} \end{array}$$

Maximum Weighted Matching

Given a graph G = (V, E), and a weight w_e for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

12 Integer Programs

▲ @ ▶ ▲ E ▶ ▲ E ▶ 260/443

Maximum Weighted Matching

Given a graph G = (V, E), and a weight w_e for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

max	$\sum_{e\in E} w_e x_e$				
s.t.	$\forall v \in V$	$\sum_{e:v \in e} x_e$	\leq	1	
	$\forall e \in E$	x_e	\in	$\{0, 1\}$	

12 Integer Programs

Maximum Independent Set

Given a graph G = (V, E), and a weight w_v for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

12 Integer Programs

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶
261/443

Maximum Independent Set

Given a graph G = (V, E), and a weight w_v for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

max		$\sum_{v \in V} w_v x_v$		
s.t.	$\forall e = (i, j) \in E$	$x_i + x_j$	\leq	1
	$\forall v \in V$	x_v	\in	$\{0, 1\}$

12 Integer Programs

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 261/443

Knapsack

Given a set of items $\{1, ..., n\}$, where the *i*-th item has weight w_i and profit p_i , and given a threshold K. Find a subset $I \subseteq \{1, ..., n\}$ of items of total weight at most K such that the profit is maximized.

12 Integer Programs

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 262/443

Knapsack

Given a set of items $\{1, ..., n\}$, where the *i*-th item has weight w_i and profit p_i , and given a threshold K. Find a subset $I \subseteq \{1, ..., n\}$ of items of total weight at most K such that the profit is maximized.

$$\begin{array}{|c|c|c|c|c|} \max & & \sum_{i=1}^{n} p_i x_i \\ \text{s.t.} & & \sum_{i=1}^{n} w_i x_i &\leq K \\ & \forall i \in \{1, \dots, n\} & & x_i &\in \{0, 1\} \end{array}$$

12 Integer Programs

▲ 圖 ▶ ▲ 필 ▶ ▲ 필 ▶ 262/443

Facility Location

Given a set *L* of (possible) locations for placing facilities and a set *C* of customers together with cost functions $s : C \times L \to \mathbb{R}^+$ and $o : L \to \mathbb{R}^+$ find a set of facility locations *F* together with an assignment $\phi : C \to F$ of customers to open facilities such that

$$\sum_{f\in F} o(f) + \sum_{c} s(c, \phi(c))$$

is minimized.

In the metric facility location problem we have

$$s(c,f) \le s(c,f') + s(c',f) + s(c',f')$$
.

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶
263/443

Facility Location

- y₊cf ≤ x_f ensures that we cannot assign customers to facilities that are not open.
- ∑_f y_{cf} ≥ 1 ensures that every customer is assigned to a facility.

Facility Location

- $y_+cf \le x_f$ ensures that we cannot assign customers to facilities that are not open.
- $\sum_{f} \gamma_{cf} \ge 1$ ensures that every customer is assigned to a facility.

Relaxations

Definition 8

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_i \in [0, 1]$ instead of $x_i \in \{0, 1\}$.

12 Integer Programs

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 265/443

Relaxations

Definition 8

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_i \in [0, 1]$ instead of $x_i \in \{0, 1\}$.

By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

min		$\sum_{i=1}^k w_i x_i$		
s.t.	$\forall u \in U$	$\sum_{i:u\in S_i} x_i$	\geq	1
	$\forall i \in \{1, \dots, k\}$	x_i	\in	[0,1]

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$\begin{array}{|c|c|c|c|c|}\hline \min & & \sum_{i=1}^{k} w_i x_i \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_i} x_i \geq 1 \\ & \forall i \in \{1, \dots, k\} & x_i \in [0, 1] \end{array}$$

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 9

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i \neq i \in S_i} x_i \ge 1$.
- . The sum contains at most $f_{ii} \leq f$ elements.
- Therefore one of the sets that contain u must have $x_{
 m f} \! \geq \! 1/\kappa$
- This set will be selected. Hence, at is covered.

Lemma 9

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

The sum contains at most $f_{M} \leq f_{*}$ elements. Therefore one of the sets that contain u must have $x_{0} \geq 3/f_{*}$. This set will be selected. Hence, u is covered.

Lemma 9

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- The sum contains at most $f_u \leq f$ elements.
- Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ▶ This set will be selected. Hence, *u* is covered.

Lemma 9

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u \in S_i} x_i \ge 1$.
- The sum contains at most $f_u \leq f$ elements.
- Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- This set will be selected. Hence, u is covered.

Lemma 9

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- The sum contains at most $f_u \leq f$ elements.
- Therefore one of the sets that contain u must have $x_i \ge 1/f$.

▶ This set will be selected. Hence, *u* is covered.

Lemma 9

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- The sum contains at most $f_u \leq f$ elements.
- Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ► This set will be selected. Hence, *u* is covered.

The cost of the rounded solution is at most $f \cdot \text{OPT}$.

The cost of the rounded solution is at most $f \cdot \text{OPT}$.

$$\sum_{i\in I} w_i$$

The cost of the rounded solution is at most $f \cdot \text{OPT}$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$

◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 270/443

The cost of the rounded solution is at most $f \cdot \text{OPT}$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$
$$= f \cdot \operatorname{cost}(x)$$

The cost of the rounded solution is at most $f \cdot \text{OPT}$.

$$\sum_{i \in I} w_i \leq \sum_{i=1}^k w_i (f \cdot x_i)$$
$$= f \cdot \operatorname{cost}(x)$$
$$\leq f \cdot \operatorname{OPT} .$$

Relaxation for Set Cover

Primal:

 $\begin{array}{c|c} \min & \sum_{i \in I} w_i x_i \\ \text{s.t.} \ \forall u & \sum_{i: u \in S_i} x_i \ge 1 \\ & x_i \ge 0 \end{array}$

Dual:

13.2 Rounding the Dual

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 271/443

Relaxation for Set Cover

Primal:

 $\begin{array}{c|c} \min & \sum_{i \in I} w_i x_i \\ \text{s.t. } \forall u & \sum_{i: u \in S_i} x_i \ge 1 \\ & x_i \ge 0 \end{array}$

Dual:

Relaxation for Set Cover

Primal:

 $\begin{array}{|c|c|c|} \min & \sum_{i \in I} w_i x_i \\ \text{s.t. } \forall u & \sum_{i: u \in S_i} x_i \ge 1 \\ & x_i \ge 0 \end{array}$

Dual:

$$\begin{array}{c|c}
\max & \sum_{u \in U} \mathcal{Y}_{u} \\
\text{s.t. } \forall i & \sum_{u:u \in S_{i}} \mathcal{Y}_{u} \leq w_{i} \\
\mathcal{Y}_{u} \geq 0
\end{array}$$

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i} y_u = w_i$$

Lemma 10 The resulting index set is an *f*-approximation.

Proof: Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- This means $\sum_{u \in u \in S_1} \gamma_u < w_i$ for all sets S_i that contain u .
- But then y₂ could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Lemma 10 The resulting index set is an *f*-approximation.

Proof: Every $u \in U$ is covered.

This means $\sum_{k>k< k} \gamma_k < w_l$ for all sets S_l that contain $u_l = S_l$ that contain $u_l = S_l$ then γ_k could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Lemma 10

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a *u* that is not covered.
- This means $\sum_{u:u \in S_i} y_u < w_i$ for all sets S_i that contain u.
- But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Lemma 10

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Lemma 10

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a *u* that is not covered.
- This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

$$\sum_{i\in I} w_i = \sum_{i\in I} \sum_{u:u\in S_i} y_u$$

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_u |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_u |\{i \in I : u \in S_i\}| \cdot y_u$$
$$\leq \sum_u f_u y_u$$

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_u |\{i \in I : u \in S_i\}| \cdot y_u$$
$$\leq \sum_u f_u y_u$$
$$\leq f \sum_u y_u$$

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 274/443

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_u |\{i \in I : u \in S_i\}| \cdot y_u$$
$$\leq \sum_u f_u y_u$$
$$\leq f \sum_u y_u$$
$$\leq f \operatorname{cost}(x^*)$$

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 274/443

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_u |\{i \in I : u \in S_i\}| \cdot y_u$$
$$\leq \sum_u f_u y_u$$
$$\leq f \sum_u y_u$$
$$\leq f \operatorname{cost}(x^*)$$
$$\leq f \cdot \operatorname{OPT}$$

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶
274/443

 $I\subseteq I'$.

- \sim Suppose that we take S_i in the first algorithm. Let $i \in I_i$ \sim This means $x_i \approx \frac{1}{2}$.
- Because of Complementary Stackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose $S_{\rm fr}$

 $I\subseteq I'$.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{7}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose *S*_{*i*}.

 $I\subseteq I'$.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose *S*_{*i*}.

 $I\subseteq I'$.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose *S*_{*i*}.

 $I\subseteq I'$.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ► Hence, the second algorithm will also choose *S*_{*i*}.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

The solution is dual feasible and, hence,

$$\sum_{n} \gamma_{hc} \leq \operatorname{cost}(\mathbf{x}^{*}) \leq 0.011$$

where *xc*^{*} is an optimum solution to the primal LP.:

The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that I is a cover.

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶
276/443

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

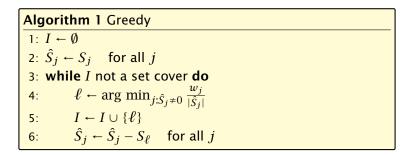
1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Algorithm 1 PrimalDual
1: $y \leftarrow 0$
2: $I \leftarrow \emptyset$
3: while exists $u \notin \bigcup_{i \in I} S_i$ do
4: increase dual variable y_i until constraint for some
new set S_ℓ becomes tight
5: $I \leftarrow I \cup \{\ell\}$



In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Lemma 11

Given positive numbers a_1, \ldots, a_k and b_1, \ldots, b_k then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i} a_i}{\sum_{i} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

100 <u>Σγεοντ</u>ην. Ονη <u>Ονη</u> 1811 Σγεοντην. Ονη <u>Σγεοντ</u>ην.

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \le \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \le \frac{\text{OPT}}{m_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{OPT}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_j|$.

$$w_j \le \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_j|$.

$$w_j \leq \frac{|\hat{S}_j|\text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

 $\sum_{j\in I} w_j$

13.4 Greedy

◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 282/443

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

13.4 Greedy

◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 282/443

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^{s} \frac{n_{\ell} - n_{\ell+1}}{n_{\ell}} \cdot \text{OPT}$$
$$\le \text{OPT} \sum_{\ell=1}^{s} \left(\frac{1}{n_{\ell}} + \frac{1}{n_{\ell} - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

$$\sum_{j \in I} w_j \leq \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$
$$\leq \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$
$$= \text{OPT} \sum_{i=1}^k \frac{1}{i}$$

13.4 Greedy

◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 282/443

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$
$$\le \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$
$$= \text{OPT} \sum_{i=1}^k \frac{1}{i}$$
$$= H_n \cdot \text{OPT} \le \text{OPT}(\ln n + 1) \quad .$$

Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_j uniformly at random with probability $1 - x_j$ (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S_j uniformly at random with probability $1 - x_j$ (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S_j uniformly at random with probability $1 - x_j$ (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

$$= \prod_{j:u\in S_j} (1-x_j)$$

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u\in S_j} x_j}$$

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u\in S_j} x_j} \le e^{-1} .$$

Pr[*u* not covered in one round]

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u\in S_j} x_j} \le e^{-1} .$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{e^{\ell}}$$
.

= $\Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor \ldots \lor u_n \text{ not covered}]$

 $= \Pr[u_1 \text{ not covered } \lor u_2 \text{ not covered } \lor \dots \lor u_n \text{ not covered}]$ $\leq \sum_i \Pr[u_i \text{ not covered after } \ell \text{ rounds}]$

 $= \Pr[u_1 \text{ not covered } \lor u_2 \text{ not covered } \lor \ldots \lor u_n \text{ not covered}]$ $\leq \sum_i \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell} .$

$$= \Pr[u_1 \text{ not covered } \lor u_2 \text{ not covered } \lor \dots \lor u_n \text{ not covered}]$$

$$\leq \sum_i \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell} .$$

Lemma 12 With high probability $O(\log n)$ rounds suffice.

$$= \Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor \ldots \lor u_n \text{ not covered}]$$

$$\leq \sum_i \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell} .$$

Lemma 12 With high probability $O(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $O(\log n)$ with probability at least $1 - n^{-\alpha}$.

Proof: We have

 $\Pr[\#\mathsf{rounds} \ge (\alpha + 1) \ln n] \le n e^{-(\alpha + 1) \ln n} = n^{-\alpha} .$

Version A.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take all sets.

Version A.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take all sets.

E[cost]

Version A.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take all sets.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cot(LP) + (\sum_{j} w_{j}) n^{-\alpha}$$

Version A.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take all sets.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cot(LP) + (\sum_{j} w_{j}) n^{-\alpha} = \mathcal{O}(\ln n) \cdot \text{OPT}$$

Version A.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take all sets.

$$E[\operatorname{cost}] \le (\alpha + 1) \ln n \cdot \operatorname{cost}(LP) + (\sum_{j} w_{j}) n^{-\alpha} = \mathcal{O}(\ln n) \cdot \operatorname{OPT}$$

If the weights are polynomially bounded (smallest weight is 1), sufficiently large α and OPT at least 1.

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

E[cost] =

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] \cdot E[cost | success]+ Pr[no success] \cdot E[cost | no success]
```


Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] \cdot E[cost | success] + Pr[no success] \cdot E[cost | no success]
```

This means *E*[cost | success]

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] \cdot E[cost | success] + Pr[no success] \cdot E[cost | no success]
```

```
This means
```

```
E[cost | success]
```

```
= \frac{1}{\Pr[\text{sucess}]} \Big( E[\text{cost}] - \Pr[\text{no success}] \cdot E[\text{cost} \mid \text{no success}] \Big)
```


Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] \cdot E[cost | success]
+ Pr[no success] \cdot E[cost | no success]
```

This means

E[cost | success]

$$= \frac{1}{\Pr[\mathsf{sucess}]} \left(E[\cos t] - \Pr[\mathsf{no success}] \cdot E[\cos t | \mathsf{no success}] \right)$$

$$\leq \frac{1}{\Pr[\mathsf{sucess}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \operatorname{cost}(LP)$$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[\text{cost}] = \Pr[\text{success}] \cdot E[\text{cost} | \text{success}]
+ \Pr[\text{no success}] \cdot E[\text{cost} | \text{no success}]
```

This means

E[cost | success]

$$= \frac{1}{\Pr[\mathsf{sucess}]} \left(E[\cos t] - \Pr[\mathsf{no success}] \cdot E[\cos t | \mathsf{no success}] \right)$$

$$\leq \frac{1}{\Pr[\mathsf{sucess}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \operatorname{cost}(LP)$$

$$\leq 2(\alpha + 1) \ln n \cdot \operatorname{OPT}$$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] \cdot E[cost | success] + Pr[no success] \cdot E[cost | no success]
```

This means

E[cost | success]

$$= \frac{1}{\Pr[\mathsf{sucess}]} \left(E[\cos t] - \Pr[\mathsf{no success}] \cdot E[\cos t | \mathsf{no success}] \right)$$

$$\leq \frac{1}{\Pr[\mathsf{sucess}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \operatorname{cost}(LP)$$

$$\leq 2(\alpha + 1) \ln n \cdot \operatorname{OPT}$$

for $n \ge 2$ and $\alpha \ge 1$.

Randomized rounding gives an $O(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 13 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2poly(\log n)$).

Randomized rounding gives an $O(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 13 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2^{\operatorname{poly}(\log n)}$).

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy
- Randomized Rounding
- Local Search
- Rounding the Data + Dynamic Programming

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in \{1, ..., n\}$ has processing time p_j . Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

Here the variable $x_{j,i}$ is the decision variable that describes whether job j is assigned to machine i.

14 Scheduling on Identical Machines: Local Search

◆ □ ▶ < □ ▶
 291/443

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in \{1, ..., n\}$ has processing time p_j . Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

min		L		
s.t.	\forall machines i	$\sum_j p_j \cdot x_{j,i}$	\leq	L
	$\forall jobs\ j$	$\sum_i x_{j,i} \ge 1$		
	$\forall i, j$	$x_{j,i}$	\in	$\{0, 1\}$

Here the variable $x_{j,i}$ is the decision variable that describes whether job j is assigned to machine i.

Lower Bounds on the Solution

Let for a given schedule C_j denote the finishing time of machine j, and let C_{max} be the makespan.

Let C^*_{\max} denote the makespan of an optimal solution.

Clearly

 $C^*_{\max} \ge \max_j p_j$

as the longest job needs to be scheduled somewhere.

Lower Bounds on the Solution

Let for a given schedule C_j denote the finishing time of machine j, and let C_{max} be the makespan.

Let C^*_{max} denote the makespan of an optimal solution.

Clearly

$C^*_{\max} \ge \max_j p_j$

as the longest job needs to be scheduled somewhere.

14 Scheduling on Identical Machines: Local Search

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 292/443

Lower Bounds on the Solution

Let for a given schedule C_j denote the finishing time of machine j, and let C_{max} be the makespan.

Let C^*_{max} denote the makespan of an optimal solution.

Clearly

$$C_{\max}^* \ge \max_j p_j$$

as the longest job needs to be scheduled somewhere.

Lower Bounds on the Solution

The average work performed by a machine is $\frac{1}{m}\sum_j p_j$. Therefore,

14 Scheduling on Identical Machines: Local Search

◆ 個 ▶ ◆ 聖 ▶ ◆ 聖 ▶ 293/443

Lower Bounds on the Solution

The average work performed by a machine is $\frac{1}{m}\sum_{j} p_{j}$. Therefore,

$$C_{\max}^* \ge \frac{1}{m} \sum_j p_j$$

14 Scheduling on Identical Machines: Local Search

◆ 個 ▶ ◆ 聖 ▶ ◆ 聖 ▶ 293/443

A local search algorithm successivley makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

A local search algorithm successivley makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

14 Scheduling on Identical Machines: Local Search

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶
294/443

A local search algorithm successivley makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

14 Scheduling on Identical Machines: Local Search

▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 294/443

A local search algorithm successivley makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

14 Scheduling on Identical Machines: Local Search

▲ 個 ▶ ▲ 里 ▶ ▲ 里 ▶ 295/443

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

14 Scheduling on Identical Machines: Local Search

▲ 個 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 295/443

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Note that every machine is busy before time S_{ℓ} , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

Let ℓ be the job that finishes last in the produced schedule.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Note that every machine is busy before time S_{ℓ} , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

14 Scheduling on Identical Machines: Local Search

Let ℓ be the job that finishes last in the produced schedule.

Let S_ℓ be its start time, and let C_ℓ be its completion time.

Note that every machine is busy before time S_{ℓ} , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

14 Scheduling on Identical Machines: Local Search

Let ℓ be the job that finishes last in the produced schedule.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Note that every machine is busy before time S_{ℓ} , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
 .

Hence, the length of the schedule is at most

$$pr + \frac{1}{m} \sum_{i=1}^{m} p_i = (1 - \frac{1}{m})pr + \frac{1}{m} \sum_{i=1}^{m} p_i \leq (2 - \frac{1}{m})G_{hor}$$

14 Scheduling on Identical Machines: Local Search

▲ 圖 ▶ ▲ 필 ▶ ▲ 필 ▶ 297/443

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C^*_{\max}$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
 .

Hence, the length of the schedule is at most

$$p_{\ell} + \frac{1}{m} \sum_{i=1}^{m} p_{\ell} - \frac{1}{m} p_{\ell} + \frac{1}{m} \sum_{i=1}^{m} p_{\ell} + \frac{1}$$

14 Scheduling on Identical Machines: Local Search

▲ 圖 ▶ ▲ 필 ▶ ▲ 필 ▶ 297/443

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C^*_{\max}$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_\ell \leq \sum_{j \neq \ell} p_j$$
 .

Hence, the length of the schedule is at most

$$pr + \frac{1}{m} \sum_{i=1}^{m} p_i = (1 - \frac{1}{m})pr + \frac{1}{m} \sum_{i=1}^{m} p_i \leq (2 - \frac{1}{m})G_{hor}$$

14 Scheduling on Identical Machines: Local Search

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 297/443

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C^*_{\max}$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_\ell \leq \sum_{j \neq \ell} p_j$$
 .

Hence, the length of the schedule is at most

$$m = \frac{1}{m} \sum_{j=1}^{m} m = (1 - \frac{1}{m})m = \frac{1}{m} \sum_{j=1}^{m} m = \frac{1}{m} (G_{\text{local}} - 1) = m = \frac{1}{m} (G_{\text{local}} - 1) =$$

14 Scheduling on Identical Machines: Local Search

◆ 個 ▶ < 필 ▶ < 필 ▶</p>
297/443

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C^*_{\max}$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

Hence, the length of the schedule is at most

$$p_{\ell} + \frac{1}{m} \sum_{j \neq \ell} p_j = (1 - \frac{1}{m}) p_{\ell} + \frac{1}{m} \sum_j p_j \le (2 - \frac{1}{m}) C_{\max}^*$$

14 Scheduling on Identical Machines: Local Search

▲ 圖 ▶ ▲ 필 ▶ ▲ 필 ▶ 297/443

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C^*_{\max}$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_\ell \leq \sum_{j \neq \ell} p_j$$
 .

Hence, the length of the schedule is at most

$$p_{\ell} + \frac{1}{m} \sum_{j \neq \ell} p_j = (1 - \frac{1}{m}) p_{\ell} + \frac{1}{m} \sum_j p_j \le (2 - \frac{1}{m}) C_{\max}^*$$

14 Scheduling on Identical Machines: Local Search

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 297/443

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C^*_{\max}$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_\ell \leq \sum_{j \neq \ell} p_j$$
 .

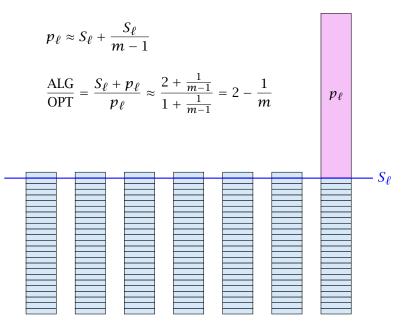
Hence, the length of the schedule is at most

$$p_{\ell} + \frac{1}{m} \sum_{j \neq \ell} p_j = (1 - \frac{1}{m}) p_{\ell} + \frac{1}{m} \sum_j p_j \le (2 - \frac{1}{m}) C_{\max}^*$$

14 Scheduling on Identical Machines: Local Search

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶
297/443

A Tight Example



List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the *i*-th process to the least loaded machine.

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the *i*-th process to the least loaded machine.

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the least loaded machine.

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the least loaded machine.

Lemma 14

If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to 4/3.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If $p_n \le C_{\max}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3}C_{\max}^* \ .$$

Hence, $p_n > C_{\max}^*/3$.

- This means that all jobs must have a processing time $> C_{\rm flux}^{\rm o}/3$.
- But then any machine in the optimum schedule can handle at most bio jobs.

For such instances Longest-Processing-Time-First is optimal.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- ► If $p_n \le C_{\max}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3}C_{\max}^* .$$

Hence, $p_n > C^*_{max}/3$.

- This means that all jobs must have a processing time $> C_{\rm max}^{\rm c}/3$.
- But then any machine in the optimum schedule can handle at most two jobs.

For such instances Longest-Processing-Time-First is optimal.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If p_n ≤ C^{*}_{max}/3 the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^* \ .$$

Hence, $p_n > C_{\max}^* / 3$.

- This means that all jobs must have a processing time $> G_{\rm hat}^{\rm c}/3$.
- But then any machine in the optimum schedule can handle at most two jobs-

For such instances Longest-Processing-Time-First is optimal.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If p_n ≤ C^{*}_{max}/3 the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^* \ .$$

Hence, $p_n > C_{\max}^* / 3$.

- This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- For such instances Longest-Processing-Time-First is optimal.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If p_n ≤ C^{*}_{max}/3 the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^* \ .$$

Hence, $p_n > C_{\max}^* / 3$.

- This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- For such instances Longest-Processing-Time-First is optimal.

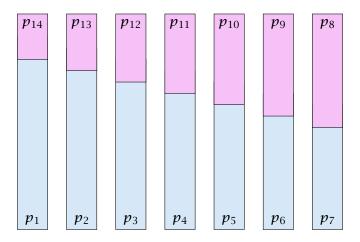
- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If p_n ≤ C^{*}_{max}/3 the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^* \ .$$

Hence, $p_n > C_{\max}^*/3$.

- This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- For such instances Longest-Processing-Time-First is optimal.

When in an optimal solution a machine can have at most 2 jobs the optimal solution looks as follows.



15 Scheduling on Identical Machines: Greedy

▲ 個 ▶ ▲ E ▶ ▲ E ▶ 302/443

- We can assume that one machine schedules p₁ and p_n (the largest and smallest job).
- If not assume wlog, that p₁ is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p₁ and p_n (the largest and smallest job).
- If not assume wlog. that p₁ is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p₁ and p_n (the largest and smallest job).
- If not assume wlog. that p₁ is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p₁ and p_n (the largest and smallest job).
- If not assume wlog. that p₁ is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p₁ and p_n (the largest and smallest job).
- If not assume wlog. that p₁ is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

Given a set of cities $(\{1, ..., n\})$ and a symmetric matrix $C = (c_{ij}), c_{ij} \ge 0$ that specifies for every pair $(i, j) \in [n] \times [n]$ the cost for travelling from city *i* to city *j*. Find a permutation π of the cities such that the round-trip cost

$$c_{\pi(1)\pi(n)} + \sum_{i=1}^{n-1} c_{\pi(i)\pi(i+1)}$$

is minimized.

Theorem 15

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

- Given an instance to HAMPATH we create an instance for TSP.
- If $(f, j) \notin \mathcal{S}$ then set c_{ij} to $n2^n$ otw. set c_{ij} to 1. This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost n. Obv. any tour has cost strictly larger than 2%.
- An $\mathcal{O}(2^n)$ -approximation algorithm could decide box, these cases. Hence, cannot exist unless $\mathcal{P} = \mathcal{N}\mathcal{P}$.

Theorem 15

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

Theorem 15

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

- Given an instance to HAMPATH we create an instance for TSP.
- ▶ If $(i, j) \notin E$ then set c_{ij} to $n2^n$ otw. set c_{ij} to 1. This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than 2ⁿ.
- An $O(2^n)$ -approximation algorithm could decide btw. these cases. Hence, cannot exist unless P = NP.

Theorem 15

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

- Given an instance to HAMPATH we create an instance for TSP.
- ► If $(i, j) \notin E$ then set c_{ij} to $n2^n$ otw. set c_{ij} to 1. This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than 2ⁿ.
- An $O(2^n)$ -approximation algorithm could decide btw. these cases. Hence, cannot exist unless P = NP.

Theorem 15

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

- Given an instance to HAMPATH we create an instance for TSP.
- ► If $(i, j) \notin E$ then set c_{ij} to $n2^n$ otw. set c_{ij} to 1. This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than 2ⁿ.
- An $O(2^n)$ -approximation algorithm could decide btw. these cases. Hence, cannot exist unless P = NP.

Theorem 15

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

- Given an instance to HAMPATH we create an instance for TSP.
- ► If $(i, j) \notin E$ then set c_{ij} to $n2^n$ otw. set c_{ij} to 1. This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than 2ⁿ.
- An $O(2^n)$ -approximation algorithm could decide btw. these cases. Hence, cannot exist unless P = NP.

Metric Traveling Salesman

In the metric version we assume for every triple $i,j,k\in\{1,\ldots,n\}$

 $c_{ij} \leq c_{ij} + c_{jk}$.

It is convenient to view the input as a complete undirected graph G = (V, E), where c_{ij} for an edge (i, j) defines the distance between nodes i and j.

Metric Traveling Salesman

In the metric version we assume for every triple $i, j, k \in \{1, \dots, n\}$

 $c_{ij} \leq c_{ij} + c_{jk}$.

It is convenient to view the input as a complete undirected graph G = (V, E), where c_{ij} for an edge (i, j) defines the distance between nodes i and j.

Lemma 16

The cost $OPT_{TSP}(G)$ of an optimum traveling salesman tour is at least as large as the weight $OPT_{MST}(G)$ of a minimum spanning tree in G.

- Take the optimum TSP-tour.
- Delete one edge.
- This gives a spanning tree of cost at most $\operatorname{OPT}_{\operatorname{TSP}}(G)$.

Lemma 16

The cost $OPT_{TSP}(G)$ of an optimum traveling salesman tour is at least as large as the weight $OPT_{MST}(G)$ of a minimum spanning tree in G.

- ► Take the optimum TSP-tour.
- Delete one edge.
- This gives a spanning tree of cost at most $OPT_{TSP}(G)$.

Lemma 16

The cost $OPT_{TSP}(G)$ of an optimum traveling salesman tour is at least as large as the weight $OPT_{MST}(G)$ of a minimum spanning tree in G.

- Take the optimum TSP-tour.
- Delete one edge.
- This gives a spanning tree of cost at most $OPT_{TSP}(G)$.

Lemma 16

The cost $OPT_{TSP}(G)$ of an optimum traveling salesman tour is at least as large as the weight $OPT_{MST}(G)$ of a minimum spanning tree in G.

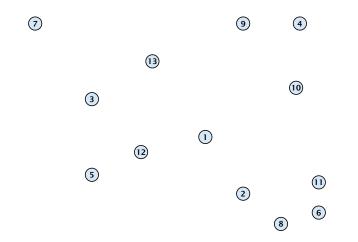
- ► Take the optimum TSP-tour.
- Delete one edge.
- This gives a spanning tree of cost at most $OPT_{TSP}(G)$.

Start with a tour on a subset *S* containing a single node.

- Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- Repeat until all nodes have been processed.

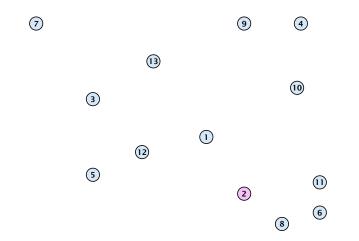
- Start with a tour on a subset *S* containing a single node.
- Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- Repeat until all nodes have been processed.

- Start with a tour on a subset *S* containing a single node.
- Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- Repeat until all nodes have been processed.



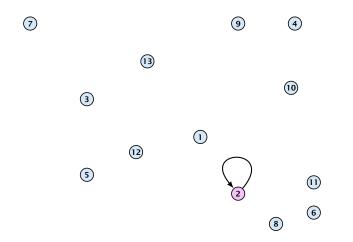
The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

◆ □ ▶ ◆ 壹 ▶ ◆ 壹 ▶ 309/443

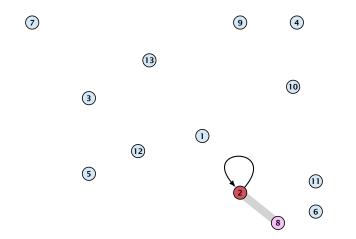


The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

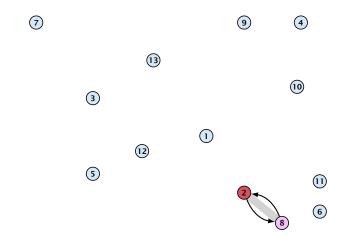
16 TSP



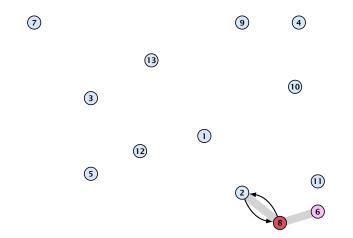
The gray edges form an MST, because exactly these edges are taken in Prims algorithm.



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

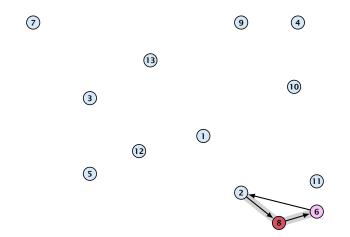


The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

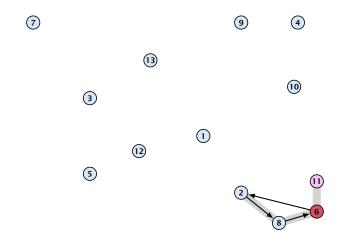


The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

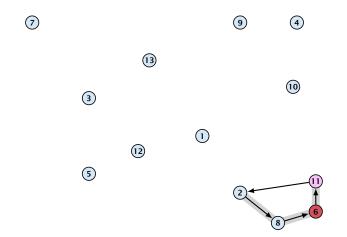
◆ □ ▶ ◆ 壹 ▶ ◆ 壹 ▶ 309/443



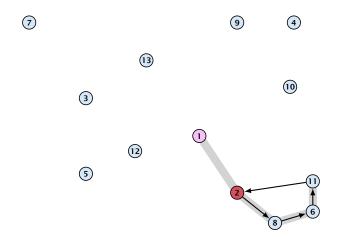
The gray edges form an MST, because exactly these edges are taken in Prims algorithm.



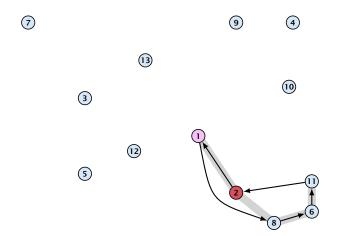
The gray edges form an MST, because exactly these edges are taken in Prims algorithm.



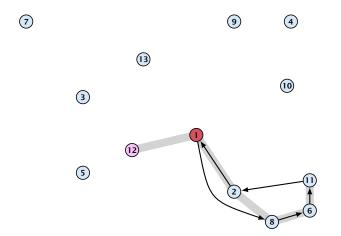
The gray edges form an MST, because exactly these edges are taken in Prims algorithm.



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

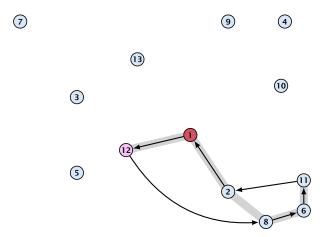


The gray edges form an MST, because exactly these edges are taken in Prims algorithm.



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

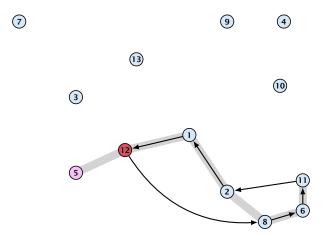
◆ 母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 309/443



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

16 TSP

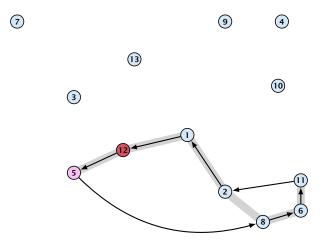
◆ □ ▶ < ■ ▶ < ■ > 309/443



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

16 TSP

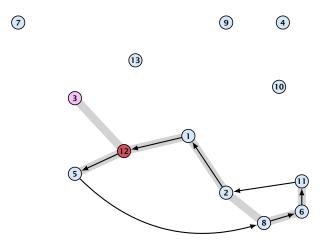
◆ ● ▶ ◆ ■ ▶ ◆ ■ ▶ 309/443



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

16 TSP

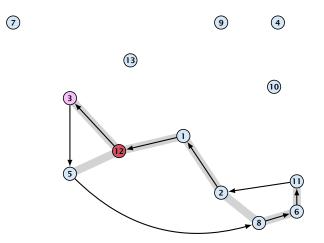
◆ □ ▶ < ■ ▶ < ■ > 309/443



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

16 TSP

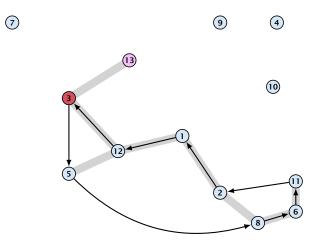
◆ ● ▶ ◆ ■ ▶ ◆ ■ ▶ 309/443



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

16 TSP

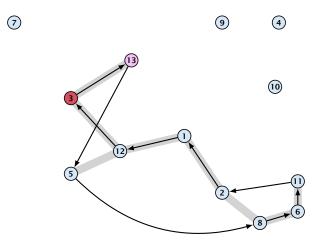
◆ □ → < = → < = → 309/443



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

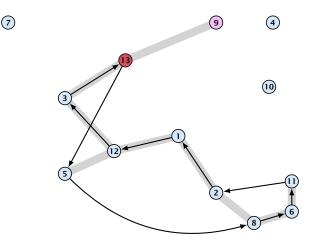
16 TSP

◆ □ → < = → < = → 309/443



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

16 TSP

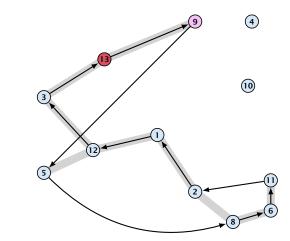


The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

16 TSP

◆日 → モラ・ モラ・ 309/443

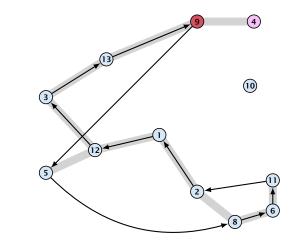
 $\overline{7}$



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

16 TSP

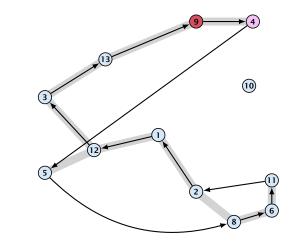
 $\overline{7}$



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

16 TSP

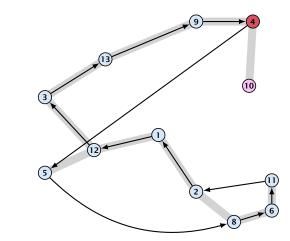
 $\overline{7}$



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

16 TSP

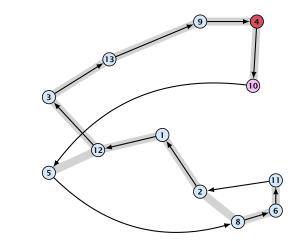
 $\overline{7}$



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

16 TSP

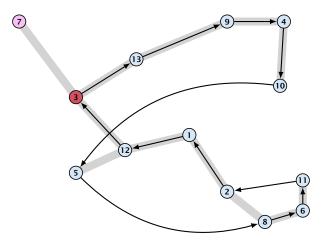
 $\overline{7}$



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

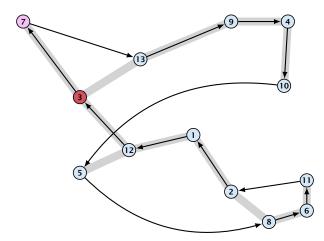
16 TSP

◆ □ → < E → < E → 309/443



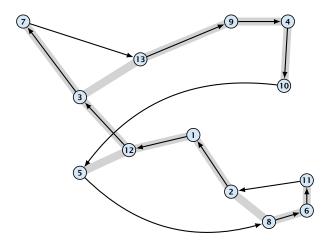
The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

16 TSP



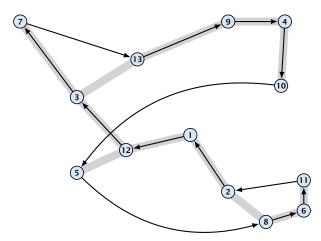
The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

◆日 → モラ・ モラ・ 309/443



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

◆日 → モラ・ モラ・ 309/443



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

Lemma 17

The Greedy algorithm is a 2-approximation algorithm.

Let S_i be the set at the start of the *i*-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

Let r_i denote the successor of s_i in the tour before inserting v_i .

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i) and (v_i, r_i) .

This increases the cost by

Lemma 17

The Greedy algorithm is a 2-approximation algorithm.

Let S_i be the set at the start of the *i*-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

Let r_i denote the successor of s_i in the tour before inserting v_i .

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i) and (v_i, r_i) .

This increases the cost by

Lemma 17

The Greedy algorithm is a 2-approximation algorithm.

Let S_i be the set at the start of the *i*-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

Let r_i denote the successor of s_i in the tour before inserting v_i .

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i) and (v_i, r_i) .

This increases the cost by

Lemma 17

The Greedy algorithm is a 2-approximation algorithm.

Let S_i be the set at the start of the *i*-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

Let r_i denote the successor of s_i in the tour before inserting v_i .

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i) and (v_i, r_i) .

This increases the cost by

Lemma 17

The Greedy algorithm is a 2*-approximation algorithm.*

Let S_i be the set at the start of the *i*-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

Let r_i denote the successor of s_i in the tour before inserting v_i .

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i) and (v_i, r_i) .

This increases the cost by

 $c_{s_i,v_i} + c_{v_i,r_i} - c_{s_i,r_i} \le 2c_{s_i,v_i}$

◆周 ▶ ◆ 国 ▶ ◆ 国 ♪

Lemma 17

The Greedy algorithm is a 2*-approximation algorithm.*

Let S_i be the set at the start of the *i*-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

Let r_i denote the successor of s_i in the tour before inserting v_i .

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i) and (v_i, r_i) .

This increases the cost by

$$c_{s_i,v_i} + c_{v_i,r_i} - c_{s_i,r_i} \le 2c_{s_i,v_i}$$

The edges (s_i, v_i) considered during the Greedy algorithm are exactly the edges considered during PRIMs MST algorithm.

Hence,

$$\sum_{i} c_{s_i, v_i} = \operatorname{OPT}_{\operatorname{MST}}(G)$$

which with the previous lower bound gives a 2-approximation.

The edges (s_i, v_i) considered during the Greedy algorithm are exactly the edges considered during PRIMs MST algorithm.

Hence,

$$\sum_{i} c_{s_i, v_i} = \operatorname{OPT}_{\operatorname{MST}}(G)$$

which with the previous lower bound gives a 2-approximation.

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E' c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e\in E'} c'(e)$$

- Find an Euler tour of G'.
- Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E' c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e\in E'}c'(e)$$

- Find an Euler tour of G'.
- Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E' c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e\in E'}c'(e)$$

Find an Euler tour of G'.

- Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E' c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e\in E'}c'(e)$$

- ▶ Find an Euler tour of *G*′.
- Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E' c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e\in E'}c'(e)$$

- ▶ Find an Euler tour of *G*′.
- Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E' c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e\in E'}c'(e)$$

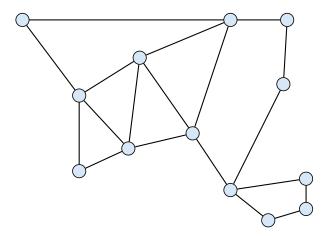
- ▶ Find an Euler tour of *G*′.
- Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

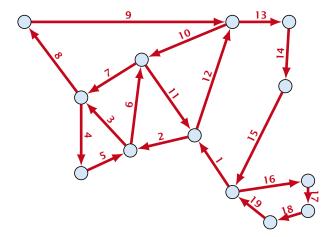
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E' c'(i, j) \ge c(i, j)$.

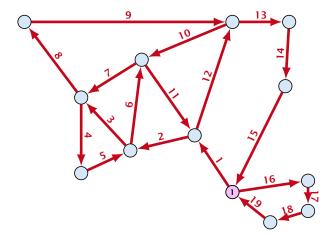
Then we can find a TSP-tour of cost at most

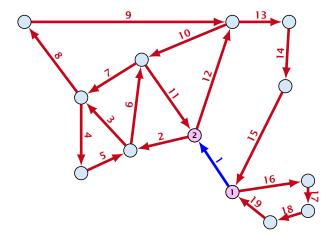
$$\sum_{e\in E'}c'(e)$$

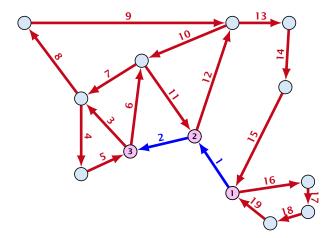
- ▶ Find an Euler tour of *G*′.
- Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

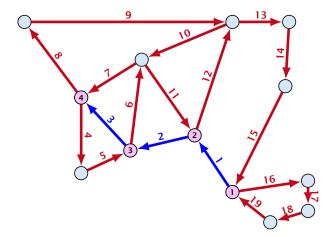


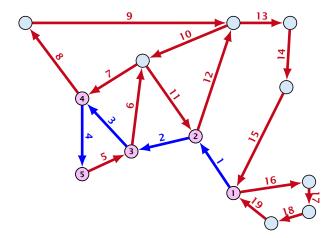


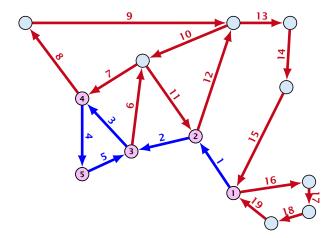


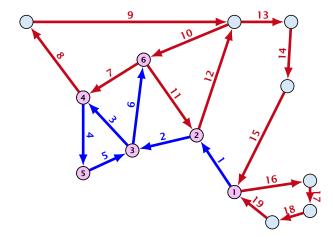


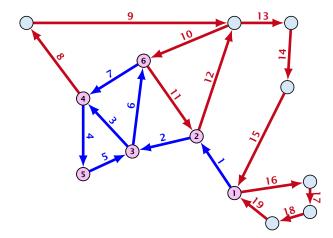


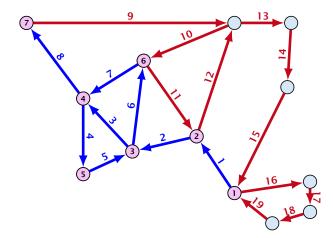


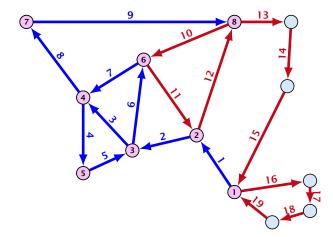


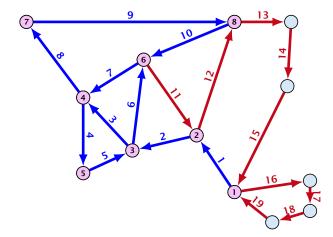


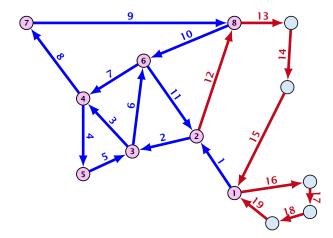


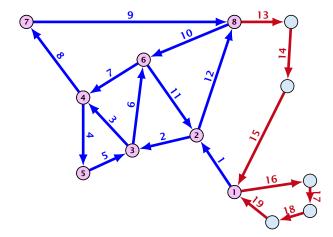


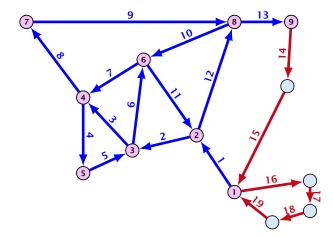


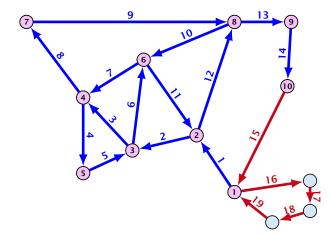


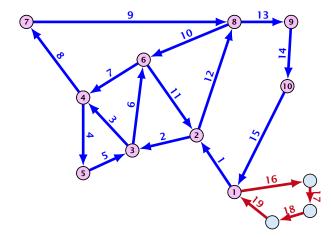


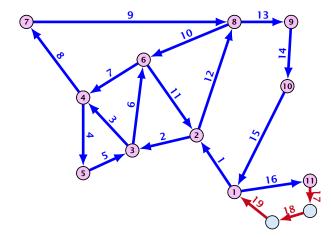


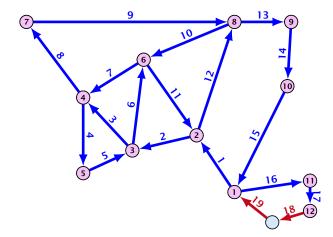


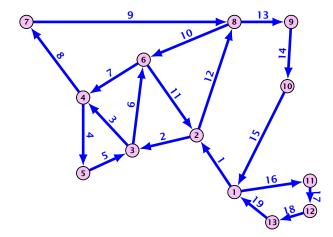


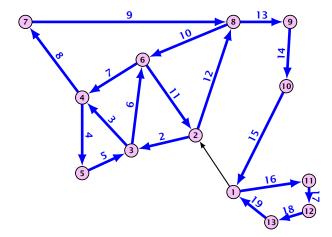


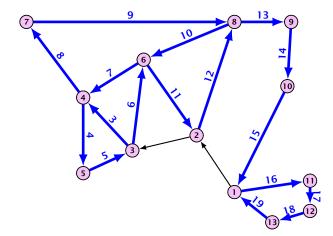


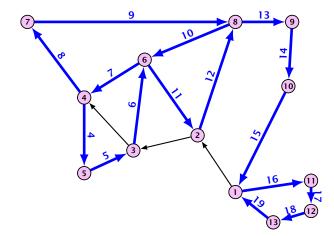


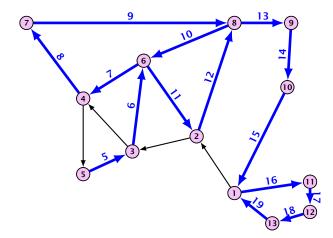


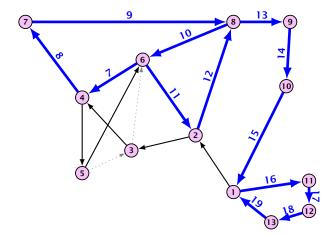


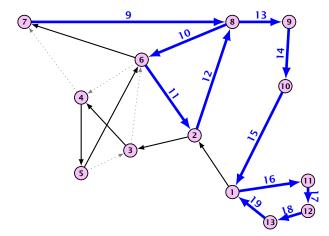


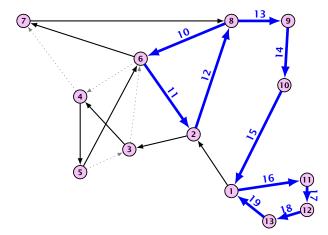


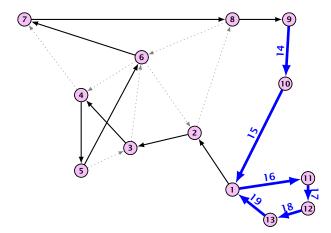


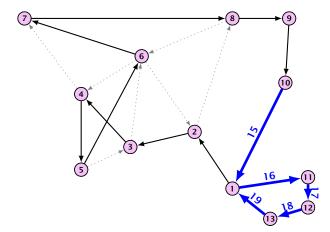


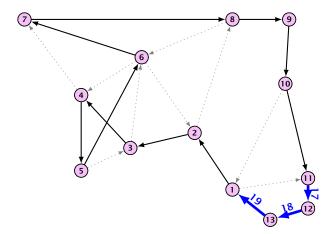


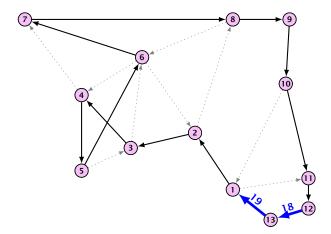


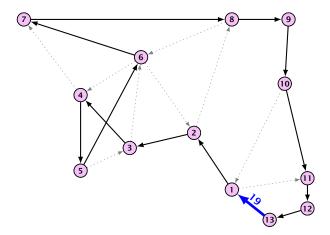


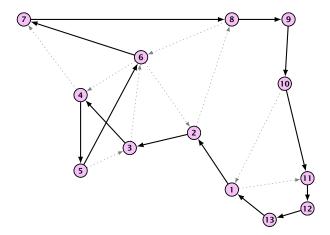


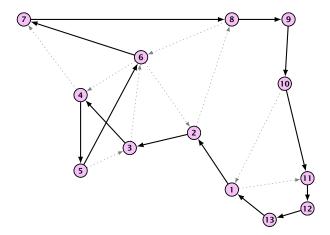












Consider the following graph:

- Compute an MST of *G*.
- Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most $2 \cdot OPT_{MST}(G)$.

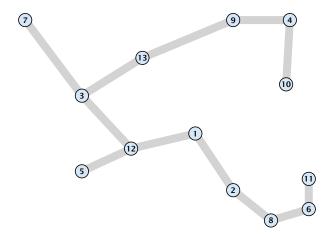
Hence, short-cutting gives a tour of cost no more than $2 \cdot OPT_{MST}(G)$ which means we have a 2-approximation.

Consider the following graph:

- Compute an MST of *G*.
- Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most $2 \cdot OPT_{MST}(G)$.

Hence, short-cutting gives a tour of cost no more than $2 \cdot OPT_{MST}(G)$ which means we have a 2-approximation.



We only need to make the graph Eulerian.

We only need to make the graph Eulerian.

We only need to make the graph Eulerian.

We only need to make the graph Eulerian.

An optimal tour on the odd-degree vertices has cost at most $OPT_{TSP}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $OPT_{TSP}(G)/2$.

Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$OPT_{MST}(G) + OPT_{TSP}(G)/2 \le \frac{3}{2}OPT_{TSP}(G)$$
,

Short cutting gives a $\frac{3}{2}$ -approximation for metric TSP.

This is the best that is known.

An optimal tour on the odd-degree vertices has cost at most $OPT_{TSP}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $OPT_{TSP}(G)/2$.

Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$OPT_{MST}(G) + OPT_{TSP}(G)/2 \le \frac{3}{2}OPT_{TSP}(G)$$
,

Short cutting gives a $\frac{3}{2}$ -approximation for metric TSP.

This is the best that is known.

An optimal tour on the odd-degree vertices has cost at most $OPT_{TSP}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $OPT_{TSP}(G)/2$.

Adding this matching to the MST gives an Eulerian graph with edge weight at most

 $OPT_{MST}(G) + OPT_{TSP}(G)/2 \le \frac{3}{2}OPT_{TSP}(G)$,

Short cutting gives a $\frac{3}{2}$ -approximation for metric TSP.

This is the best that is known.

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most $OPT_{TSP}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $OPT_{TSP}(G)/2$.

Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$OPT_{MST}(G) + OPT_{TSP}(G)/2 \le \frac{3}{2}OPT_{TSP}(G)$$
,

Short cutting gives a $\frac{3}{2}$ -approximation for metric TSP.

This is the best that is known.

(個) (ヨ) (ヨ)

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most $OPT_{TSP}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $OPT_{TSP}(G)/2$.

Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$OPT_{MST}(G) + OPT_{TSP}(G)/2 \le \frac{3}{2}OPT_{TSP}(G)$$
,

Short cutting gives a $\frac{3}{2}$ -approximation for metric TSP.

This is the best that is known.

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most $OPT_{TSP}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $OPT_{TSP}(G)/2$.

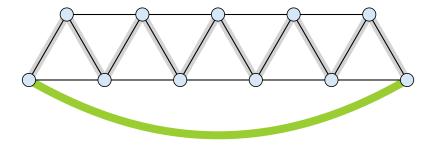
Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$OPT_{MST}(G) + OPT_{TSP}(G)/2 \le \frac{3}{2}OPT_{TSP}(G)$$
,

Short cutting gives a $\frac{3}{2}$ -approximation for metric TSP.

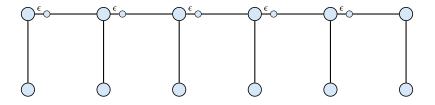
This is the best that is known.

Christofides. Tight Example



- optimal tour: n edges.
- ▶ MST: *n* − 1 edges.
- weight of matching (n + 1)/2 1
- MST+matching $\approx 3/2 \cdot n$

Tree shortcutting. Tight Example



edges have Euclidean distance.

Knapsack:

Given a set of items $\{1, ..., n\}$, where the *i*-th item has weight $w_i \in \mathbb{N}$ and profit $p_i \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq \{1, ..., n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i \leq W$).

Knapsack:

Given a set of items $\{1, ..., n\}$, where the *i*-th item has weight $w_i \in \mathbb{N}$ and profit $p_i \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq \{1, ..., n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i \leq W$).

max		$\sum_{i=1}^{n} p_i x_i$		
s.t.		$\sum_{i=1}^{n} w_i x_i$	\leq	W
	$\forall i \in \{1, \dots, n\}$	x_i	\in	$\{0, 1\}$

Algorithm 1 Knapsack1: $A(1) \leftarrow [(0,0), (p_1, w_1)]$ 2: for $j \leftarrow 2$ to n do3: $A(j) \leftarrow A(j-1)$ 4: for each $(p, w) \in A(j-1)$ do5: if $w + w_j \le W$ then6: add $(p + p_j, w + w_j)$ to A(j)7: remove dominated pairs from A(j)8: return $\max_{(p,w)\in A(n)} p$

The running time is $O(n \cdot \min\{W, P\})$, where $P = \sum_i p_i$ is the total profit of all items. This is only pseudo-polynomial.

Definition 18

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

• Let *M* be the maximum profit of an element.

• Let *M* be the maximum profit of an element.

• Set
$$\mu := \epsilon M/n$$
.

• Let *M* be the maximum profit of an element.

• Set
$$\mu := \epsilon M/n$$
.

• Set $p'_i := \lfloor p_i / \mu \rfloor$ for all *i*.

- Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- Set $p'_i := \lfloor p_i / \mu \rfloor$ for all *i*.
- Run the dynamic programming algorithm on this revised instance.

- Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- Set $p'_i := \lfloor p_i / \mu \rfloor$ for all *i*.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

 $\mathcal{O}(nP')$

- Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- Set $p'_i := \lfloor p_i / \mu \rfloor$ for all *i*.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}(n\sum_i p'_i)$$

- Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- Set $p'_i := \lfloor p_i / \mu \rfloor$ for all *i*.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}(n\sum_i p'_i) = \mathcal{O}(n\sum_i \lfloor \frac{p_i}{\epsilon M/n} \rfloor)$$

- Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- Set $p'_i := \lfloor p_i / \mu \rfloor$ for all *i*.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}(n\sum_i p'_i) = \mathcal{O}(n\sum_i \lfloor \frac{p_i}{\epsilon M/n} \rfloor) \leq \mathcal{O}(\frac{n^3}{\epsilon})$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i\in S}p_i$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i\in S} p_i \ge \mu \sum_{i\in S} p'_i$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$
$$\ge \mu \sum_{i \in O} p'_i$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$
$$\ge \mu \sum_{i \in O} p'_i$$
$$\ge \sum_{i \in O} p_i - |O|\mu$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$
$$\ge \mu \sum_{i \in O} p'_i$$
$$\ge \sum_{i \in O} p_i - |O|\mu$$
$$\ge \sum_{i \in O} p_i - n\mu$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$
$$\ge \mu \sum_{i \in O} p'_i$$
$$\ge \sum_{i \in O} p_i - |O|\mu$$
$$\ge \sum_{i \in O} p_i - n\mu$$
$$= \sum_{i \in O} p_i - \epsilon M$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$
$$\ge \mu \sum_{i \in O} p'_i$$
$$\ge \sum_{i \in O} p_i - |O|\mu$$
$$\ge \sum_{i \in O} p_i - n\mu$$
$$= \sum_{i \in O} p_i - \epsilon M$$
$$\ge (1 - \epsilon) \text{OPT} .$$

The previous analysis of the scheduling algorithm gave a makespan of

$$rac{1}{m}\sum_{j
eq \ell}p_j+p_\ell$$

where ℓ is the last job to complete.

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

Together with the obervation that if each $p_i \ge \frac{1}{3}C_{\max}^*$ then LPT is optimal this gave a 4/3-approximation.

Partition the input into long jobs and short jobs.

17.2 Scheduling Revisited

▲ 個 ▶ ▲ 里 ▶ ▲ 里 ▶ 326/443

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

Idea:

- 1. Find the optimum Makespan for the long jobs by brute force.
- 2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

We still have the inequality

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

We still have the inequality

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

We still have the inequality

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

$$p_{\ell} \leq \sum_{j} p_{j} / (mk)$$

which is at most C_{\max}^*/k .

Hence we get a schedule of length at most

$$(1+\frac{1}{k})C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 19

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

Hence we get a schedule of length at most

$$(1+\frac{1}{k})C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 19

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

Hence we get a schedule of length at most

$$(1+\frac{1}{k})C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 19

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

We first design an algorithm that works as follows: On input of *T* it either finds a schedule of length $(1 + \frac{1}{k})T$ or certifies that no schedule of length at most *T* exists (assume $T \ge \frac{1}{m} \sum_j p_j$).

- A job is long if its size is larger than T/k.
- Otw. it is a short job.

We first design an algorithm that works as follows:

On input of *T* it either finds a schedule of length $(1 + \frac{1}{k})T$ or certifies that no schedule of length at most *T* exists (assume $T \ge \frac{1}{m} \sum_{j} p_{j}$).

- A job is long if its size is larger than T/k.
- Otw. it is a short job.

We first design an algorithm that works as follows: On input of *T* it either finds a schedule of length $(1 + \frac{1}{k})T$ or certifies that no schedule of length at most *T* exists (assume $T \ge \frac{1}{m} \sum_{j} p_{j}$).

- A job is long if its size is larger than T/k.
- Otw. it is a short job.

We first design an algorithm that works as follows: On input of *T* it either finds a schedule of length $(1 + \frac{1}{k})T$ or certifies that no schedule of length at most *T* exists (assume $T \ge \frac{1}{m} \sum_{j} p_{j}$).

- A job is long if its size is larger than T/k.
- Otw. it is a short job.

• We round all long jobs down to multiples of T/k^2 .

- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

$$(1+\frac{1}{k})T$$
.

17.2 Scheduling Revisited

▲ 個 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 331/443 After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

17.2 Scheduling Revisited

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 331/443 After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

$$(1+rac{1}{k})T$$
 .

During the second phase there always must exist a machine with load at most T, since T is larger than the average load.

Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le (1 + \frac{1}{k})T \; .$$

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le (1 + \frac{1}{k})T \; .$$

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the *i*-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the *i*-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k + 1)^{k^2}$ different vectors.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the *i*-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the *i*-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k + 1)^{k^2}$ different vectors.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the *i*-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the *i*-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k + 1)^{k^2}$ different vectors.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the *i*-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the *i*-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k + 1)^{k^2}$ different vectors.

If $OPT(n_1, \ldots, n_{k^2}) \leq m$ we can schedule the input.

We have

$$OPT(n_1, \dots, n_{k^2}) = \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0\\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} OPT(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ge 0\\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

Hence, the running time is roughly $(k + 1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶ 334/443

If $OPT(n_1, \ldots, n_{k^2}) \leq m$ we can schedule the input.

We have

$$OPT(n_1, \dots, n_{k^2}) = \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0\\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} OPT(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ge 0\\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

Hence, the running time is roughly $(k + 1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 334/443

If $OPT(n_1, \ldots, n_{k^2}) \leq m$ we can schedule the input.

We have

$$OPT(n_1, \dots, n_{k^2}) = \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0\\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} OPT(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ge 0\\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

Hence, the running time is roughly $(k + 1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

If $OPT(n_1, \ldots, n_{k^2}) \leq m$ we can schedule the input.

We have

$$OPT(n_1, \dots, n_{k^2}) = \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0\\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} OPT(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ge 0\\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

Hence, the running time is roughly $(k + 1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 20

There is no FPTAS for problems that are strongly NP-hard.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 20 There is no FPTAS for problems that are strongly NP-hard.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 20 There is no FPTAS for problems that are strongly NP-hard.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 20

There is no FPTAS for problems that are strongly NP-hard.

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector $(n_1, ..., n_A)$ with Makespan at most T (*A*: number of different sizes).

If $OPT(n_1, \ldots, n_A) \le m$ we can schedule the input.

$$OPT(n_1, ..., n_A) = 0$$

$$= \begin{cases} 0 & (n_1, ..., n_A) = 0 \\ 1 + \min_{(s_1, ..., s_A) \in C} OPT(n_1 - s_1, ..., n_A - s_A) & (n_1, ..., n_A) \ge 0 \\ \infty & \text{otw.} \end{cases}$$

where *C* is the set of all configurations.

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B + 1)^A n^A)$ because the dynamic programming table has just n^A entries.

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector $(n_1, ..., n_A)$ with Makespan at most T (*A*: number of different sizes).

If $OPT(n_1, ..., n_A) \le m$ we can schedule the input.

$$OPT(n_1, ..., n_A) = 0$$

$$= \begin{cases} 0 & (n_1, ..., n_A) = 0 \\ 1 + \min_{(s_1, ..., s_A) \in C} OPT(n_1 - s_1, ..., n_A - s_A) & (n_1, ..., n_A) \ge 0 \\ \infty & \text{otw.} \end{cases}$$

where *C* is the set of all configurations.

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B + 1)^A n^A)$ because the dynamic programming table has just n^A entries.

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector $(n_1, ..., n_A)$ with Makespan at most T (*A*: number of different sizes).

If $OPT(n_1, ..., n_A) \le m$ we can schedule the input.

$$OPT(n_1,...,n_A) = \begin{pmatrix} 0 & (n_1,...,n_A) = 0 \\ 1 + \min_{(s_1,...,s_A) \in C} OPT(n_1 - s_1,...,n_A - s_A) & (n_1,...,n_A) \ge 0 \\ \infty & \text{otw.} \end{pmatrix}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$, where *B* is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

Given n items with sizes s_1, \ldots, s_n where

```
1 > s_1 \ge \cdots \ge s_n > 0.
```

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 21 There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

17.3 Bin Packing

Given n items with sizes s_1, \ldots, s_n where

```
1 > s_1 \ge \cdots \ge s_n > 0.
```

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 21

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

Proof

▶ In the partition problem we are given positive integers $b_1, ..., b_n$ with $B = \sum_i b_i$ even. Can we partition the integers into two sets *S* and *T* s.t.

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ-approximation algorithm with ρ < 3/2 cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

Proof

▶ In the partition problem we are given positive integers $b_1, ..., b_n$ with $B = \sum_i b_i$ even. Can we partition the integers into two sets *S* and *T* s.t.

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ-approximation algorithm with ρ < 3/2 cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

17.3 Bin Packing

Proof

▶ In the partition problem we are given positive integers $b_1, ..., b_n$ with $B = \sum_i b_i$ even. Can we partition the integers into two sets *S* and *T* s.t.

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets *S* and *T* s.t.

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

Definition 22

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_{\epsilon}\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1 + \epsilon)$ OPT + c for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

17.3 Bin Packing

Definition 22

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_{\epsilon}\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1 + \epsilon)$ OPT + c for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

Definition 22

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_{\epsilon}\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1 + \epsilon)$ OPT + c for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

Again we can differentiate between small and large items.

Lemma 23

Any packing of items of size at most γ into ℓ bins can be extended to a packing of all items into $\max\{\ell, \frac{1}{1-\gamma}SIZE(I) + 1\}$ bins, where $SIZE(I) = \sum_{i} s_i$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least $1 - \gamma$.
- $(1 \gamma) \leq (1 \gamma) \leq (1 \gamma)$ where γ is the number of γ and γ full bins.
- This gives the lemma.

17.3 Bin Packing

Again we can differentiate between small and large items.

Lemma 23

Any packing of items of size at most γ into ℓ bins can be extended to a packing of all items into $\max\{\ell, \frac{1}{1-\gamma}SIZE(I) + 1\}$ bins, where $SIZE(I) = \sum_{i} s_i$ is the sum of all item sizes.

- ► If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- Hence, r(1 − γ) ≤ SIZE(I) where r is the number of nearly-full bins.
- This gives the lemma.

17.3 Bin Packing

Again we can differentiate between small and large items.

Lemma 23

Any packing of items of size at most γ into ℓ bins can be extended to a packing of all items into $\max\{\ell, \frac{1}{1-\gamma}SIZE(I) + 1\}$ bins, where $SIZE(I) = \sum_{i} s_i$ is the sum of all item sizes.

- ► If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- Hence, r(1 − y) ≤ SIZE(I) where r is the number of nearly-full bins.
- This gives the lemma.

Again we can differentiate between small and large items.

Lemma 23

Any packing of items of size at most γ into ℓ bins can be extended to a packing of all items into $\max\{\ell, \frac{1}{1-\gamma}SIZE(I) + 1\}$ bins, where $SIZE(I) = \sum_{i} s_i$ is the sum of all item sizes.

- ► If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- Hence, r(1 − y) ≤ SIZE(I) where r is the number of nearly-full bins.
- This gives the lemma.

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

17.3 Bin Packing

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

- \sim Any bin packing for I gives a bin packing for I' as follows.
- Pack the items of group 2, where in the packing for 4 the items for group 1 have been packed;
- Pack the Items of groups 3, where in the packing for 7 the items for group 2 have been packed;

- Any bin packing for I gives a bin packing for I' as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;

- Any bin packing for I gives a bin packing for I' as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;

- Any bin packing for I gives a bin packing for I' as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;

Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;

▶ ...

Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

► ...

Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

▶ ...

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le 2n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le 2n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le 2n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le 2n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le 2n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le 2n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

 $OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$.

Note that this is usually better than a guarantee of

 $(1+\epsilon)$ OPT(I) + 1.

17.4 Advanced Rounding for Bin Packing

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

```
OPT(I) + \mathcal{O}(\log^2(SIZE(I))).
```

Note that this is usually better than a guarantee of

 $(1+\epsilon)\operatorname{OPT}(I)+1$.

17.4 Advanced Rounding for Bin Packing

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

```
OPT(I) + \mathcal{O}(\log^2(SIZE(I))).
```

Note that this is usually better than a guarantee of

 $(1+\epsilon) \operatorname{OPT}(I) + 1$.

- Group pieces of identical size.
- Let s₁ denote the largest size, and let b₁ denote the number of pieces of size s₁.
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- ▶ ...
- s_m smallest size and b_m number of pieces of size s_m .

- Group pieces of identical size.
- Let s₁ denote the largest size, and let b₁ denote the number of pieces of size s₁.
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- • •
- s_m smallest size and b_m number of pieces of size s_m .

- Group pieces of identical size.
- Let s₁ denote the largest size, and let b₁ denote the number of pieces of size s₁.
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- ▶ *s_m* smallest size and *b_m* number of pieces of size *s_m*.

- Group pieces of identical size.
- Let s₁ denote the largest size, and let b₁ denote the number of pieces of size s₁.
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- ▶ ...
- s s_m smallest size and b_m number of pieces of size s_m .

- Group pieces of identical size.
- Let s₁ denote the largest size, and let b₁ denote the number of pieces of size s₁.
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- ▶ ...
- s_m smallest size and b_m number of pieces of size s_m .

A possible packing of a bin can be described by an *m*-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

We call a vector that fulfills the above constraint a configuration.

17.4 Advanced Rounding for Bin Packing

▲ 圖 ▶ ▲ 置 ▶ ▲ 置 ▶ 348/443

A possible packing of a bin can be described by an *m*-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_i t_i \cdot s_i \le 1 \; .$$

We call a vector that fulfills the above constraint a configuration.

17.4 Advanced Rounding for Bin Packing

A possible packing of a bin can be described by an *m*-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_i t_i \cdot s_i \le 1 \; .$$

We call a vector that fulfills the above constraint a configuration.

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

17.4 Advanced Rounding for Bin Packing

▲ 個 ▶ ▲ E ▶ ▲ E ▶ 349/443

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

17.4 Advanced Rounding for Bin Packing

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 349/443

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

17.4 Advanced Rounding for Bin Packing

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 349/443

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

$$\begin{array}{c|cccc} \min & & \sum_{j=1}^{N} x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \\ & \forall j \in \{1, \dots, N\} & x_j & \text{integral} \end{array}$$

17.4 Advanced Rounding for Bin Packing

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 349/443

How to solve this LP?

later...

17.4 Advanced Rounding for Bin Packing

◆聞▶◆臣▶◆臣 350/443 We can assume that each item has size at least 1/SIZE(I).

Sort items according to size (monotonically decreasing).

- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- Only the size of items in the last group G_r may sum up to less than 2.

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G₁ is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G₂,..., G_{r-1}.
- Only the size of items in the last group G_r may sum up to less than 2.

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ► I.e., G₁ is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G₂,...,G_{r-1}.
- Only the size of items in the last group G_r may sum up to less than 2.

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G₁ is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G₂,...,G_{r-1}.
- Only the size of items in the last group G_r may sum up to less than 2.

- Round all items in a group to the size of the largest group member.
- Delete all items from group G₁ and G_r.
- For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- Observe that $n_i \ge n_{i-1}$.

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_1 and G_r .
- For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- Observe that $n_i \ge n_{i-1}$.

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_1 and G_r .
- For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- Observe that $n_i \ge n_{i-1}$.

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_1 and G_r .
- For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- Observe that $n_i \ge n_{i-1}$.

Lemma 26 The number of different sizes in I' is at most SIZE(I)/2.

- Each group that survives (recall that Gy and Gy are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most StZE(/)/2...
- All items in a group have the same size in $I^{\prime}.$

Lemma 26 The number of different sizes in I' is at most SIZE(I)/2.

- ► Each group that survives (recall that *G*₁ and *G*_{*r*} are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most SIZE(I)/2.
- All items in a group have the same size in I'.

17.4 Advanced Rounding for Bin Packing

The number of different sizes in I' is at most SIZE(I)/2.

- ► Each group that survives (recall that *G*₁ and *G*_r are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most SIZE(I)/2.
- All items in a group have the same size in I'.

The number of different sizes in I' is at most SIZE(I)/2.

- ► Each group that survives (recall that *G*₁ and *G*_r are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most SIZE(I)/2.
- All items in a group have the same size in *I*'.

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- The total size of items in G₁ and G₂ is at most 6 as a group has total size at most 3.
- Consider a group G_i that has strictly more items than G_{i-1} . It discards $m_i = m_{i-1}$ pieces of total size at most

since the smallest piece has size at most $3/n_i$

Summing over all if that have $n_i > n_{i-1}$ gives a bound of at most

$$\sum_{i=1}^{n-1} \frac{1}{2} \sim \mathcal{O}(\log(\operatorname{SDG}(i))) \sim \mathcal{O}$$

(note that $n_{e'} \leq SIZE(l)$ since we assume that the size of

▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 355/443

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- ▶ The total size of items in *G*¹ and *G*^{*r*} is at most 6 as a group has total size at most 3.
- Consider a group G_i that has strictly more items than G_{i-1}.
 It discards n_i n_{i-1} pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

Summing over all i that have n_i > n_{i-1} gives a bound of at most

$$\sum_{j=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) \ .$$

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- ▶ The total size of items in *G*¹ and *G*^{*r*} is at most 6 as a group has total size at most 3.
- Consider a group G_i that has strictly more items than G_{i-1} .
- It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

Summing over all i that have n_i > n_{i-1} gives a bound of at most

$$\sum_{j=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) \ .$$

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- ► The total size of items in G₁ and G_r is at most 6 as a group has total size at most 3.
- Consider a group G_i that has strictly more items than G_{i-1} .
- It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

Summing over all i that have n_i > n_{i-1} gives a bound of at most

$$\sum_{j=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) \ .$$

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- ▶ The total size of items in *G*¹ and *G*^{*r*} is at most 6 as a group has total size at most 3.
- Consider a group G_i that has strictly more items than G_{i-1} .
- It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

Summing over all *i* that have n_i > n_{i-1} gives a bound of at most

$$\sum_{j=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) \quad .$$

Algorithm 1 BinPack

- 1: **if** SIZE(I) < 10 **then**
- 2: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $O(\log(\text{SIZE}(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$

Proof:

- Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{D'}(I') \leq OPT_{D'}(I)$
- $\{x_{f}\}$ is feasible solution for h (even integral).
- $x_{ij} = \lfloor x_{ij} \rfloor$ is feasible solution for I_2 .

17.4 Advanced Rounding for Bin Packing

$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$

Proof:

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, OPT_{LP}(I') ≤ OPT_{LP}(I)
- $\lfloor x_j \rfloor$ is feasible solution for I_1 (even integral).
- $x_j \lfloor x_j \rfloor$ is feasible solution for I_2 .

17.4 Advanced Rounding for Bin Packing

$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$

Proof:

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, OPT_{LP}(I') ≤ OPT_{LP}(I)
- $\lfloor x_j \rfloor$ is feasible solution for I_1 (even integral).

• $x_i - \lfloor x_i \rfloor$ is feasible solution for I_2 .

$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$

Proof:

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, OPT_{LP}(I') ≤ OPT_{LP}(I)
- $\lfloor x_j \rfloor$ is feasible solution for I_1 (even integral).
- $x_j \lfloor x_j \rfloor$ is feasible solution for I_2 .

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in *I*² are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most OPT_{LP} many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most ${\rm OPT}_{\rm LP}$ many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most ${\rm OPT}_{\rm LP}$ many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mbox{OPT}_{\mbox{LP}}$ many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\mathrm{SIZE}(I))) \cdot L$

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most OPT_{LP} many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$

We can show that $SIZE(I_2) \le SIZE(I)/2$. Hence, the number of recursion levels is only $O(\log(SIZE(I_{\text{original}})))$ in total.

configuration LP for J' is at most the number of constraints, which is the number of different sizes ($\leq SIZE(J)/2$). The total size of items in J_2 can be at most $\sum_{i=1}^{J} |z_i - |z_i|$ which is at most the number of non-zero entries in the solution to the configuration LP.

We can show that $SIZE(I_2) \le SIZE(I)/2$. Hence, the number of recursion levels is only $O(\log(SIZE(I_{\text{original}})))$ in total.

- ► The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (≤ SIZE(I)/2).
- ▶ The total size of items in I_2 can be at most $\sum_{j=1}^{N} x_j \lfloor x_j \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

We can show that $SIZE(I_2) \le SIZE(I)/2$. Hence, the number of recursion levels is only $O(\log(SIZE(I_{original})))$ in total.

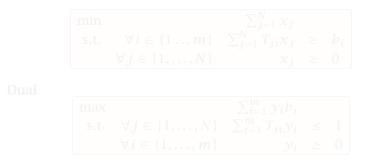
- ► The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (≤ SIZE(I)/2).
- ► The total size of items in I₂ can be at most ∑_{j=1}^N x_j ⌊x_j⌋ which is at most the number of non-zero entries in the solution to the configuration LP.

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

In total we have b_i pieces of size s_i .

Primal



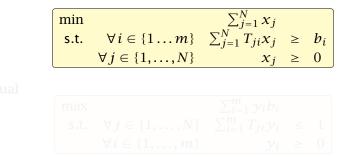
17.4 Advanced Rounding for Bin Packing

▲ □ ► ▲ ■ ► ▲ ■ ► 360/443

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal



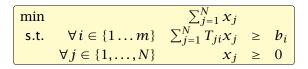
17.4 Advanced Rounding for Bin Packing

▲ □ ► ▲ ■ ► ▲ ■ ► 360/443

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal



Dual

$$\begin{array}{ll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} \quad \sum_{i=1}^{m} T_{ji} y_i \leq 1 \\ & \forall i \in \{1, \dots, m\} \quad y_i \geq 0 \end{array}$$

17.4 Advanced Rounding for Bin Packing

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

```
I have to find a configuration T_j = (T_{j1}, \dots, T_{jm}) that
```


and has a large profit

But this is the Knapsack problem.

17.4 Advanced Rounding for Bin Packing

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶ 361/443

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_j = (T_{j1}, \ldots, T_{jm})$ that

is feasible, i.e.,

$$\sum_{i=1}^m T_{ji} \cdot s_i \leq 1$$
 ,

and has a large profit

 $\sum_{i=1}^{m} T_{ji} y_i > 1$

But this is the Knapsack problem.

17.4 Advanced Rounding for Bin Packing

▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 361/443

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_j = (T_{j1}, \ldots, T_{jm})$ that

is feasible, i.e.,

$$\sum_{i=1}^m T_{ji} \cdot s_i \leq 1$$
 ,

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

But this is the Knapsack problem.

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶
361/443

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_j = (T_{j1}, \ldots, T_{jm})$ that

is feasible, i.e.,

$$\sum_{i=1}^m T_{ji} \cdot s_i \leq 1$$
 ,

and has a large profit

$$\sum_{i=1}^{m} T_{ji} \gamma_i > 1$$

But this is the Knapsack problem.

We have FPTAS for Knapsack. This means if a constraint is violated with $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1 - \epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

Primal'

We have FPTAS for Knapsack. This means if a constraint is violated with $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1 - \epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual

Primal'

We have FPTAS for Knapsack. This means if a constraint is violated with $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1 - \epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{|c|c|c|c|c|c|} \hline max & & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$$

Primal

We have FPTAS for Knapsack. This means if a constraint is violated with $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1 - \epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{|c|c|c|c|c|c|} \hline \max & & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$$

Primal'

$$\begin{array}{|c|c|c|c|c|} \min & (1+\epsilon')\sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^N T_{ji} x_j \geq b_i \\ & \forall j \in \{1, \dots, N\} & x_j \geq 0 \end{array}$$

If the value of the computed dual solution (which may be infeasible) is z then

$\mathsf{OPT} \le z \le (1 + \epsilon')\mathsf{OPT}$

- The constraints used when computing 2 certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAD where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL $^{\prime\prime}$ is at most (1.4 ϵ^{\prime})OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

$OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

 $OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

 $OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

 $OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

 $OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

 $OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

This gives that overall we need at most

```
(1 + \epsilon')OPT<sub>LP</sub>(I) + O(\log^2(SIZE(I)))
```

bins.

We can choose $\epsilon' = \frac{1}{OPT}$ as $OPT \le \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

17.4 Advanced Rounding for Bin Packing

This gives that overall we need at most

```
(1 + \epsilon')OPT<sub>LP</sub>(I) + \mathcal{O}(\log^2(\text{SIZE}(I)))
```

bins.

We can choose $\epsilon' = \frac{1}{OPT}$ as $OPT \le \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

Problem definition:

- n Boolean variables
- m clauses C_1, \ldots, C_m . For example

 $C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

Problem definition:

- n Boolean variables
- *m* clauses C_1, \ldots, C_m . For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

Problem definition:

- n Boolean variables
- *m* clauses C_1, \ldots, C_m . For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

Problem definition:

- n Boolean variables
- *m* clauses C_1, \ldots, C_m . For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

- A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x̄_j is not a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

Terminology:

- A variable x_i and its negation \bar{x}_i are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x_j is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

Terminology:

- A variable x_i and its negation \bar{x}_i are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x_j is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

- A variable x_i and its negation \bar{x}_i are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x_j is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

- A variable x_i and its negation \bar{x}_i are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x_j is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- ► For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

- A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x_i is not a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- ► For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

MAXSAT: Flipping Coins

Set each x_i independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

Define random variable X_j with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{j} w_{j} X_{j}$$

Define random variable X_j with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{j} w_{j} X_{j}$$

E[W]

18 MAXSAT

▲ ● ◆ ● ◆ ● ◆
 369/443

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

◆ □ → < □ →
 369/443

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$
$$= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$$

∢ @ ▶ ∢ ≣ ▶ ∢ ≣ ≯ 369/443

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

= $\sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$
= $\sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

= $\sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$
= $\sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$
 $\geq \frac{1}{2} \sum_{j} w_{j}$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

= $\sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$
= $\sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$
 $\geq \frac{1}{2} \sum_{j} w_{j}$
 $\geq \frac{1}{2} \operatorname{OPT}$

MAXSAT: LP formulation

Let for a clause C_j, P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{j \in P_j} x_i \lor \bigvee_{j \in N_j} \bar{x}_i$$

MAXSAT: LP formulation

► Let for a clause C_j , P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{j \in P_j} x_i \lor \bigvee_{j \in N_j} \bar{x}_i$$

$$\begin{array}{c|cccc} \max & & \sum_{j} w_{j} z_{j} \\ \text{s.t.} & \forall j & \sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) & \geq & z_{j} \\ & \forall i & & y_{i} & \in & \{0, 1\} \\ & \forall j & & z_{j} & \leq & 1 \end{array}$$

MAXSAT: Randomized Rounding

Set each x_i independently to true with probability y_i (and, hence, to false with probability $(1 - y_i)$).

Lemma 28 (Geometric Mean \leq **Arithmetic Mean)** For any nonnegative a_1, \ldots, a_k

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 30

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

$$egin{aligned} &f(m{\lambda}) = f((1-\lambda)(0+\lambda)) \ &\simeq (1-\lambda)f(0)+\lambda f(1) \ &= a+\lambda b \end{aligned}$$

for $\lambda \in [0, 1]$.

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 30

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

> $f(\lambda) = f((1 - \lambda)0 + \lambda 1)$ $\geq (1 - \lambda)f(0) + \lambda f(1)$ $= a + \lambda b$

for $\lambda \in [0, 1]$ *.*

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 30

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for $\lambda \in [0, 1]$ *.*

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 30

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for $\lambda \in [0,1]$.

 $\Pr[C_j \text{ not satisfied}]$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$$
$$\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j}$$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$$
$$\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j}$$
$$= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j}$$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$$
$$\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j}$$
$$= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j}$$
$$\leq \left(1 - \frac{z_j}{\ell_j} \right)^{\ell_j} .$$

 $\Pr[C_j \text{ satisfied}]$

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

$$\begin{split} \Pr[C_j \text{ satisfied}] &\geq 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j} \\ &\geq \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j \end{split}$$

$$\begin{aligned} \Pr[C_j \text{ satisfied}] &\geq 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j} \\ &\geq \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j \end{aligned}$$

$$f^{\prime\prime}(z) = -\frac{\ell-1}{\ell} \Big[1 - \frac{z}{\ell} \Big]^{\ell-2} \le 0$$
 for $z \in [0,1]$. Therefore, f is concave.

E[W]

18 MAXSAT

◆ □ ▶ < □ ▶
 376/443

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$
$$\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right]$$

∢ @ ▶ ∢ ≣ ▶ ∢ ≣ ▶ 376/443

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$

$$\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right]$$

$$\geq \left(1 - \frac{1}{e}\right) \text{ OPT }.$$

∢ @ ▶ ∢ ≣ ▶ ∢ ≣ ▶ 376/443

MAXSAT: The better of two

Theorem 31

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

 $E[\max\{W_1, W_2\}]$


```
E[\max\{W_1, W_2\}]
\ge E[\frac{1}{2}W_1 + \frac{1}{2}W_2]
```


$$E[\max\{W_1, W_2\}] \\ \ge E[\frac{1}{2}W_1 + \frac{1}{2}W_2] \\ \ge \frac{1}{2}\sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] + \frac{1}{2}\sum_j w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)$$

$$E[\max\{W_1, W_2\}]$$

$$\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2]$$

$$\geq \frac{1}{2}\sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] + \frac{1}{2}\sum_j w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)$$

$$\geq \sum_j w_j z_j \left[\underbrace{\frac{1}{2}\left(1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right) + \frac{1}{2}\left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)}_{\geq \frac{3}{4} \text{ for all integers}}\right]$$

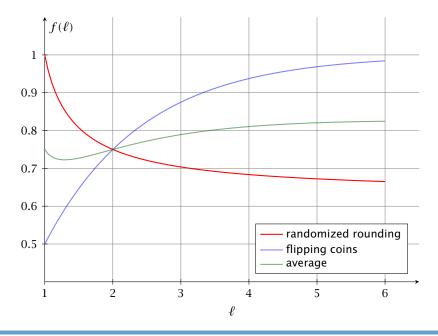
$$E[\max\{W_1, W_2\}]$$

$$\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2]$$

$$\geq \frac{1}{2}\sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] + \frac{1}{2}\sum_j w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)$$

$$\geq \sum_j w_j z_j \left[\underbrace{\frac{1}{2}\left(1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right) + \frac{1}{2}\left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)}_{\geq \frac{3}{4} \text{ for all integers}}\right]$$

$$\geq \frac{3}{4} \text{ OPT}$$



EADS II © Harald Räcke

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f : [0,1] \rightarrow [0,1]$ and set x_i to true with probability $f(y_i)$.

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f : [0,1] \rightarrow [0,1]$ and set x_i to true with probability $f(y_i)$.

MAXSAT: Nonlinear Randomized Rounding

Let $f : [0,1] \rightarrow [0,1]$ be a function with

$$1 - 4^{-x} \le f(x) \le 4^{x-1}$$

Theorem 32

Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.

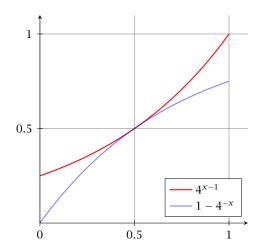
MAXSAT: Nonlinear Randomized Rounding

Let $f : [0,1] \rightarrow [0,1]$ be a function with

$$1 - 4^{-x} \le f(x) \le 4^{x-1}$$

Theorem 32

Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.



$\Pr[C_j \text{ not satisfied}]$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$$
$$\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1}$$

$$Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$$
$$\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1}$$
$$= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))}$$

$$Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$$
$$\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1}$$
$$= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))}$$
$$\leq 4^{-z_j}$$

 $\Pr[C_j \text{ satisfied}]$

 $\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j}$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4} z_j$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

E[W]

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4} z_j$$
 .

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}]$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j}$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4} z_j$$
 .

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \operatorname{OPT}$$

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 33 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 33 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 33 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 33 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 33 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Lemma 34

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

max		$\sum_j w_j z_j$		
s.t.	$\forall j$	$\sum_{i \in P_i} y_i + \sum_{i \in N_i} (1 - y_i)$	\geq	z_j
	∀i	\mathcal{Y}_i	\in	$\{0, 1\}$
	$\forall j$	z_j	\leq	1

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- we can set $y_1 = y_2 = 1/2$ in the LP; this allows to set $z_1 = z_2 = z_3 = z_4 = 1$
- ▶ hence, the LP has value 4.

Lemma 34

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

max		$\sum_j w_j z_j$		
s.t.	$\forall j$	$\sum_{i\in P_i} y_i + \sum_{i\in N_i} (1-y_i)$	\geq	z_j
	∀i	\mathcal{Y}_i	\in	$\{0, 1\}$
	$\forall j$	z_j	\leq	1

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- we can set $y_1 = y_2 = 1/2$ in the LP; this allows to set $z_1 = z_2 = z_3 = z_4 = 1$
- hence, the LP has value 4.

Given a set *L* of (possible) locations for placing facilities and a set *D* of customers together with cost functions $s: D \times L \to \mathbb{R}^+$ and $o: L \to \mathbb{R}^+$ find a set of facility locations *F* together with an assignment $\phi: D \to F$ of customers to open facilities such that

$$\sum_{f\in F} o(f) + \sum_{c} s(c, \phi(c))$$

is minimized.

In the metric facility location problem we have

$$s(c, f) \le s(c, f') + s(c', f) + s(c', f')$$
.

19 Facility Location

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 387/443

Integer Program

min		$\sum_{i \in F} f_i y_i + \sum_{i \in F} \sum_{j \in D} c_{ij} x_{ij}$		
s.t.	$\forall j \in D$	$\sum_{i\in F} x_{ij}$	=	1
	$\forall i \in F, j \in D$	x_{ij}	\leq	${\mathcal Y}_i$
	$\forall i \in F, j \in D$	x_{ij}	\in	$\{0, 1\}$
	$\forall i \in F$	${\mathcal Y}_i$	\in	{0,1}

As usual we get an LP by relaxing the integrality constraints.

19 Facility Location

Dual Linear Program

max		$\sum_{j\in D} v_j$		
s.t.	$\forall i \in F$	$\sum_{j\in D} w_{ij}$	\leq	f_i
	$\forall i \in F, j \in D$	$v_j - w_{ij}$	\leq	c_{ij}
	$\forall i \in F, j \in D$	w_{ij}	\geq	0

19 Facility Location

◆ @ ▶ ◆ 聖 ▶ ◆ 聖 ▶ 389/443

Definition 35

Given an LP solution (x^*, y^*) we say that facility *i* neighbours client *j* if $x_{ij} > 0$. Let $N(j) = \{i \in F : x_{ij}^* > 0\}$.

Lemma 36

If (x^*, y^*) is an optimal solution to the facility location LP and (v^*, w^*) is an optimal dual solution, then $x_{ij}^* > 0$ implies $c_{ij} \le v_j^*$.

Follows from slackness conditions.

Suppose we open set $S \subseteq F$ of facilities s.t. for all clients we have $S \cap N(j) \neq \emptyset$.

Then every client j has a facility i s.t. assignment cost for this client is at most $c_{ij} \leq v_j^*$.

Hence, the total assignment cost is

$$\sum_{j} c_{i_j j} \leq \sum_{j} v_j^* \leq \text{OPT} ,$$

where i_j is the facility that client j is assigned to.

Suppose we open set $S \subseteq F$ of facilities s.t. for all clients we have $S \cap N(j) \neq \emptyset$.

Then every client j has a facility i s.t. assignment cost for this client is at most $c_{ij} \le v_j^*$.

Hence, the total assignment cost is

$$\sum_{j} c_{i_j j} \leq \sum_{j} v_j^* \leq \text{OPT} \ ,$$

where i_j is the facility that client j is assigned to.

Suppose we open set $S \subseteq F$ of facilities s.t. for all clients we have $S \cap N(j) \neq \emptyset$.

Then every client j has a facility i s.t. assignment cost for this client is at most $c_{ij} \le v_j^*$.

Hence, the total assignment cost is

$$\sum_{j} c_{i_j j} \leq \sum_{j} v_j^* \leq \mathrm{OPT}$$
 ,

where i_j is the facility that client j is assigned to.

Problem: Facility cost may be huge!

Suppose we can partition a subset $F' \subseteq F$ of facilities into neighbour sets of some clients. I.e.

$$F' = \biguplus_k N(j_k)$$

where j_1, j_2, \ldots form a subset of the clients.

Problem: Facility cost may be huge!

Suppose we can partition a subset $F' \subseteq F$ of facilities into neighbour sets of some clients. I.e.

$$F' = \biguplus_k N(j_k)$$

where j_1, j_2, \ldots form a subset of the clients.

We have

 f_{i_k}

19 Facility Location

We have

$$f_{i_k} = f_{i_k} \sum_{i \in N(j_k)} x^*_{ij_k}$$

We have

$$f_{i_k} = f_{i_k} \sum_{i \in N(j_k)} x^*_{ij_k} \le \sum_{i \in N(j_k)} f_i x^*_{ij_k}$$

We have

$$f_{i_k} = f_{i_k} \sum_{i \in N(j_k)} x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i y_i^* .$$

We have

$$f_{i_k} = f_{i_k} \sum_{i \in N(j_k)} x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i y_i^* .$$

Summing over all k gives

$$\sum_{k} f_{i_k}$$

19 Facility Location

We have

$$f_{i_k} = f_{i_k} \sum_{i \in N(j_k)} x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i y_i^* .$$

Summing over all k gives

$$\sum_{k} f_{i_k} \le \sum_{k} \sum_{i \in N(j_k)} f_i \mathcal{Y}_i^*$$

We have

$$f_{i_k} = f_{i_k} \sum_{i \in N(j_k)} x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i y_i^* .$$

Summing over all k gives

$$\sum_{k} f_{i_k} \leq \sum_{k} \sum_{i \in N(j_k)} f_i \mathcal{Y}_i^* = \sum_{i \in F'} f_i \mathcal{Y}_i^*$$

We have

$$f_{i_k} = f_{i_k} \sum_{i \in N(j_k)} x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i y_i^* .$$

Summing over all k gives

$$\sum_{k} f_{i_k} \leq \sum_{k} \sum_{i \in N(j_k)} f_i \mathcal{Y}_i^* = \sum_{i \in F'} f_i \mathcal{Y}_i^* \leq \sum_{i \in F} f_i \mathcal{Y}_i^*$$

We have

$$f_{i_k} = f_{i_k} \sum_{i \in N(j_k)} x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i y_i^* .$$

Summing over all k gives

$$\sum_{k} f_{i_k} \leq \sum_{k} \sum_{i \in N(j_k)} f_i \mathcal{Y}_i^* = \sum_{i \in F'} f_i \mathcal{Y}_i^* \leq \sum_{i \in F} f_i \mathcal{Y}_i^*$$

Facility cost is at most the facility cost in an optimum solution.

Problem: so far clients j_1, j_2, \ldots have a neighboring facility. What about the others?

Definition 37

Let $N^2(j)$ denote all neighboring clients of the neighboring facilities of client *j*.

Note that N(j) is a set of facilities while $N^2(j)$ is a set of clients.

19 Facility Location

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 395/443

Problem: so far clients j_1, j_2, \ldots have a neighboring facility. What about the others?

Definition 37

Let $N^2(j)$ denote all neighboring clients of the neighboring facilities of client j.

Note that N(j) is a set of facilities while $N^2(j)$ is a set of clients.

19 Facility Location

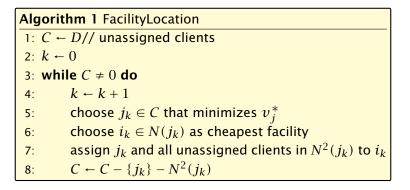
▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 395/443

Problem: so far clients j_1, j_2, \ldots have a neighboring facility. What about the others?

Definition 37

Let $N^2(j)$ denote all neighboring clients of the neighboring facilities of client j.

Note that N(j) is a set of facilities while $N^2(j)$ is a set of clients.



19 Facility Location

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 397/443

Total assignment cost:

Fix k; set $j = j_k$ and $i = i_k$. We know that $c_{ij} \le v_j^*$.

Total assignment cost:

- Fix k; set $j = j_k$ and $i = i_k$. We know that $c_{ij} \le v_j^*$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).

Total assignment cost:

- Fix k; set $j = j_k$ and $i = i_k$. We know that $c_{ij} \le v_j^*$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).

Total assignment cost:

- Fix k; set $j = j_k$ and $i = i_k$. We know that $c_{ij} \le v_j^*$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).

 $c_{i\ell} \le c_{ij} + c_{hj} + c_{h\ell}$

Total assignment cost:

- Fix k; set $j = j_k$ and $i = i_k$. We know that $c_{ij} \le v_j^*$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).

$$c_{i\ell} \leq c_{ij} + c_{hj} + c_{h\ell} \leq v_j^* + v_j^* + v_\ell^*$$

Total assignment cost:

- Fix k; set $j = j_k$ and $i = i_k$. We know that $c_{ij} \le v_j^*$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).

$$c_{i\ell} \leq c_{ij} + c_{hj} + c_{h\ell} \leq v_j^* + v_j^* + v_\ell^* \leq 3v_\ell^*$$

Total assignment cost:

- Fix k; set $j = j_k$ and $i = i_k$. We know that $c_{ij} \le v_j^*$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).

$$c_{i\ell} \le c_{ij} + c_{hj} + c_{h\ell} \le v_j^* + v_j^* + v_\ell^* \le 3v_\ell^*$$

Summing this over all facilities gives that the total assignment cost is at most $3 \cdot OPT$. Hence, we get a 4-approximation.

In the above analysis we use the inequality

$$\sum_{i\in F} f_i \gamma_i^* \leq \text{OPT} \ .$$

19 Facility Location

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶ 398/443 In the above analysis we use the inequality

$$\sum_{i\in F} f_i \mathcal{Y}_i^* \leq \text{OPT} \ .$$

We know something stronger namely

$$\sum_{i\in F} f_i y_i^* + \sum_{i\in F} \sum_{j\in D} c_{ij} x_{ij}^* \leq \text{OPT} .$$

Observation:

Suppose when choosing a client j_k, instead of opening the cheapest facility in its neighborhood we choose a random facility according to x^{*}_{iik}.

Then we incur connection cost

$$\sum_{i} c_{ij_k} x^*_{ij_k}$$

for client $j_k.$ (In the previous algorithm we estimated this by $\upsilon_{j_k}^*$).

Define

$$C_j^* = \sum_i c_{ij} x_{ij}^*$$

to be the connection cost for client j.

FADS II © Harald Räcke

19 Facility Location

▲ 個 ト ▲ 臣 ト ▲ 臣 ト 399/443

Observation:

- Suppose when choosing a client j_k, instead of opening the cheapest facility in its neighborhood we choose a random facility according to x^{*}_{iik}.
- Then we incur connection cost

$$\sum_{i} c_{ij_k} x^*_{ij_k}$$

for client $j_k.$ (In the previous algorithm we estimated this by $\boldsymbol{v}_{j_k}^*$).

Define

$$C_j^* = \sum_i c_{ij} x_{ij}^*$$

to be the connection cost for client j.

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 399/443

Observation:

- Suppose when choosing a client j_k, instead of opening the cheapest facility in its neighborhood we choose a random facility according to x^{*}_{iik}.
- Then we incur connection cost

$$\sum_i c_{ij_k} x^*_{ij_k}$$

for client j_k . (In the previous algorithm we estimated this by $v_{j_k}^*$).

Define

$$C_j^* = \sum_i c_{ij} x_{ij}^*$$

to be the connection cost for client j.

▲ 個 ト ▲ 聖 ト ▲ 里 ト 399/443

We only try to open a facility once (when it is in neighborhood of some j_k). (recall that neighborhoods of different $j'_k s$ are disjoint).

We open facility i with probability $x_{ij_k} \le y_i$ (in case it is in some neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most

 $\sum_{i\in F} f_i \gamma_i$.

19 Facility Location

◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 400/443

We only try to open a facility once (when it is in neighborhood of some j_k). (recall that neighborhoods of different $j'_k s$ are disjoint).

We open facility i with probability $x_{ij_k} \le y_i$ (in case it is in some neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most

 $\sum_{i\in F} f_i \gamma_i$.

19 Facility Location

▲ ● ▲ ● ▲ ● ▲ 400/443

We only try to open a facility once (when it is in neighborhood of some j_k). (recall that neighborhoods of different $j'_k s$ are disjoint).

We open facility *i* with probability $x_{ij_k} \leq y_i$ (in case it is in some neighborhood; otw. we open it with probability zero).

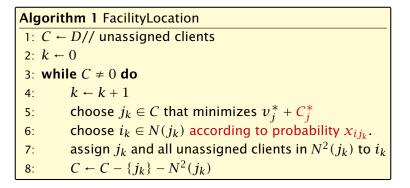
Hence, the expected facility cost is at most

We only try to open a facility once (when it is in neighborhood of some j_k). (recall that neighborhoods of different $j'_k s$ are disjoint).

We open facility *i* with probability $x_{ij_k} \leq y_i$ (in case it is in some neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most

$$\sum_{i\in F} f_i \mathcal{Y}_i$$



Fix
$$k$$
; set $j = j_k$.

• Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).

► If we assign a client l to the same facility as i we pay at most

$\sum_{i} \alpha_i \sigma_{ii}^{i} + \alpha_i \sigma_{ii}^{i} + \alpha_i \sigma_{ii}^{i} + \alpha_i^{i} + \alpha_i^{i} \sigma_{ii}^{i} + \alpha_i^{i} + \alpha_i^{i} \sigma_{ii}^{i} + \alpha_i^{i} +$

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{j} C_j^* + \sum_{j} 2v_j^* \le \sum_{j} C_j^* + 2\text{OPT}$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

- Fix k; set $j = j_k$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).
- If we assign a client l to the same facility as i we pay at most

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{j} C_j^* + \sum_{j} 2v_j^* \le \sum_{j} C_j^* + 2\text{OPT}$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

- Fix k; set $j = j_k$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).
- If we assign a client ℓ to the same facility as i we pay at most

$$\sum_{i} c_{ij} x_{ij_k}^* + c_{hj} + c_{h\ell} \le C_j^* + v_j^* + v_\ell^* \le C_\ell^* + 2v_\ell^*$$

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{j} C_j^* + \sum_{j} 2v_j^* \le \sum_{j} C_j^* + 2\text{OPT}$$

Hence, it is at most 20PT plus the total assignment cost in an optimum solution.

- Fix k; set $j = j_k$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).
- If we assign a client ℓ to the same facility as i we pay at most

$$\sum_{i} c_{ij} x_{ijk}^* + c_{hj} + c_{h\ell} \le C_j^* + v_j^* + v_\ell^* \le C_\ell^* + 2v_\ell^*$$

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{j} C_j^* + \sum_{j} 2v_j^* \le \sum_{j} C_j^* + 2\text{OPT}$$

Hence, it is at most 20PT plus the total assignment cost in an optimum solution.

- Fix k; set $j = j_k$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).
- If we assign a client l to the same facility as i we pay at most

$$\sum_{i} c_{ij} x_{ij_k}^* + c_{hj} + c_{h\ell} \le C_j^* + v_j^* + v_\ell^* \le C_\ell^* + 2v_\ell^*$$

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{j} C_j^* + \sum_{j} 2\nu_j^* \le \sum_{j} C_j^* + 20\text{PT}$$

Hence, it is at most 20PT plus the total assignment cost in an optimum solution.

- Fix k; set $j = j_k$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).
- If we assign a client l to the same facility as i we pay at most

$$\sum_{i} c_{ij} x_{ij_k}^* + c_{hj} + c_{h\ell} \le C_j^* + v_j^* + v_\ell^* \le C_\ell^* + 2v_\ell^*$$

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{j} C_j^* + \sum_{j} 2\nu_j^* \le \sum_{j} C_j^* + 20\text{PT}$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

- Fix k; set $j = j_k$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).
- If we assign a client l to the same facility as i we pay at most

$$\sum_{i} c_{ij} x_{ij_k}^* + c_{hj} + c_{h\ell} \le C_j^* + v_j^* + v_\ell^* \le C_\ell^* + 2v_\ell^*$$

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{j} C_j^* + \sum_{j} 2\nu_j^* \le \sum_{j} C_j^* + 20\text{PT}$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

- Fix k; set $j = j_k$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).
- If we assign a client l to the same facility as i we pay at most

$$\sum_{i} c_{ij} x_{ij_k}^* + c_{hj} + c_{h\ell} \le C_j^* + v_j^* + v_\ell^* \le C_\ell^* + 2v_\ell^*$$

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{j} C_{j}^{*} + \sum_{j} 2v_{j}^{*} \le \sum_{j} C_{j}^{*} + 2\text{OPT}$$

Hence, it is at most 20PT plus the total assignment cost in an optimum solution.

- Fix k; set $j = j_k$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).
- If we assign a client l to the same facility as i we pay at most

$$\sum_{i} c_{ij} x_{ij_k}^* + c_{hj} + c_{h\ell} \le C_j^* + v_j^* + v_\ell^* \le C_\ell^* + 2v_\ell^*$$

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{j} C_{j}^{*} + \sum_{j} 2\nu_{j}^{*} \le \sum_{j} C_{j}^{*} + 2\text{OPT}$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

- Fix k; set $j = j_k$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).
- If we assign a client l to the same facility as i we pay at most

$$\sum_{i} c_{ij} x_{ij_k}^* + c_{hj} + c_{h\ell} \le C_j^* + v_j^* + v_\ell^* \le C_\ell^* + 2v_\ell^*$$

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{j} C_{j}^{*} + \sum_{j} 2\nu_{j}^{*} \le \sum_{j} C_{j}^{*} + 2\text{OPT}$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

Lemma 38 (Chernoff Bounds)

Let $X_1, ..., X_n$ be *n* independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(rac{e^{\delta}}{(1+\delta)^{1+\delta}}
ight)^U$$
 ,

and

$$\Pr[X \le (1-\delta)L] < \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L ,$$

20.1 Chernoff Bounds

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶
403/443

Lemma 39 For $0 \le \delta \le 1$ we have that

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta^2/3}$$

and

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

20.1 Chernoff Bounds

▲ ● < ■ > < ■ >
 404/443

- Given s_i - t_i pairs in a graph.
- Connect each pair by a paths such that not too many path use any given edge.

20.1 Chernoff Bounds

Randomized Rounding:

For each i choose one path from the set \mathcal{P}_i at random according to the probability distribution given by the Linear Programming Solution.

Theorem 40

If $W^* \ge c \ln n$ for some constant c, then with probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n}$.

Let X_e^i be a random variable that indicates whether the path for $s_i \cdot t_i$ uses edge e.

Then the number of paths using edge e is $Y_e = \sum_i X_e^i$.

$\sum_{\substack{i \ p \in \mathcal{S}_i \ p \neq i}} x_i^* = \sum_{\substack{i \ p \in \mathcal{S}_i \ p \neq i}} x_i^* = \sum_{\substack{i \ p \neq i}} x_i^* = X_i^*$

20.1 Chernoff Bounds

◆ 個 ▶ < 필 ▶ < 필 ▶ 408/443

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge e is $Y_e = \sum_i X_e^i$.

$\sum_{\substack{p \in \mathcal{P}_p \neq p \\ p \neq q}} \sum_{p \in \mathcal{P}_p} a_p^* = \sum_{\substack{p \in \mathcal{P}_p \neq q \\ p \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q \\ p \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q \\ p \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q \\ p \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q \\ p \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p^* \leq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p^* = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p^* \geq W^*(1, q) = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p^* = \sum_{\substack{p \in \mathcal{P}_q \neq q}} a_p$

20.1 Chernoff Bounds

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge *e* is $Y_e = \sum_i X_e^i$.

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge *e* is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_{i \ p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

20.1 Chernoff Bounds

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 408/443

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge *e* is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_{i} \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

20.1 Chernoff Bounds

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge *e* is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_i \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

20.1 Chernoff Bounds

Choose $\delta = \sqrt{(c \ln n)/W^*}$.

Then

20.1 Chernoff Bounds

◆ □ ▶ < ■ ▶ < ■ ▶</p>
409/443

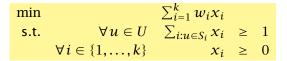
Choose $\delta = \sqrt{(c \ln n)/W^*}$.

Then

$$\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$$

20.1 Chernoff Bounds

Primal Relaxation:



Dual Formulation:

$$\begin{array}{ll} \max & \sum_{u \in U} \mathcal{Y}_u \\ \text{s.t.} & \forall i \in \{1, \dots, k\} \quad \sum_{u: u \in S_i} \mathcal{Y}_u \leq w_i \\ & \mathcal{Y}_u \geq 0 \end{array}$$

21 Primal Dual Revisited

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 410/443

Primal Relaxation:

Dual Formulation:

$$\begin{array}{ll} \max & \sum_{u \in U} \mathcal{Y}_{u} \\ \text{s.t.} \quad \forall i \in \{1, \dots, k\} \quad \sum_{u:u \in S_{i}} \mathcal{Y}_{u} \leq w_{i} \\ \mathcal{Y}_{u} \geq 0 \end{array}$$

21 Primal Dual Revisited

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 410/443

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - Identify an element is that is not covered in current primal integral solution.
 - locrease dual variable y_{θ} until a dual constraint becomes tight (maybe increase by 0).
 - if this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set x_j = 1 (add this set to your solution).

- Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set x_j = 1 (add this set to your solution).

- Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set x_j = 1 (add this set to your solution).

- Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - ► If this is the constraint for set S_j set x_j = 1 (add this set to your solution).

Analysis:

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j}$$

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e}$$

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e}$$

21 Primal Dual Revisited

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 412/443

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e} \le f \cdot \sum_{e} y_{e} \le f \cdot \text{OPT}$$

21 Primal Dual Revisited

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 412/443 Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

If we would also fulfill dual slackness conditions

$$y_e > 0 \Rightarrow \sum_{j: e \in S_j} x_j = 1$$

then the solution would be optimal!!!

We don't fulfill these constraint but we fulfill an approximate version:

We don't fulfill these constraint but we fulfill an approximate version:

$$y_e > 0 \Rightarrow 1 \le \sum_{j:e \in S_j} x_j \le f$$

We don't fulfill these constraint but we fulfill an approximate version:

$$y_e > 0 \Rightarrow 1 \le \sum_{j:e \in S_j} x_j \le f$$

This is sufficient to show that the solution is an f-approximation.

Suppose we have a primal/dual pair

Suppose we have a primal/dual pair

and solutions that fulfill approximate slackness conditions:

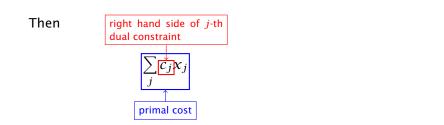
$$x_j > 0 \Rightarrow \sum_i a_{ij} y_i \ge \frac{1}{\alpha} c_j$$
$$y_i > 0 \Rightarrow \sum_j a_{ij} x_j \le \beta b_i$$

21 Primal Dual Revisited

▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 415/443 Then

21 Primal Dual Revisited

◆個 ▶ ◆ ヨ ▶ ◆ ヨ ▶ 416/443



21 Primal Dual Revisited

▲ 圖 ▶ < 필 ▶ < 필 ▶</p>
416/443

$$\boxed{\sum_{j} c_{j} x_{j}}_{j} \leq \alpha \sum_{j} \left(\sum_{i} a_{ij} y_{i} \right) x_{j}$$

$$\overrightarrow{\qquad}$$
primal cost

21 Primal Dual Revisited

◆ □ → < □ →
 416/443

$$\boxed{\sum_{j} c_{j} x_{j}} \leq \alpha \sum_{j} \left(\sum_{i} a_{ij} y_{i} \right) x_{j}$$

$$\boxed{\text{primal cost}} \alpha \sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i}$$

21 Primal Dual Revisited

∢ @ ▶ ∢ ≣ ▶ ∢ ≣ ▶ 416/443

$$\frac{\sum_{j} c_{j} x_{j}}{\sum_{j} \leq \alpha \sum_{j} \left(\sum_{i} a_{ij} y_{i}\right) x_{j}}$$

$$\xrightarrow{\text{primal cost}} \alpha \sum_{i} \left(\sum_{j} a_{ij} x_{j}\right) y_{i}$$

$$\leq \alpha \beta \cdot \sum_{i} b_{i} y_{i}$$

21 Primal Dual Revisited

∢ @ ▶ ∢ ≣ ▶ ∢ ≣ ▶ 416/443

$$\boxed{\sum_{j} c_{j} x_{j}} \leq \alpha \sum_{j} \left(\sum_{i} a_{ij} y_{i} \right) x_{j}$$

$$\overrightarrow{\text{primal cost}} = \alpha \sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i}$$

$$\leq \alpha \beta \cdot \boxed{\sum_{i} b_{i} y_{i}}$$

$$\overrightarrow{\text{dual objective}}$$

21 Primal Dual Revisited

∢ @ ▶ ∢ ≣ ▶ ∢ ≣ ▶ 416/443

Feedback Vertex Set for Undirected Graphs

• Given a graph G = (V, E) and non-negative weights $w_v \ge 0$ for vertex $v \in V$.

Feedback Vertex Set for Undirected Graphs

- Given a graph G = (V, E) and non-negative weights $w_v \ge 0$ for vertex $v \in V$.
- Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex.

We can encode this as an instance of Set Cover

 Each vertex can be viewed as a set that contains some cycles.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.
- The O(log n)-approximation for Set Cover does not help us to get a good solution.

Let C denote the set of all cycles (where a cycle is identified by its set of vertices)

Let C denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

Dual Formulation:

21 Primal Dual Revisited

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 419/443

• Start with x = 0 and y = 0

- Start with x = 0 and y = 0
- While there is a cycle C that is not covered (does not contain a chosen vertex).

- Start with x = 0 and y = 0
- While there is a cycle C that is not covered (does not contain a chosen vertex).
 - Increase y_e until dual constraint for some vertex v becomes tight.

- Start with x = 0 and y = 0
- While there is a cycle C that is not covered (does not contain a chosen vertex).
 - Increase y_e until dual constraint for some vertex v becomes tight.
 - set $x_v = 1$.

 $\sum_{v} w_{v} x_{v}$

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C: v \in C} y_{C} x_{v}$$

21 Primal Dual Revisited

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$

where S is the set of vertices we choose.

21 Primal Dual Revisited

▲ 個 ▶ ▲ 里 ▶ ▲ 里 ▶ 421/443

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$
$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$
$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$
$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this is unrealistic.

Algorithm 1 FeedbackVertexSet

- 1: $y \leftarrow 0$
- 2: *x* ← 0
- 3: while exists cycle C in G do
- 4: increase y_C until there is $v \in C$ s.t. $\sum_{C:v \in C} y_C = w_v$

5:
$$x_v = 1$$

- 6: remove v from G
- 7: repeatedly remove vertices of degree 1 from G

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses at most one vertex from P.

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get an α -approximation.

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get an α -approximation.

Theorem 41

In any graph with no vertices of degree 1, there always exists a cycle that has at most $O(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

 $\mathcal{Y}_C > 0 \Rightarrow |S \cap C| \leq \mathcal{O}(\log n)$.

Given a graph G = (V, E) with two nodes $s, t \in V$ and edge-weights $c : E \to \mathbb{R}^+$ find a shortest path between s and tw.r.t. edge-weights c.

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

Given a graph G = (V, E) with two nodes $s, t \in V$ and edge-weights $c : E \to \mathbb{R}^+$ find a shortest path between s and tw.r.t. edge-weights c.

min		$\sum_{e} c(e) x_{e}$		
s.t.	$\forall S \in S$	$\sum_{e:\delta(S)} x_e$	\geq	1
	$\forall e \in E$	x_e	\in	$\{0, 1\}$

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

The Dual:

max		$\sum_{S} \gamma_{S}$		
s.t.	$\forall e \in E$	$\sum S:e\in\delta(S) \mathcal{Y}S$	\leq	c(e)
	$\forall S \in S$	$\mathcal{Y}S$	\geq	0

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

21 Primal Dual Revisited

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 426/443

The Dual:

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

We can interpret the value y_S as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.

We can interpret the value y_S as the width of a moat surounding the set *S*.

Each set can have its own moat but all moats must be disjoint.

We can interpret the value y_S as the width of a moat surounding the set *S*.

Each set can have its own moat but all moats must be disjoint.

We can interpret the value y_S as the width of a moat surounding the set *S*.

Each set can have its own moat but all moats must be disjoint.

Algorithm 1 PrimalDualShortestPath

- 1: $y \leftarrow 0$
- 2: $F \leftarrow \emptyset$
- 3: while there is no s-t path in (V, F) do
- 4: Let *C* be the connected component of (*V*,*F*) containing *s*
- 5: Increase y_C until there is an edge $e' \in \delta(C)$ such that $\sum_{S:e' \in \delta(S)} y_S = c(e')$.

$$5: \qquad F \leftarrow F \cup \{e'\}$$

7: Let P be an s-t path in (V, F)

```
8: return P
```


Lemma 42 At each point in time the set F forms a tree.

Proof:

- In each iteration we take the current connected component from (V, P) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- Since, at most one end-point of the new edge is in C the edge cannot close a cycle.

Lemma 42

At each point in time the set F forms a tree.

Proof:

- ▶ In each iteration we take the current connected component from (V, F) that contains *s* (call this component *C*) and add some edge from $\delta(C)$ to *F*.
- Since, at most one end-point of the new edge is in C the edge cannot close a cycle.

Lemma 42

At each point in time the set F forms a tree.

Proof:

- ▶ In each iteration we take the current connected component from (V, F) that contains *s* (call this component *C*) and add some edge from $\delta(C)$ to *F*.
- Since, at most one end-point of the new edge is in C the edge cannot close a cycle.

◆ ● ◆ ● ◆ ● ◆
 ◆ ● ◆ ● ◆
 ◆ ● ◆
 ◆ ● ◆
 ◆ ● ◆
 ◆ ● ◆
 ◆ ● ◆
 ◆ ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 <l

$$\sum_{e \in P} c_{(e)} = \sum_{e \in P} \sum_{S: e \in \delta(S)} \gamma_S$$

▲ ●
 ▲ ●
 ▲ ●
 ↓ 430/443

$$\sum_{e \in P} c_{(e)} = \sum_{e \in P} \sum_{S: e \in \delta(S)} \gamma_{S}$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot \gamma_{S} .$$

$$\sum_{e \in P} c_{(e)} = \sum_{e \in P} \sum_{S: e \in \delta(S)} \gamma_{S}$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot \gamma_{S} .$$

$$\sum_{e \in P} c_{(e)} = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_{S}$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_{S} .$$

If we can show that $\gamma_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \le \text{OPT}$$

by weak duality.

◆ 個 ▶ ◆ 聖 ▶ ◆ 里 ▶ 430/443

$$\sum_{e \in P} c_{(e)} = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_{S}$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_{S} .$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \le \text{OPT}$$

by weak duality.

Hence, we find a shortest path.

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs $s_i, t_i, i = 1, ..., k$, and a cost function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in \{1, ..., k\}$ there is a path between s_i and t_i only using edges in F.

$$\begin{array}{ll} \min & \sum_{e} c(e) x_{e} \\ \text{s.t.} \quad \forall S \subseteq V : S \in S_{i} \text{ for some } i \quad \sum_{e \in \delta(S)} x_{e} \geq 1 \\ \forall e \in E \quad x_{e} \in \{0, 1\} \end{array}$$

Here S_i contains all sets S such that $s_i \in S$ and $t_i \notin S$.

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs $s_i, t_i, i = 1, ..., k$, and a cost function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in \{1, ..., k\}$ there is a path between s_i and t_i only using edges in F.

$$\begin{array}{lll} \min & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall S \subseteq V : S \in S_{i} \text{ for some } i & \sum_{e \in \delta(S)} x_{e} \geq 1 \\ & \forall e \in E & x_{e} \in \{0,1\} \end{array}$$

Here S_i contains all sets S such that $s_i \in S$ and $t_i \notin S$.

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs $s_i, t_i, i = 1, ..., k$, and a cost function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in \{1, ..., k\}$ there is a path between s_i and t_i only using edges in F.

Here S_i contains all sets S such that $s_i \in S$ and $t_i \notin S$.

The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width).

Algorithm 1 FirstTry

1: $y \leftarrow 0$

2:
$$F \leftarrow \emptyset$$

- 3: while not all s_i - t_i pairs connected in F do
- 4: Let *C* be some connected component of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some *i*.
- 5: Increase γ_C until there is an edge $e' \in \delta(C)$ s.t. $\sum_{S \in S_i: e' \in \delta(S)} \gamma_S = c_{e'}$

$$6: \qquad F \leftarrow F \cup \{e'\}$$

7: Let P_i be an s_i - t_i path in (V, F)

```
8: return \bigcup_i P_i
```


《聞》《臣》《臣》 435/443

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} \gamma_S$$

▲ ●
 ▲ ●
 ▲ ●
 ▲ 435/443

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S .$$

▲ ●
 ▲ ●
 ▲ ●
 ▲ 435/443

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S .$$

▲ ●
 ▲ ●
 ▲ ●
 ▲ 435/443

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S .$$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S .$$

However, this is not true:

• Take a graph on k + 1 vertices v_0, v_1, \ldots, v_k .

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S .$$

- Take a graph on k + 1 vertices v_0, v_1, \ldots, v_k .
- The *i*-th pair is v_0 - v_i .

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S .$$

- Take a graph on k + 1 vertices v_0, v_1, \ldots, v_k .
- The *i*-th pair is v_0 - v_i .
- The first component *C* could be $\{v_0\}$.

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S .$$

- Take a graph on k + 1 vertices v_0, v_1, \ldots, v_k .
- The *i*-th pair is v_0 - v_i .
- The first component *C* could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S .$$

- Take a graph on k + 1 vertices v_0, v_1, \ldots, v_k .
- The *i*-th pair is v_0 - v_i .
- The first component *C* could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- The final set *F* contains all edges $\{v_0, v_i\}, i = 1, ..., k$.

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S .$$

- Take a graph on k + 1 vertices v_0, v_1, \ldots, v_k .
- The *i*-th pair is v_0 - v_i .
- The first component *C* could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- The final set *F* contains all edges $\{v_0, v_i\}, i = 1, ..., k$.

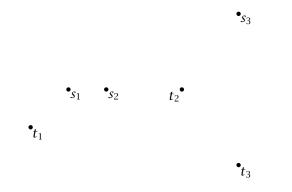
•
$$y_{\{v_0\}} > 0$$
 but $|\delta(\{v_0\}) \cap F| = k$.

Algorithm 1 SecondTry

1:
$$y \leftarrow 0$$
; $F \leftarrow \emptyset$; $\ell \leftarrow 0$
2: while not all $s_i \cdot t_i$ pairs connected in F do
3: $\ell \leftarrow \ell + 1$
4: Let C be set of all connected components C of (V, F)
such that $|C \cap \{s_i, t_i\}| = 1$ for some i .
5: Increase y_C for all $C \in C$ uniformly until for some edge
 $e_\ell \in \delta(C'), C' \in C$ s.t. $\sum_{S:e_\ell \in \delta(S)} y_S = c_{e_\ell}$
6: $F \leftarrow F \cup \{e_\ell\}$
7: $F' \leftarrow F$
8: for $k \leftarrow \ell$ downto 1 do // reverse deletion
9: if $F' - e_k$ is feasible solution then
10: remove e_k from F'
11: return F'

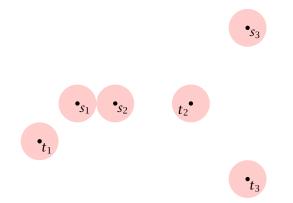
The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

Example



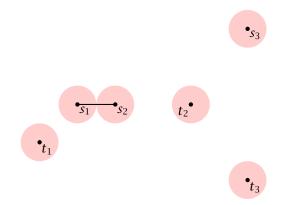
◆ 個 ト ◆ ヨ ト ◆ ヨ ト 438/443

Example



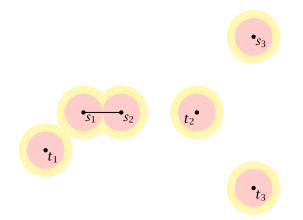
◆ 個 ト ◆ 注 ト ◆ 注 ト 438/443

Example

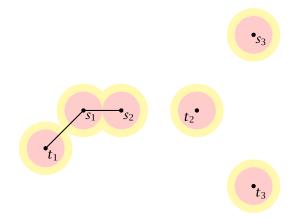


21 Primal Dual Revisited

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 438/443

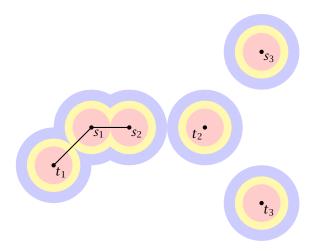


21 Primal Dual Revisited

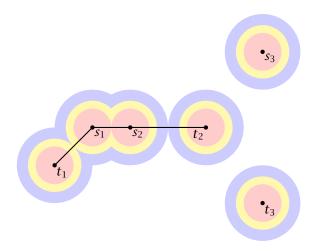


21 Primal Dual Revisited

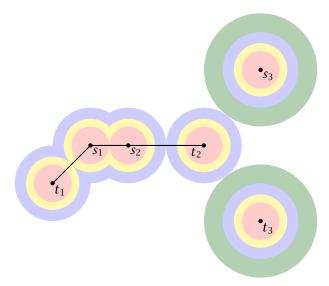
◆ ● ▶ < ■ ▶ < ■ ▶
 438/443



21 Primal Dual Revisited

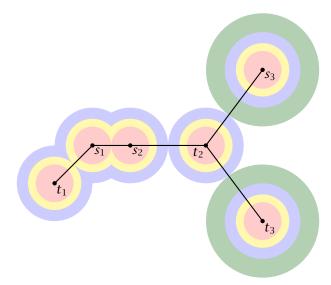


21 Primal Dual Revisited

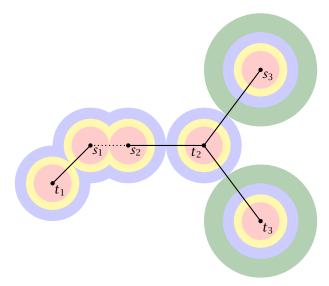


21 Primal Dual Revisited

▲ □ → < ≥ → < ≥ → 438/443



21 Primal Dual Revisited



21 Primal Dual Revisited

Lemma 43 For any *C* in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|C|$$

This means that the number of times a moat from C is crossed in the final solution is at most twice the number of moats.

Proof: later...

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} \gamma_S = \sum_{S} |F' \cap \delta(S)| \cdot \gamma_S .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot \gamma_{S} \le 2 \sum_{S} \gamma_{S}$$

In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |F' \cap \delta(C)| \le \epsilon$$

and the increase of the right hand side is $2\epsilon |\mathcal{C}|$.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} \mathcal{Y}_S = \sum_{S} |F' \cap \delta(S)| \cdot \mathcal{Y}_S$$

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

In the i-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |F' \cap \delta(C)| \le \epsilon$$

and the increase of the right hand side is $2\epsilon |\mathcal{C}|$.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

In the i-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |\vec{r}' \cap \delta(C)| \le \epsilon$$

and the increase of the right hand side is $2\epsilon |\mathcal{C}|$.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

In the i-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |\vec{r}' \cap \delta(C)| \le \epsilon$$

and the increase of the right hand side is $2\epsilon |\mathcal{C}|$.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot y_{S} \le 2 \sum_{S} y_{S}$$

In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |F' \cap \delta(C)| |$$

and the increase of the right hand side is $2\epsilon|C|$.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot \gamma_{S} \le 2 \sum_{S} \gamma_{S}$$

In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |C|$.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot \gamma_{S} \le 2 \sum_{S} \gamma_{S}$$

In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |C|$.

For any set of connected components C in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|C|$$

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration *L*, *e*_l is the set we add to *F*. Let *F*_l be the set of edges in *F* at the beginning of the iteration.
- Let $H = F' F_i$.
- All edges in *B* are necessary for the solution.

For any set of connected components C in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|C|$$

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration *i*. *e_i* is the set we add to *F*. Let *F_i* be the set of edges in *F* at the beginning of the iteration.
- Let $H = F' F_i$.
- ► All edges in *H* are necessary for the solution.

For any set of connected components C in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|C|$$

- At any point during the algorithm the set of edges forms a forest (why?).
- ► Fix iteration *i*. *e_i* is the set we add to *F*. Let *F_i* be the set of edges in *F* at the beginning of the iteration.
- Let $H = F' F_i$.
- All edges in H are necessary for the solution.

For any set of connected components C in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|C|$$

- At any point during the algorithm the set of edges forms a forest (why?).
- ► Fix iteration *i*. *e_i* is the set we add to *F*. Let *F_i* be the set of edges in *F* at the beginning of the iteration.
- Let $H = F' F_i$.
- All edges in H are necessary for the solution.

For any set of connected components C in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|C|$$

- At any point during the algorithm the set of edges forms a forest (why?).
- ► Fix iteration *i*. *e_i* is the set we add to *F*. Let *F_i* be the set of edges in *F* at the beginning of the iteration.
- Let $H = F' F_i$.
- All edges in *H* are necessary for the solution.

- ► Contract all edges in *F_i* into single vertices *V*′.
- ▶ We can consider the forest *H* on the set of vertices *V*′.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- ▶ Color a vertex $v \in V'$ red if it corresponds to a component from *C* (an active component). Otw. color it blue. (Let *B* the set of blue vertices (with non-zero degree) and *R* the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in C} |\delta(C) \cap F'| \stackrel{?}{\le} 2|C| = 2|R|$$

- ► Contract all edges in *F_i* into single vertices *V*′.
- ▶ We can consider the forest *H* on the set of vertices *V*′.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- ▶ Color a vertex $v \in V'$ red if it corresponds to a component from *C* (an active component). Otw. color it blue. (Let *B* the set of blue vertices (with non-zero degree) and *R* the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in C} |\delta(C) \cap F'| \stackrel{?}{\le} 2|C| = 2|R|$$

- ► Contract all edges in *F_i* into single vertices *V*′.
- We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- ▶ Color a vertex $v \in V'$ red if it corresponds to a component from *C* (an active component). Otw. color it blue. (Let *B* the set of blue vertices (with non-zero degree) and *R* the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in C} |\delta(C) \cap F'| \stackrel{?}{\le} 2|C| = 2|R|$$

21 Primal Dual Revisited

- ► Contract all edges in *F_i* into single vertices *V*′.
- We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- ► Color a vertex $v \in V'$ red if it corresponds to a component from *C* (an active component). Otw. color it blue. (Let *B* the set of blue vertices (with non-zero degree) and *R* the set of red vertices)
- We have

- ► Contract all edges in *F_i* into single vertices *V*′.
- We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- ► Color a vertex $v \in V'$ red if it corresponds to a component from *C* (an active component). Otw. color it blue. (Let *B* the set of blue vertices (with non-zero degree) and *R* the set of red vertices)
- We have

$$\sum_{\nu \in R} \deg(\nu) \ge \sum_{C \in C} |\delta(C) \cap F'| \stackrel{?}{\le} 2|C| = 2|R|$$

- Suppose that no node in *B* has degree one.
- Then

- Suppose that no node in *B* has degree one.
- Then

$$\sum_{v \in R} \deg(v)$$

- Suppose that no node in *B* has degree one.
- Then

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B|$$

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

Then

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

 Every blue vertex with non-zero degree must have degree at least two.

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
 - But this means that the cluster corresponding to b must separate a source-target pair.

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
 - But this means that the cluster corresponding to b must separate a source-target pair.
 - But then it must be a red node.

