	Part II	
	Linear Programming	
UUU© Harald Räcke		11

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale ⇒ 442€
- only brew beer: 32 barrels of beer ⇒ 736€
- ▶ 7.5 barrels ale, 29.5 barrels beer ⇒ 776€
- ⇒ 800€ ► 12 barrels ale, 28 barrels beer

Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

EADS II © Harald Räcke 3 Introduction 12

Brewery Problem

Linear Program

DD EADS II

EADS II © Harald Räcke

- ▶ Introduce variables *a* and *b* that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max	13a	+	23 <i>b</i>	
s.t.	5a	+	15b	≤ 480
	4 <i>a</i>	+	4b	≤ 160
	35a	+	20b	≤ 1190
			a,b	≥ 0

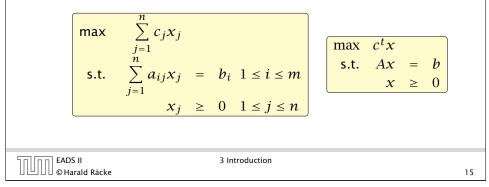
3 Introduction

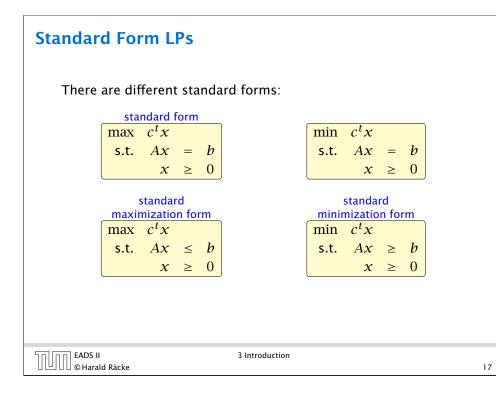
EADS II ||||||| © Harald Räcke

Standard Form LPs

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear inequalities





Standard Form LPs

Original LP

13a	+	23b	
5a	+	15b	≤ 480
4 <i>a</i>	+	4b	≤ 160
35a	+	20b	≤ 1190
		a,b	≥ 0
	5a 4a	5 <i>a</i> + 4 <i>a</i> +	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Standard Form

Add a slack variable to every constraint.

	max	13a	+	23b								
	s.t.	5a	+	15b	+	S_C					= 480	
		4 <i>a</i>	+	4b			+	s_h			= 160	
		35a	+	20 <i>b</i>					+	S_m	= 1190	
		а	,	b	,	S_C	,	s_h	,	s_m	≥ 0	
EADS © Ha	II rald Räcke				3 Ir	ntroduc	tion					16

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies \frac{a - 3b + 5c + s = 12}{s \ge 0}$$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

```
EADS II
© Harald Räcke
```

3 Introduction

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

equality to greater or equal:

 $a-3b+5c = 12 \implies a-3b+5c \ge 12$ $-a+3b-5c \ge -12$

unrestricted to nonnegative:

$$x$$
 unrestricted $\implies x = x^+ - x^-$, $x^+ \ge 0$, $x^- \ge 0$

EADS II © Harald Räcke 3 Introduction

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:

n number of variables, *m* constraints, *L* number of bits to encode the input

EADS II © Harald Räcke

3 Introduction

21

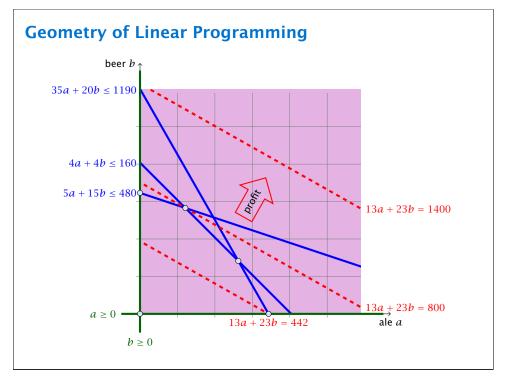
19

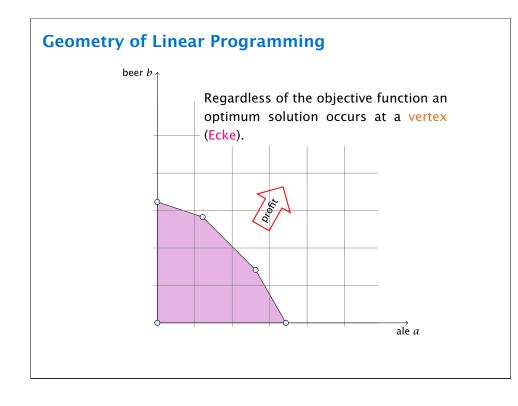
Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

רח (הה) EADS II	3 Introduction	
UUU © Harald Räcke		20





Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- > An LP is bounded (beschränkt) if it is feasible and
 - $c^t x < \infty$ for all $x \in P$ (for maximization problems)
 - $c^t x > -\infty$ for all $x \in P$ (for minimization problems)

Convex Sets

A set $S \subseteq \mathbb{R}$ is convex if for all $x, y \in S$ also $\lambda x + (1 - \lambda)y \in S$ for all $0 \le \lambda \le 1$.

A point in $x \in S$ that can't be written as a convex combination of two other points in the set is called a vertex.

EADS II © Harald Räcke

3 Introduction

Observation

The feasible region of an LP is a convex set.

Proof

intersections of convex sets are convex...

25

Convex Sets

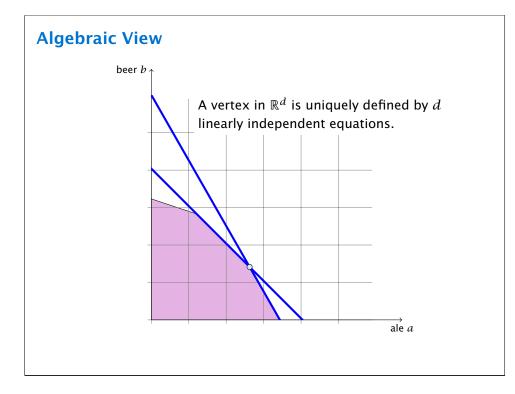
Theorem 2

If there exists an optimal solution to an LP then there exists an optimum solution that is a vertex.

Proof

- suppose x is optimal solution that is not a vertex
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^t d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

	3 Introduction	
UUU © Harald Räcke		27



Convex Sets

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ► $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^t x' = c^t (x + \lambda' d) = c^t x + \lambda' c^t d \ge c^t x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^t d > 0]$

- ► $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- as $\lambda \to \infty$, $c^t(x + \lambda d) \to \infty$ as $c^t d > 0$

רח EADS II	3 Introduction	
UUU © Harald Räcke		2

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 3

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex iff A_B has linearly independent columns.

EADS II © Harald Räcke

Theorem 3

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex iff A_B has linearly independent columns.

Proof (⇐)

- assume x is not a vertex
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_i \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i > 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

EADS II © Harald Räcke	3 Introduction	31	EADS II © Harald Räck

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- \blacktriangleright assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- **C1** if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1x = b_1$; hence the first constraint is superfluous
- **C2** if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

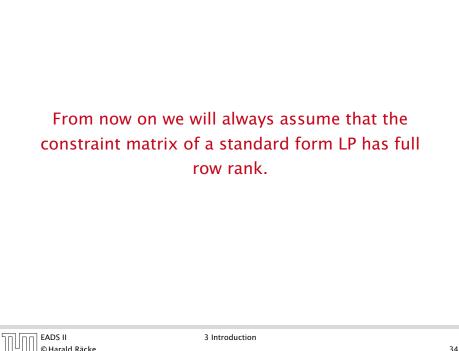
Theorem 3

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_i > 0\}$. Then x is a vertex iff A_B has linearly independent columns.

Proof (⇒)

- \blacktriangleright assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend *d* to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not a vertex

3 Introduction



Theorem 4

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is a vertex iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

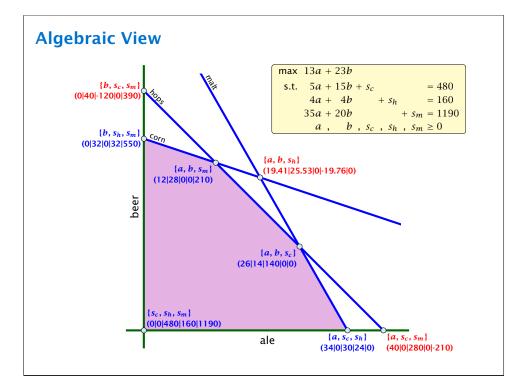
- A_B is non-singular
- $\bullet \ x_B = A_B^{-1}b \ge 0$
- $x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

הח EADS II	3 Introduction	
🛛 💾 🖓 🖉 GHarald Räcke		35



Basic Feasible Solutions

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and rank $(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with rank $(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ with $A_B x = b$ and $x_j = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu *B* assoziierte Basislösung)

EADS II ©Harald Räcke

3 Introduction

36

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- Is LP in NP? yes!
- Is LP in co-NP?
- Is LP in P?

Proof:

• Given a basis *B* we can compute the associated basis solution by calculating $A_B^{-1}b$ in polynomial time; then we can also compute the profit.

EADS II © Harald Räcke

Observation

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m} \cdot \operatorname{poly}(n, m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

50 (nn)	EADS II © Harald Räcke
	© Harald Räcke

3 Introduction

4 Simplex Algorithm max 13a + 23bs.t. $5a + 15b + s_c = 480$ $4a + 4b + s_h = 160$ $35a + 20b + s_m = 1190$ a, b, s_c , s_h , $s_m \ge 0$ $\max Z$ basis = $\{s_c, s_h, s_m\}$ 13a + 23b-Z = 0A = B = 0 $5a + 15b + s_c$ Z = 0= 480 $4a + 4b + s_h$ = 160 $s_c = 480$ $s_h = 160$ $35a + 20b + s_m$ = 1190 $s_m = 1190$ a, b, s_c, s_h, s_m ≥ 0 EADS II 4 Simplex Algorithm │└││││ © Harald Räcke

4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

EADS II © Harald Räcke

39

41

4 Simplex Algorithm

Piv	oting Step	
	$ \begin{array}{ c c c c c c } max & Z \\ 13a + 23b \\ 5a + 15b + s_c \\ 4a + & 4b \\ 35a + & 20b \\ a & , & b & , & s_c & , & s_h & , & s_m \end{array} $	basis = $\{s_c, s_h, s_m\}$ a = b = 0 Z = 0 $s_c = 480$ $s_h = 160$ $s_m = 1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

max Z		basis = { s_c, s_h, s_m }
13a + 23b	-Z = 0	
1500 1 250	2 0	a = b = 0
$5a + 15b + s_c$	= 480	Z = 0
$4a + 4b + s_h$	= 160	$s_c = 480$
$35a + 20b + s_m$	= 1190	$s_h = 160$
a, b, s_c, s_h, s_m	$n \ge 0$	$s_m = 1190$

- Choose variable with coefficient ≥ 0 as entering variable.
- If we keep a = 0 and increase b from 0 to $\theta > 0$ s.t. all constraints ($Ax = b, x \ge 0$) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- Choosing $\theta = \min\{\frac{480}{15}, \frac{160}{4}, \frac{1190}{20}\}$ ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.
- ► The basic variable in the row that gives $\min\{480/15, 160/4, 1190/20\}$ becomes the leaving variable.

max Z	
$\frac{16}{3}a + \frac{23}{15}s_c - Z = -736$	basis = $\{b, s_h, s_m\}$
5 15	$a = s_c = 0$
$\frac{1}{3}a + b + \frac{1}{15}s_c = 32$	Z = 736
$\frac{8}{3}a + -\frac{4}{15}s_c + s_h = 32$	h = 32
0 10	$s_h = 32$
$\frac{85}{3}a + - \frac{4}{3}s_c + s_m = 550$	
5 5	$s_m = 550$
\boldsymbol{a} , \boldsymbol{b} , s_c , s_h , $s_m \geq 0$	

Choose variable *a* to bring into basis.

Computing $\min\{3 \cdot 32, \frac{3 \cdot 32}{8}, \frac{3 \cdot 550}{85}\}$ means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

max Z $\begin{array}{rcl}
- & s_c - & 2s_h & -Z = -800 \\
b + & \frac{1}{10}s_c - & \frac{1}{8}s_h & = 28 \\
a & - & \frac{1}{10}s_c + & \frac{3}{8}s_h & = 12 \\
& & \frac{3}{2}s_c - & \frac{85}{8}s_h + s_m & = 210
\end{array}$ basis = $\{a, b, s_m\}$ $s_c = s_h = 0$ Z = 800h = 28a = 12 $s_m = 210$ a, b, s_c, s_h, s_m ≥ 0

max Z	
$13a + 23b \qquad -Z = 0$	$basis = \{s_c, s_h, s_m\}$
$13a + 23b \qquad -Z = 0$	a = b = 0
$5a + 15b + s_c = 480$	Z = 0
$4a + 4b + s_h = 160$	$s_c = 480$
$35a + 20b + s_m = 1190$	
a , b , s_c , s_h , $s_m \ge 0$	$s_m = 1190$

Substitute $b = \frac{1}{15}(480 - 5a - s_c)$.

max Z		
$\frac{16}{3}a - \frac{23}{15}s_c$	-Z = -736	basis = $\{b, s_h, s_m\}$
5 15		$a = s_c = 0$
$\frac{1}{3}a + b + \frac{1}{15}s_c$	= 32	Z = 736
$\frac{8}{3}a - \frac{4}{15}s_c + s_h$	= 32	b = 32
$\frac{85}{3}a - \frac{4}{3}s_c + s_m$	= 550	$s_h = 32$
5 5		$s_m = 550$
a, b, s_c, s_h, s_m	≥ 0	ļ

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- in particular: $Z = 800 s_c 2s_h, s_c \ge 0, s_h \ge 0$
- hence optimum solution value is at most 800
- the current solution has value 800

Matrix View

Let our linear program be

$$\begin{array}{rcl} c_B^t x_B &+& c_N^t x_N &=& Z\\ A_B x_B &+& A_N x_N &=& b\\ x_B &,& x_N &\geq& 0 \end{array}$$

The simplex tableaux for basis *B* is

$$(c_N^t - c_B^t A_B^{-1} A_N) x_N = Z - c_B^t A_B^{-1} b$$

$$Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$$

$$x_B , \qquad x_N \ge 0$$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

	4 Simplex Algorithm	
UUU © Harald Räcke		47

Algebraic Definition of Pivoting

- Given basis B with BFS x^* .
- Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

Requirements for *d*:

EADS II

• $d_i = 1$ (normalization)

$$\bullet \ d_{\ell} = 0, \ \ell \notin B, \ \ell \neq j$$

- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- ► Altogether: A ives $d_B = -A_B^{-1}A$

$$A_B d_B + A_{*j} = A d = 0$$
, which gi
*j.
4 Simplex Algorithm

Geometric View of Pivoting max 13a + 23bs.t. $5a + 15b + s_c$ = 4804a + 4b= 160 $+ s_h$ 35a + 20b $+ s_m = 1190$ a, b, s_c , s_h , $s_m \ge 0$ $\{b, s_h, s_m\} \bigcirc Cor_h$ $\{a, b, s_m\}$ beer $\{a, b, s_e\}$ $\{s_c, s_h, s_m\}$ $\{a, s_c, s_h\}$ ale

Algebraic Definition of Pivoting

Definition 5 (*j***-th basis direction)**

Let *B* be a basis, and let $j \notin B$. The vector *d* with $d_j = 1$ and $d_{\ell} = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*j}$ is called the *j*-th basis direction for *B*.

Going from x^* to $x^* + \theta \cdot d$ the objective function changes by

$$\theta \cdot c^t d = \theta (c_j - c_B^t A_B^{-1} A_{*j})$$

Algebraic Definition of Pivoting

Definition 6 (Reduced Cost) For a basis *B* the value

 $\tilde{c}_j = c_j - c_B^t A_B^{-1} A_{*j}$

is called the reduced cost for variable x_j .

Note that this is defined for every j. If $j \in B$ then the above term is 0.

EADS II © Harald Räcke 4 Simplex Algorithm

4 Simplex Algorithm

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- ▶ Is there always a basis *B* such that

$$(c_N^t - c_B^t A_B^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

If yes how do we make sure that we reach such a basis?

Algebraic Definition of Pivoting

Let our linear program be

 $\begin{array}{rcl} c_B^t x_B &+ & c_N^t x_N &= & Z \\ A_B x_B &+ & A_N x_N &= & b \\ x_B &, & x_N &\geq & 0 \end{array}$

The simplex tableaux for basis *B* is

 $\begin{array}{rclcrc} (c_{N}^{t}-c_{B}^{t}A_{B}^{-1}A_{N})x_{N} &=& Z-c_{B}^{t}A_{B}^{-1}b\\ Ix_{B} &+& A_{B}^{-1}A_{N}x_{N} &=& A_{B}^{-1}b\\ x_{B} &, & x_{N} &\geq& 0 \end{array}$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

```
EADS II 4 Simplex Algorithm
© Harald Räcke
```

Min Ratio Test

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative. 52

For this one computes b_i/A_{ie} for all constraints *i* and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if **all** b_i/A_{ie} are negative? Then we do not have a leaving variable. Then the LP is unbounded!

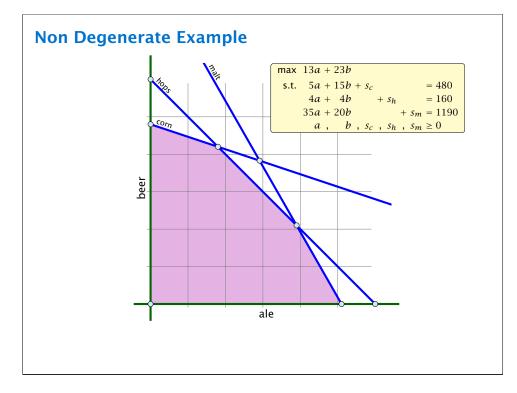
53

Termination

The objective function does not decrease during one iteration of the simplex-algorithm.

Does it always increase?

4 Simplex Algorithm	
	55
	4 Simplex Algorithm



Termination

The objective function may not decrease!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 7 (Degeneracy)

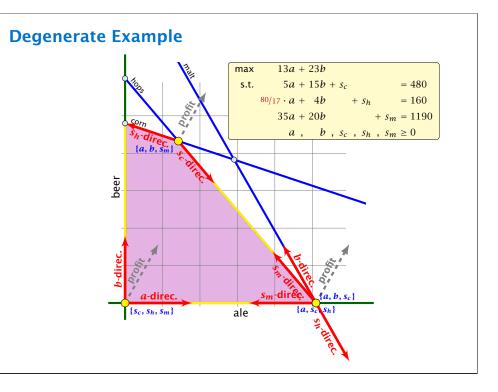
A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

56

```
EADS II
© Harald Räcke
```

4 Simplex Algorithm



Summary: How to choose pivot-elements

- We can choose a column *e* as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_{e} is reduced cost for x_{e}).
- The standard choice is the column that maximizes \tilde{c}_e .
- If $A_{ie} \leq 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables *i* with $A_{ie} > 0$.
- \blacktriangleright If several variables have minimum $b_\ell/A_{\ell e}$ you reach a degenerate basis.
- Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

EADS II	4 Simplex Algorithm	
🛛 🕒 🖯 © Harald Räcke		59

How do we come up with an initial solution?

- $Ax \leq b, x \geq 0$, and $b \geq 0$.
- The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

Termination

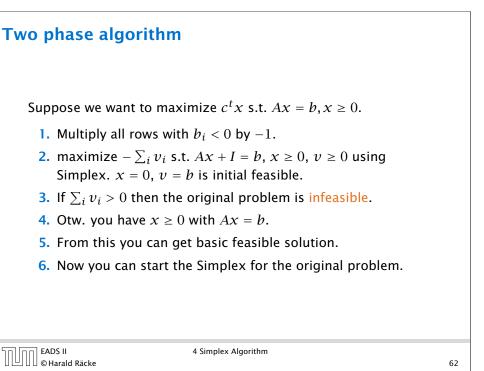
What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is unbounded, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an optimum solution.

EADS II © Harald Räcke

4 Simplex Algorithm



61

62

Optimality

Lemma 8

Let *B* be a basis and x^* a BFS corresponding to basis *B*. $\tilde{c} \le 0$ implies that x^* is an optimum solution to the LP.

EADS II © Harald Räcke 4 Simplex Algorithm

63

Duality

Definition 9

Let $z = \max\{c^t x \mid Ax \ge b, x \ge 0\}$ be a linear program *P* (called the primal linear program).

The linear program *D* defined by

$$w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$$

is called the dual problem.

וחחו	EADS II © Harald Räcke
	© Harald Räcke

65

Duality

How do we get an upper bound to a maximization LP?

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

EADS II © Harald Räcke	5 Duality

Duality

Lemma 10

The dual of the dual problem is the primal problem.

Proof:

- $w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$
- $w = \max\{-b^t y \mid -A^t y \leq -c, y \geq 0\}$

The dual problem is

- $z = \min\{-c^t x \mid -Ax \ge -b, x \ge 0\}$
- $z = \max\{c^t x \mid Ax \ge b, x \ge 0\}$

Weak Duality

Let $z = \max\{c^t x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^t y \ge c, y \ge 0\}$.

Theorem 11 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$c^t \hat{x} \leq z \leq w \leq b^t \hat{y} \ .$$

EADS II ©Harald Räcke 5 Duality

67

The following linear programs form a primal dual pair:

 $z = \max\{c^{t}x \mid Ax = b, x \ge 0\}$ $w = \min\{b^{t}y \mid A^{t}y \ge c\}$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

החוחר	EADS II © Harald Räcke
	© Harald Räcke

Weak Duality

 $A^t \hat{y} \ge c \Rightarrow \hat{x}^t A^t \hat{y} \ge \hat{x}^t c \ (\hat{x} \ge 0)$

 $A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$

This gives

 $c^t \hat{x} \leq \hat{y}^t A \hat{x} \leq b^t \hat{y}$.

Since, there exists primal feasible \hat{x} with $c^t \hat{x} = z$, and dual feasible \hat{y} with $b^t y = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

EADS II © Harald Räcke 5 Duality

68

Proof

Primal:

$$\max\{c^{t}x \mid Ax = b, x \ge 0\}$$

= $\max\{c^{t}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$
= $\max\{c^{t}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$

Dual:

$$\min\{\begin{bmatrix} b^t & -b^t \end{bmatrix} y \mid \begin{bmatrix} A^t & -A^t \end{bmatrix} y \ge c, y \ge 0\}$$

=
$$\min\left\{\begin{bmatrix} b^t & -b^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^t & -A^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

=
$$\min\left\{b^t \cdot (y^+ - y^-) \mid A^t \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

=
$$\min\left\{b^t y' \mid A^t y' \ge c, y' \ge 0\right\}$$

EADS II © Harald Räcke

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t (A_B^{-1})^t c_B \ge c$

 $y^* = (A_B^{-1})^t c_B$ is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{t} y^{*} = (Ax^{*})^{t} y^{*} = (A_{B}x_{B}^{*})^{t} y^{*}$$
$$= (A_{B}x_{B}^{*})^{t} (A_{B}^{-1})^{t} c_{B} = (x_{B}^{*})^{t} A_{B}^{t} (A_{B}^{-1})^{t} c_{B}$$
$$= c^{t} x^{*}$$

Hence, the solution is optimal.

EADS II © Harald Räcke 5 Duality

71

Lemma 13 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on X. Then $\min\{f(x) : x \in X\}$ exists.

EADS II © Harald Räcke

5 Duality

73

Strong Duality

Theorem 12 (Strong Duality)

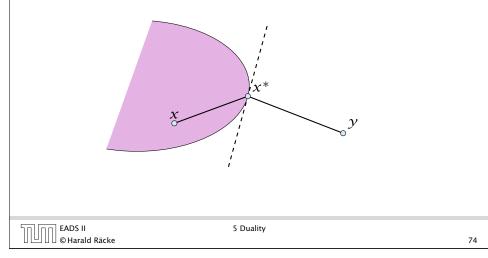
Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

 $z^{*} = w^{*}$

EADS II 5 Duality © Harald Räcke 72

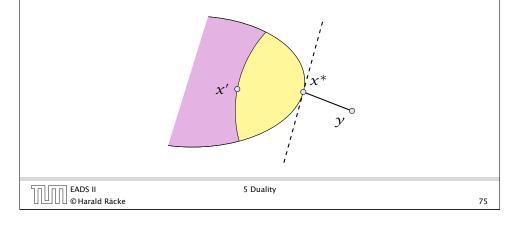
Lemma 14 (Projection Lemma)

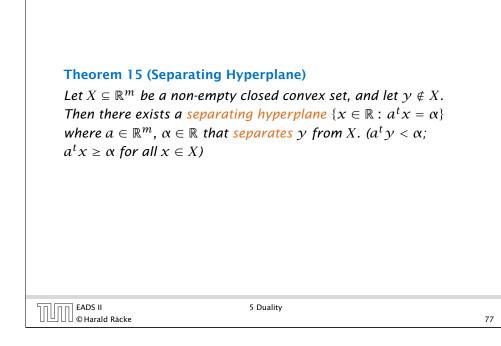
Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^t (x - x^*) \le 0$.



Proof of the Projection Lemma

- Define f(x) = ||y x||.
- We want to apply Weierstrass but *X* may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.





Proof of the Projection Lemma (continued)

$$x^*$$
 is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity:
$$x \in X$$
 then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

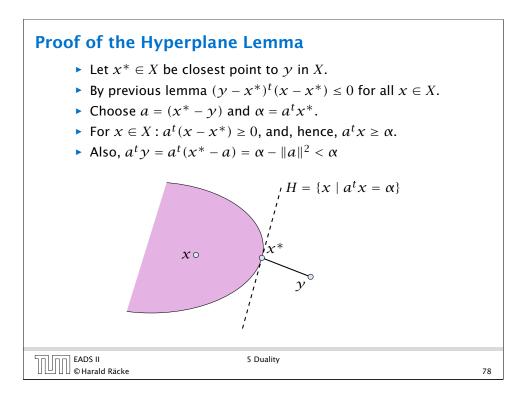
= $||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^t (x - x^*)$

Hence, $(y - x^*)^t (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

Letting $\epsilon \rightarrow 0$ gives the result.

50) (nn	EADS II © Harald Räcke
	© Harald Räcke

```
5 Duality
```



Lemma 16 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^t y \ge 0$, $b^t y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

 $0 > y^t b = y^t A x \ge 0$

Hence, at most one of the statements can hold.

50 00	EADS II © Harald Räcke
	© Harald Räcke

5 Duality

79

81

Lemma 17 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

5 Duality

- 1. $\exists x \in \mathbb{R}^n$ with $Ax \le b, x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^t y \ge 0$, $b^t y < 0$, $y \ge 0$

Rewrite the conditions:

EADS II

UIIII © Harald Räcke

1.
$$\exists x \in \mathbb{R}^{n}$$
 with $\begin{bmatrix} A \ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$
2. $\exists y \in \mathbb{R}^{m}$ with $\begin{bmatrix} A^{t} \\ I \end{bmatrix} y \ge 0, b^{t} y < 0$

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^t y \ge 0$, $b^t y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^t b < \alpha$ and $y^t s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^t b < 0$

 $y^t A x \ge \alpha$ for all $x \ge 0$. Hence, $y^t A \ge 0$ as we can choose x arbitrarily large.

Proof of Strong Duality

 $P: z = \max\{c^t x \mid Ax \le b, x \ge 0\}$

 $D: w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$

Theorem 18 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

z = w.

EADS II © Harald Räcke

Proof of Strong Duality

$z \le w$: foll $z \ge w$: We show z		_		α.)
$\exists x \in \mathbb{R}^n$				$\exists y \in \mathbb{R}^m; z \in \mathbb{R}$				
s.t.	$\begin{array}{c} Ax \\ -c^t x \end{array}$	\leq	b	s.t.	$A^t y - cz$	\geq	0	
	$-c^t x$	\leq	$-\alpha$		$yb^t - \alpha z$	<	0	
	x	\geq	0	s.t.	\mathcal{Y}, \mathcal{Z}	\geq	0	
From the definition of α we know that the first system is infeasible; hence the second must be feasible.								
EADS II © Harald Räcke				5 Duality				8

Proof of Strong Duality Hence, there exists a solution y, z with z > 0. We can rescale this solution (scaling both y and z) s.t. z = 1. Then y is feasible for the dual but $b^t y < \alpha$. This means that $w < \alpha$.

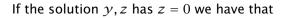
5 Duality

EADS II

UIIII © Harald Räcke

Proof of Strong Duality

 $\exists y \in \mathbb{R}^{m}; z \in \mathbb{R}$ s.t. $A^{t}y - cz \geq 0$ $yb^{t} - \alpha z < 0$ $y, z \geq 0$



$\exists y \in$	Ξ	\mathbb{R}^{m}			
		s.t.	$A^t y$	\geq	0
			yb^t	<	0
			У	\geq	0

is feasible. By Farkas lemma this gives that LP P is infeasible. Contradiction to the assumption of the lemma.

UUU©Harald Räcke 84		5 Duality	
	UUU GHarald Räcke		84

Fundamental Questions

Definition 19 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter α . Suppose that $\alpha > opt(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraint and that it has dual cost < *α*.

EADS II © Harald Räcke

Complementary Slackness

Lemma 20

Assume a linear program $P = \max\{c^t x \mid Ax \le b; x \ge 0\}$ has solution x^* and its dual $D = \min\{b^t y \mid A^t y \ge c; y \ge 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in D is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

EADS II © Harald Räcke	5 Duality
UUU © Harald Räcke	

Interpretation of Dual Variables

Brewer: find mix of ale and beer that maximizes profits

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^t x^* \le y^{*t} A x^* \le b^t y^*$$

Because of strong duality we then get

$$c^t x^* = y^{*t} A x^* = b^t y^*$$

This gives e.g.

 $\sum_{j} (\mathcal{Y}^t A - c^t)_j x_j^* = 0$

From the constraint of the dual it follows that $y^t A \ge c^t$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^t A - c^t)_j > 0$ (the *j*-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

EADS II © Harald Räcke

87

5 Duality

88

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C, ε_H, and ε_M, respectively.

The profit increases to $\max\{c^t x \mid Ax \le b + \varepsilon; x \ge 0\}$. Because of strong duality this is equal to

	min s.t.	$(b^t + \epsilon^t) \gamma$ $A^t \gamma$ γ	2 2	с 0	
EADS II © Harald Räcke		5 Duality			

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \epsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

	5 Duality	
UUU© Harald Räcke		91

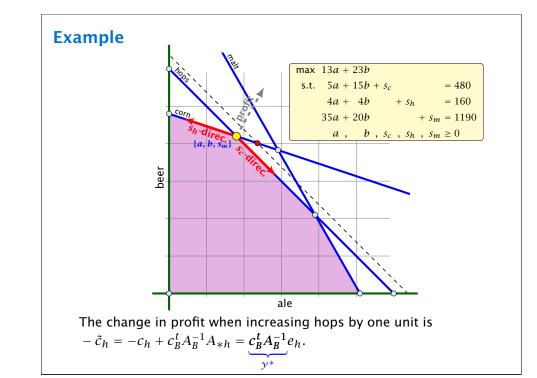
Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

EADS II

∐||||| © Harald Räcke

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

5 Duality



Flows

Definition 21

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f : V \times V \mapsto \mathbb{R}_0^+$ that satisfies

1. For each edge (x, y)

$$0 \leq f_{xy} \leq c_{xy}$$
 .

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} \ .$$

(flow conservation constraints)

EADS II © Harald Räcke

Flows

Definition 22 The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} \, .$$

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

EADS II © Harald Räcke 5 Duality

95

97

LP-Formulation of Maxflow
$$\begin{split} & \underset{f_{xy}}{\min} \qquad \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} \quad f_{xy} (x, y \neq s, t) : \quad 1 \ell_{xy} - 1 p_x + 1 p_y \geq 0 \\ f_{sy} (y \neq s, t) : \qquad 1 \ell_{sy} - 1 + 1 p_y \geq 0 \\ f_{xs} (x \neq s, t) : \qquad 1 \ell_{xy} - 1 p_x + 1 \geq 0 \\ f_{ty} (y \neq s, t) : \qquad 1 \ell_{xy} - 0 + 1 p_y \geq 0 \\ f_{xt} (x \neq s, t) : \qquad 1 \ell_{xt} - 1 p_x + 0 \geq 0 \\ f_{st} : \qquad 1 \ell_{st} - 1 + 0 \geq 0 \\ f_{ts} : \qquad 1 \ell_{ts} - 0 + 1 \geq 0 \\ \ell_{xy} \geq 0 \end{split}$$

LP-Formulation of Maxflow

ſ	ma	х	\sum_{z}	$f_{sz} - \sum_z f_{zs}$				
	s.1	t. ∀($(z, w) \in V \times V$	$f_{zw} \leq$	C_Z	w l	zw	
			$\forall w \neq s, t \sum_{z} j$	$f_{zw} - \sum_{z} f_{wz} =$	0	Ķ	v_w	
				$f_{zw} \ge$	0			
	ſ	min		$\sum_{(xy)} c_{xy} \ell_{xy}$				
		s.t.	$f_{xy}(x, y \neq s, t)$:	$1\ell_{xy}-1p_x+1p_y$	\geq	0		
			$f_{sy} (y \neq s, t)$:	$1\ell_{sy}$ $+1p_y$	\geq	1		
			f_{xs} $(x \neq s, t)$:	$1\ell_{xs}-1p_x$	\geq	$^{-1}$		
			$f_{ty} (y \neq s, t)$:	$1\ell_{ty}$ $+1p_y$	\geq	0		
			f_{xt} $(x \neq s, t)$:	$1\ell_{xt}-1p_x$	\geq	0		
			f_{st} :	$1\ell_{st}$	\geq	1		
			f_{ts} :	$1\ell_{ts}$	\geq	-1		
				ℓ_{xy}	\geq	0		
							,	
EADS © Har	i II rald Rá	äcke	5 Du	ality				96

LP-Formu	latio	n of Maxflow			
	min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
	s.t.	$f_{xy}(x, y \neq s, t)$:	$1\ell_{xy}-1p_x+1p_y \ge$	0	
		$f_{sy}(y \neq s,t)$:	$1\ell_{sy} - p_s + 1p_y \ge$	0	
		$f_{xs} (x \neq s, t)$:	$1\ell_{xs}-1p_x+p_s \geq$	0	
			$1\ell_{ty} - p_t + 1p_y \ge$		
		-	$1\ell_{xt}-1p_x+p_t \geq$		
			$1\ell_{st} - p_s + p_t \ge$		
		f_{ts} :	$1\ell_{ts} - p_t + p_s \ge$		
			$\ell_{xy} \geq$	0	ı.
with p_t =	0 and	$p_{s} = 1.$			
EADS II © Harald Ra	äcke	5 Du	ality		98

LP-Formulation of Maxflow

 $\begin{array}{rcl} \min & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \colon 1 \ell_{xy} - 1 p_x + 1 p_y \geq 0 \\ & \ell_{xy} \geq 0 \\ & p_s = 1 \\ & p_t = 0 \end{array}$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \leq \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \leq d(x,y) + d(y,t) \Rightarrow d(x,t) \leq \ell_{xy} + d(y,t))$.

	5 Duality	
🛛 🕒 🗋 🕼 🛛 🖓 Harald Räcke		99

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Change LP := $\max\{c^t x, Ax = b; x \ge 0\}$ into LP' := $\max\{c^t x, Ax = b', x \ge 0\}$ such that

I. LP is feasible

- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP has no degenerate basic solutions

EADS II	
© Harald	Räcke

6 Degeneracy Revisited

101

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

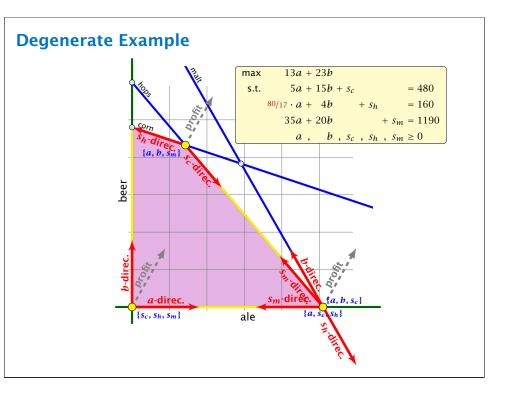
This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

100

5 Duality

EADS II © Harald Räcke



Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := max{ $c^t x, Ax = b; x \ge 0$ }. Change it into $LP' := \max\{c^t x, Ax = b', x \ge 0\}$ such that

LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

EADS II	6 Degeneracy Revisited
UUU © Harald Räcke	

Property I

The new LP is feasible because the set *B* of basis variables provides a feasible basis:

$$A_B^{-1}\left(b+A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\right)=x_B^*+\left(\begin{array}{c}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\geq 0$$

EADS II	
© Harald	Räcke

6 Degeneracy Revisited

105

103

Perturbation

Let *B* be index set of some basis with basic solution

$$x_{B}^{*} = A_{B}^{-1}b \ge 0, x_{N}^{*} = 0$$
 (i.e. *B* is feasible)

Fix

 $b' := b + A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$ for $\varepsilon > 0$.

This is the perturbation that we are using.

EADS II © Harald Räcke

6 Degeneracy Revisited

104

Property II

EADS II

© Harald Räcke

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{R}}^{-1}b)_i < 0$ for some row i.

Then for small enough $\epsilon > 0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\left(\frac{\varepsilon}{\vdots}_{\varepsilon^{m}}\right)\right)\right)_{i}=(A_{\tilde{B}}^{-1}b)_{i}+\left(A_{\tilde{B}}^{-1}A_{B}\left(\frac{\varepsilon}{\vdots}_{\varepsilon^{m}}\right)\right)_{i}<0$$

Hence, \tilde{B} is not feasible.

6 Degeneracy Revisited

Property III

Let \tilde{B} be a basis. It has an associated solution

$$x_{\tilde{B}}^{*} = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{p}}^{-1}A_B$ has rank *m*. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

EADS II © Harald Räcke	6 Degeneracy Revisited
U 🕒 U U © Harald Racke	

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

5

Simulate behaviour of LP' without explicitly doing a perturbation.

Since, there are no degeneracies Simplex will terminate when run on LP'.

If it terminates because the reduced cost vector fulfills

$$\tilde{c} = (c^t - c^t_B A_B^{-1} A) \le 0$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on *b*.

• If it terminates because it finds a variable x_i with $\tilde{c}_i > 0$ for which the *j*-th basis direction *d*, fulfills $d \ge 0$ we know that LP' is unbounded. The basis direction does not depend on **b**. Hence, we also know that LP is unbounded.

EADS II © Harald Räcke

6 Degeneracy Revisited

Lexicographic Pivoting We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course). If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable). Otherwise we have to be careful.

6 Degeneracy Revisited

EADS II |||||| © Harald Räcke

109

107

DD EADS II

Lexicographic Pivoting

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A_B \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where *B* is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

$$b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

h	[nn]	EADS II © Harald	
	100	© Harald	Räcke

6 Degeneracy Revisited

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

$$\theta_{\ell} = \frac{\dot{b}_{\ell}}{\dot{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \; .$$

 ℓ is the index of a leaving variable within *B*. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

EADS II © Harald Räcke

6 Degeneracy Revisited

113

111

Matrix View

Let our linear program be

 $\begin{array}{rcl} c_B^t x_B &+& c_N^t x_N &=& Z\\ A_B x_B &+& A_N x_N &=& b\\ x_B &,& x_N &\geq& 0 \end{array}$

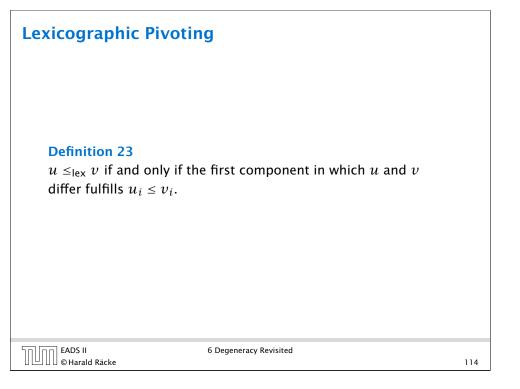
The simplex tableaux for basis *B* is

$$\begin{array}{rcl} (c_N^t - c_B^t A_B^{-1} A_N) x_N &=& Z - c_B^t A_B^{-1} b \\ I x_B &+& A_B^{-1} A_N x_N &=& A_B^{-1} b \\ x_B & , & & x_N &\geq & 0 \end{array}$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

EADS II ©Harald Räcke	6 Degeneracy Revisited	
UUUC © Harald Räcke		112



Lexicographic Pivoting

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_{B}^{-1}\left(b + \begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)\right)_{\ell}}{(A_{B}^{-1}A_{*e})_{\ell}} = \frac{\left(A_{B}^{-1}(b \mid I)\begin{pmatrix}1\\\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)_{\ell}}{(A_{B}^{-1}A_{*e})_{\ell}}$$
$$= \frac{\ell \text{-th row of } A_{B}^{-1}(b \mid I)}{(A_{B}^{-1}A_{*e})_{\ell}} \begin{pmatrix}1\\\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}$$

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where *n* is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require $\binom{n}{m}$ iterations then Simplex is not a polynomial time algorithm.

Can we obtain a better analysis?

Л

117

Lexicographic Pivoting

This means you can choose the variable/row ℓ for which the vector . 1.....

$$\frac{\ell\text{-th row of }A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_\ell}$$

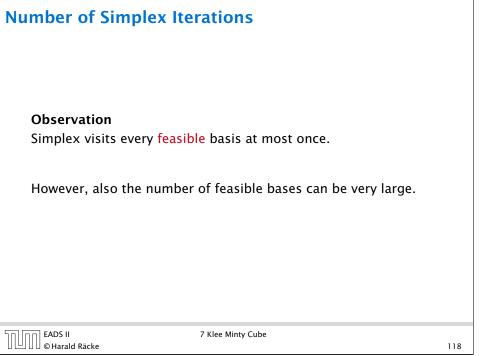
is lexicographically minimal.

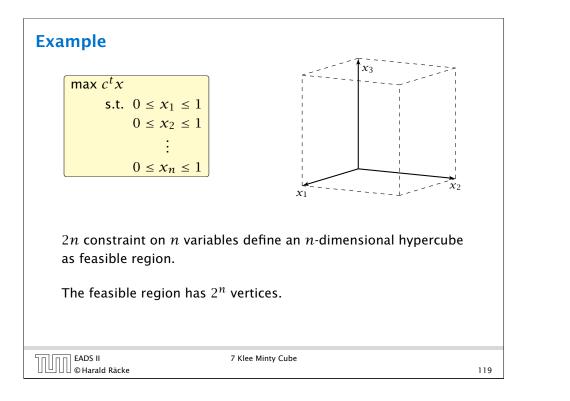
Of course only including rows with $(A_R^{-1}A_{*e})_{\ell} > 0$.

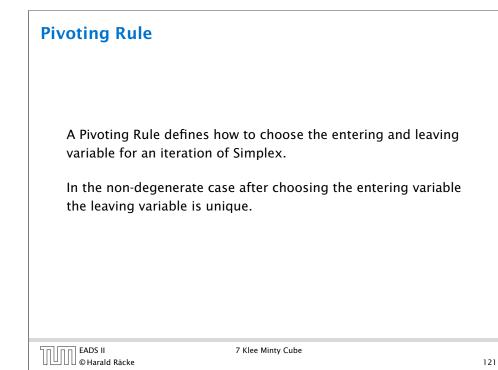
This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

EADS II © Harald Räcke

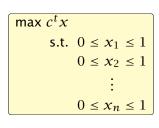
6 Degeneracy Revisited

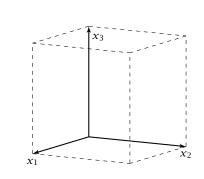






Example

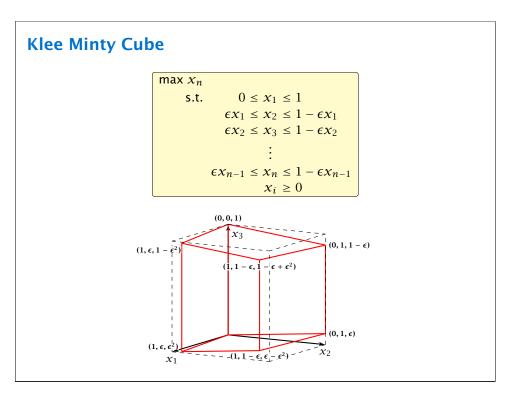




However, Simplex may still run quickly as it usually does not visit all feasible bases.

In the following we give an example of a feasible region for which there is a bad Pivoting Rule.

רח (הה) EADS II	7 Klee Minty Cube	
UUU GHarald Räcke		120



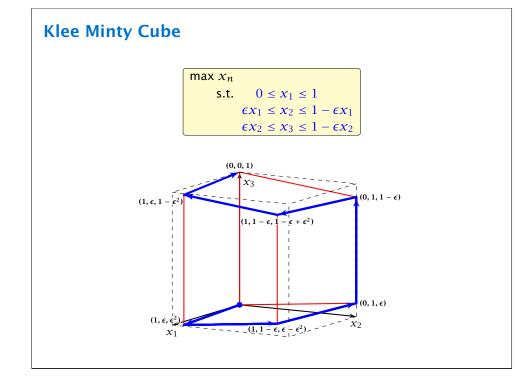
Observations

- We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \rightarrow 0$.

- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- The basis $(0, \ldots, 0, 1)$ is the unique optimal basis.
- Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

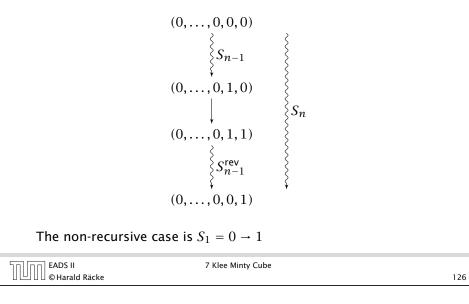
EADS II © Harald Räcke 7 Klee Minty Cube

124



Analysis

The sequence S_n that visits every node of the hypercube is defined recursively



Analysis

Lemma 24 The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

$n-1 \rightarrow n$

- For the first part the value of $x_n = \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence, also x_n .
- Going from (0, ..., 0, 1, 0) to (0, ..., 0, 1, 1) increases x_n for small enough ϵ .
- For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

Remarks about Simplex

Theorem

For almost all known deterministic pivoting rules (rules for choosing entering and leaving variables) there exist lower bounds that require the algorithm to have exponential running time ($\Omega(2^{\Omega(n)})$) (e.g. Klee Minty 1972).

Remarks about Simplex

Observation

The simplex algorithm takes at most $\binom{n}{m}$ iterations. Each iteration can be implemented in time O(mn).

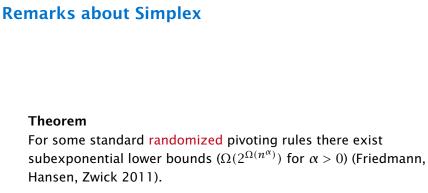
In practise it usually takes a linear number of iterations.

EADS II © Harald Räcke

EADS II

© Harald Räcke

7 Klee Minty Cube



7 Klee Minty Cube

129

Remarks about Simplex

Conjecture (Hirsch)

The edge-vertex graph of an *m*-facet polytope in *d*-dimensional Euclidean space has diameter no more than m - d.

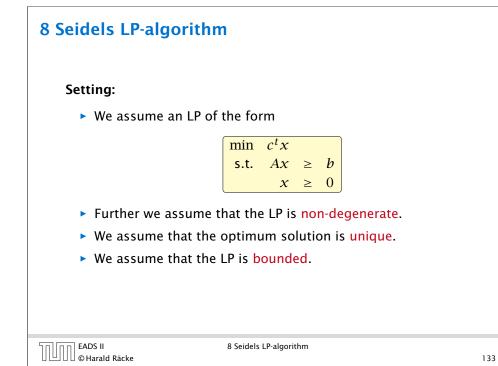
The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form $\mathcal{O}(\operatorname{poly}(m, d))$ is open.

EADS II © Harald Räcke EADS II

7 Klee Minty Cube

131



8 Seidels LP-algorithm

- Suppose we want to solve $\min\{c^t x \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have *m* constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If *d* is much smaller than *m* one can do a lot better.
- In the following we develop an algorithm with running time $\mathcal{O}(d! \cdot m)$, i.e., linear in *m*.

EADS II	8 Seidels LP-algorithm	
	o seldels El algoritim	
🛛 🕒 🖓 💭 🖓 Harald Räcke		132

Ensuring Condition	S							
Given a standard mini	mizatio	on LP						
	min	$c^t x$						
	s.t.	Ax	\geq	b				
		x	\geq	0				
how can we obtain an	LP of t	he rec	quire	d forı	n?			
 Compute a lower solution. 	r boun	d on d	$c^t x$	for ar	y basi	ic feas	ible	
EADS II	8 Sei	dels LP-al	gorithr	1				134

Computing a Lower Bound

Let *s* denote the smallest common multiple of all denominators of entries in *A*, *b*.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables; denote the resulting matrix with \bar{A} .

If *B* is an optimal basis then x_B with $\bar{A}_B x_B = b$, gives an optimal assignment to the basis variables (non-basic variables are 0).

EADS II ©Harald Räcke	8 Seidels LP-algorithm	135

Proof:

Define

$$X_{j} = \begin{pmatrix} | & | & | & | & | \\ e_{1} \cdots e_{j-1} x e_{j+1} \cdots e_{n} \\ | & | & | & | \\ \end{pmatrix}$$

Note that expanding along the *j*-th column gives that $det(X_j) = x_j$.

Further, we have

$$MX_{j} = \begin{pmatrix} | & | & | & | & | \\ Me_{1} \cdots Me_{j-1} Mx Me_{j+1} \cdots Me_{n} \\ | & | & | & | \end{pmatrix} = M_{2}$$

Hence,

$$x_j = \det(X_j) = \frac{\det(M_j)}{\det(M)}$$

EADS II © Harald Räcke	8 Seidels LP-algorithm
🛛 🕒 🛛 🖉 @ Harald Räcke	

Theorem 25 (Cramers Rule)

Let M be a matrix with $det(M) \neq 0$. Then the solution to the system Mx = b is given by

$$x_j = \frac{\det(M_j)}{\det(M)}$$

where M_j is the matrix obtained from M by replacing the *j*-th column by the vector b.

EADS II © Harald Räcke

8 Seidels LP-algorithm

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let C denote the matrix obtained from \bar{A}_B by replacing the *j*-th column with vector b.

Observe that

© Harald Räcke

137

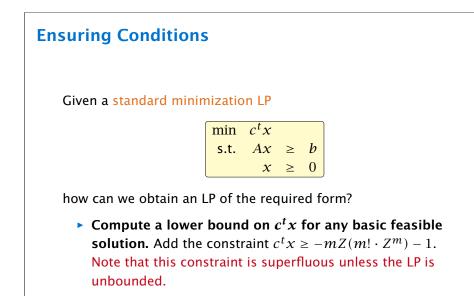
$$|\det(C)| = \left| \sum_{\pi \in S_m} \prod_{1 \le i \le m} \operatorname{sgn}(\pi) C_{i\pi(i)} \right|$$
$$\leq \sum_{\pi \in S_m} \prod_{1 \le i \le m} |C_{i\pi(i)}|$$
$$\leq m! \cdot Z^m .$$

Bounding the Determinant

Alternatively, Hadamards inequality gives

$$|\det(C)| \le \prod_{i=1}^m ||C_{*i}|| \le \prod_{i=1}^m (\sqrt{m}Z)$$
$$\le m^{m/2}Z^m .$$

EADS II © Harald Räcke	8 Seidels LP-algorithm	



EADS II ©Harald Räcke	8 Seidels LP-algorithm	
UUU © Harald Räcke		140

Ensuring Conditions

139

Make the LP non-degenerate by perturbing the right-hand side vector b.

Make the LP solution unique by perturbing the optimization direction c.

Compute an optimum basis for the new LP.

- ► If the cost is $c^t x = -(mZ)(m! \cdot Z^m) 1$ we know that the original LP is unbounded.
- Otw. we have an optimum basis.

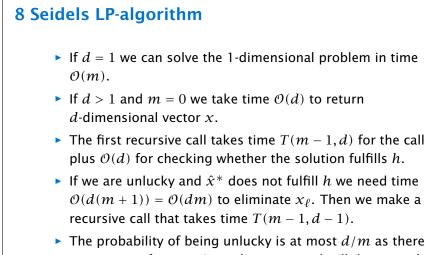
In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^t x \ge -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H} , d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^t x$ over all feasible points.

```
In addition it obeys the implicit constraint c^t x \ge -(mZ)(m! \cdot Z^m) - 1.
```

EADS II © Harald Räcke 8 Seidels LP-algorithm

143



The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function (recall that the solution is unique).

Algorithm 1 SeidelLP(
$$\mathcal{H}, d$$
)1: if $d = 1$ then solve 1-dimensional problem and return;2: if $\mathcal{H} = \emptyset$ then return x on implicit constraint hyperplane3: choose random constraint $h \in \mathcal{H}$ 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$ 5: $\hat{x}^* \leftarrow$ SeidelLP($\hat{\mathcal{H}}, d$)6: if $\hat{x}^* =$ infeasible then return infeasible7: if \hat{x}^* fulfills h then return \hat{x}^* 8: // optimal solution fulfills h with equality, i.e., $A_h x = b_h$ 9: solve $A_h x = b_h$ for some variable x_ℓ ;10: eliminate x_ℓ in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;11: $\hat{x}^* \leftarrow$ SeidelLP($\hat{\mathcal{H}}, d - 1$)12: if $\hat{x}^* =$ infeasible then13: return infeasible14: else15: add the value of x_ℓ to \hat{x}^* and return the solution

8 Seidels LP-algorithm

Let C be the larg	est constant in	n the \mathcal{O} -notations
-------------------	-----------------	--------------------------------

We show $T(m, d) \leq Cf(d) \max\{1, m\}$.

d = 1:

 $T(m, 1) \le Cm \le Cf(1) \max\{1, m\}$ for $f(1) \ge 1$

d > 1; m = 0:

 $T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\}$ for $f(d) \ge d$

d > 1: m = 1:

T(1,d) = O(d) + T(0,d) + d(O(d) + T(0,d-1)) $\leq Cd + Cd + Cd^2 + dT(0, d - 1)$ $\leq Cf(d) \max\{1, m\}$ for $f(d) \geq 4d^2$

8 Seidels LP-algorithm

• Define
$$f(1) = 4 \cdot 1^2$$
 and $f(d) = df(d-1) + 4d^2$ for $d > 1$

Then

EADS II

UIII © Harald Räcke

$$f(d) = 4d^{2} + df(d-1)$$

$$= 4d^{2} + d\left[4(d-1)^{2} + (d-1)f(d-2)\right]$$

$$= 4d^{2} + d\left[4(d-1)^{2} + (d-1)\left[4(d-2)^{2} + (d-2)f(d-3)\right]\right]$$

$$= 4d^{2} + 4d(d-1)^{2} + 4d(d-1)(d-2)^{2} + \dots$$

$$+ 4d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 1^{2}$$

$$= 4d! \left(\frac{d^{2}}{d!} + \frac{(d-1)^{2}}{(d-1)!} + \frac{(d-2)^{2}}{(d-2)!} + \dots\right)$$

$$= \mathcal{O}(d!)$$
since $\sum_{i \ge 1} \frac{i^{2}}{i!}$ is a constant.

8 Seidels LP-algorithm

8 Seidels LP-algorithm

d > 1: m > 1:(by induction hypothesis statm. true for $d' < d, m' \ge 0$; and for d' = d, m' < m)

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

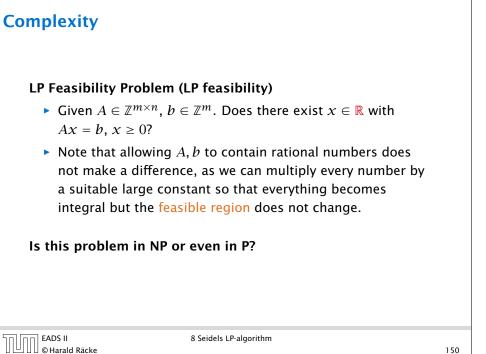
$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

 $\leq Cf(d)m$

if
$$f(d) \ge df(d-1) + 2d^2$$
.

EADS II © Harald Räcke

8 Seidels LP-algorithm



149

The Bit Model

Input size

• The number of bits to represent a number $a \in \mathbb{Z}$ is

 $\lceil \log_2(|a|) \rceil + 1$

• Let for an $m \times n$ matrix M, L(M) denote the number of bits required to encode all the numbers in M.

$$L(M) := \sum_{i,j} \lceil \log_2(|m_{ij}|) \rceil$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- Then the input length is $\Theta(L([A|b]))$.

Suppose that Ax = b; $x \ge 0$ is feasible.

Then there exists a basic feasible solution. This means a set B of basic variables such that

$$x_B = A_B^{-1}b$$

and all other entries in x are 0.

EADS II © Harald Räcke 8 Seidels LP-algorithm

153

- ► In the following we sometimes refer to L := L([A|b]) as the input size (even though the real input size is something in Θ(L([A|b]))).
- In order to show that LP-decision is in NP we show that if there is a solution x then there exists a small solution for which feasibility can be verified in polynomial time (polynomial in L([A|b])).

EADS II © Harald Räcke

8 Seidels LP-algorithm

152

Size of a Basic Feasible Solution

Lemma 26

Let $M \in \mathbb{Z}^{m \times m}$ be an invertable matrix and let $b \in \mathbb{Z}^m$. Further define $L' = L([M | b]) + n \log_2 n$. Then a solution to Mx = b has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \le 2^{L'}$ and $|D| \le 2^{L'}$.

Proof:

Cramers rules says that we can compute x_j as

$$x_j = \frac{\det(M_j)}{\det(M)}$$

where M_j is the matrix obtained from M by replacing the j-th column by the vector b.

EADS II © Harald Räcke

Bounding the Determinant

Let $X = A_B$. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \prod_{1 \le i \le n} \operatorname{sgn}(\pi) X_{i\pi(i)} \right|$$

$$\leq \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

$$\leq n! \cdot 2^{L([A|b])} \le n^n 2^L \le 2^{L'} .$$

Analogously for $det(M_i)$.

			1
	8 Seidels LP-algorithm		I
UUU © Harald Räcke		155	L

Reducing LP-solving to LP decision.

Given an LP $\max\{c^t x \mid Ax = b; x \ge 0\}$ do a binary search for the optimum solution

(Add constraint $c^t x - \delta = M$; $\delta \ge 0$ or $(c^t x \ge M)$. Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'}, \ldots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2^{L'}}$.

Here we use $L' = L([A | b | c]) + n \log_2 n$ (it also includes the encoding size of *c*).

This means if Ax = b, $x \ge 0$ is feasible we only need to consider vectors x where an entry x_j can be represented by a rational number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the input-length L.

For a given vector x of polynomial length we can check for feasibility in polynomial time.

Hence, LP feasibility is in NP.

EADS II © Harald Räcke 8 Seidels LP-algorithm

156

How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^t x \ge M_{\max} + 1$ and check for feasibility.

EADS II © Harald Räcke 8 Seidels LP-algorithm

Ellipsoid Method

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).
- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E' that contains $K \cap H$.
- REPEAT

EADS II ©Harald Räcke	9 The Ellipsoid Algorithm

E

Definition 27

A mapping $f : \mathbb{R}^n \to \mathbb{R}^n$ with f(x) = Lx + t, where *L* is an invertible matrix is called an affine transformation.

K

159

- How do you choose the first Ellipsoid? What is its volume?
- ▶ What if the polytop *K* is unbounded?

Issues/Questions:

- How do you measure progress? By how much does the volume decrease in each iteration?
- When can you stop? What is the minimum volume of a non-empty polytop?

	9 The Ellipsoid Algorithm	
UUU©Harald Räcke		160

Definition 28

EADS II © Harald Räcke

A ball in \mathbb{R}^n with center *c* and radius *r* is given by

$$B(c,r) = \{x \mid (x-c)^t (x-c) \le r^2\} \\ = \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

B(0,1) is called the unit ball.

EADS II	
© Harald	Räcke

9 The Ellipsoid Algorithm

Definition 29

An affine transformation of the unit ball is called an ellipsoid.

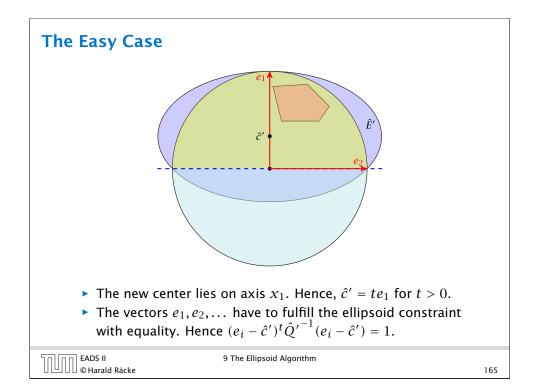
From f(x) = Lx + t follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}$$

= $\{y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1)\}$
= $\{y \in \mathbb{R}^n \mid (y-t)^t L^{-1^t} L^{-1}(y-t) \le 1\}$
= $\{y \in \mathbb{R}^n \mid (y-t)^t Q^{-1}(y-t) \le 1\}$

where $Q = LL^t$ is an invertible matrix.

EADS II	9 The Ellipsoid Algorithm	
UUUC © Harald Räcke		163



How to Compute the New Ellipsoid

- Use f^{-1} (recall that f = Lx + t is the transformation function for the Ellipsoid) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R⁻¹ to rotate the unit ball such that the normal vector of the halfspace is parallel to e₁.
- Compute the new center ĉ' and the new matrix Q̂' for this simplified setting.
- Use the transformations *R* and *f* to get the new center *c'* and the new matrix *Q'* for the original ellipsoid *E*.

EADS II © Harald Räcke	9 The Ellipsoid Algorithm	
UUU GHarald Räcke		16

a

The Easy Case

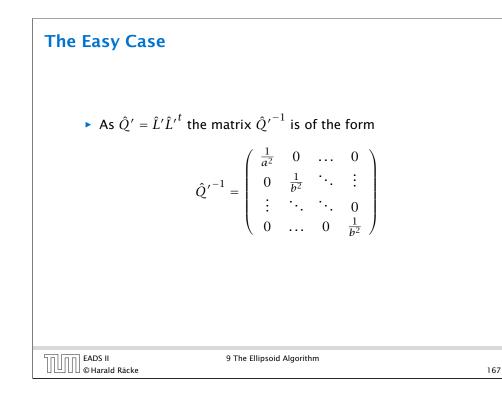
• The obtain the matrix $\hat{Q'}^{-1}$ for our ellipsoid $\hat{E'}$ note that $\hat{E'}$ is axis-parallel.

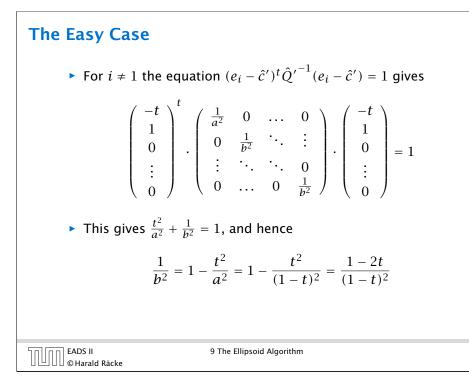
Let a denote the radius along the x₁-axis and let b denote the (common) radius for the other axes.

The matrix

 $\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$

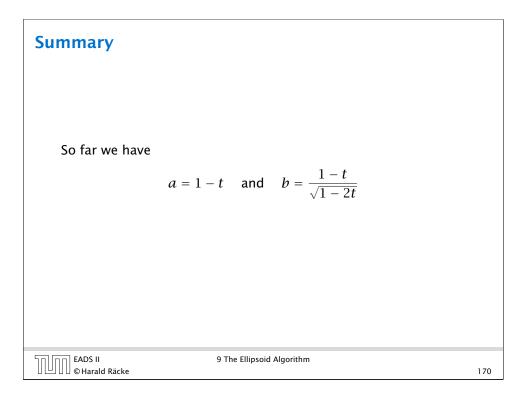
maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

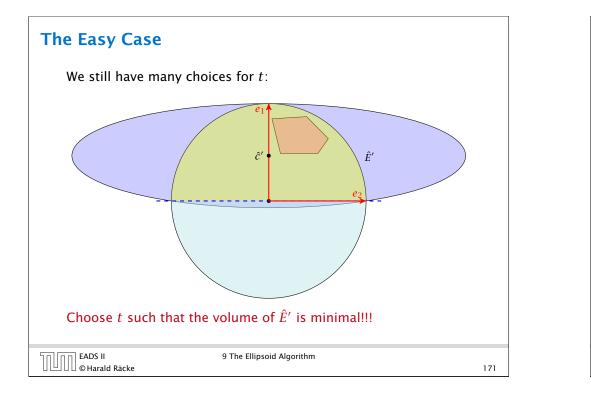


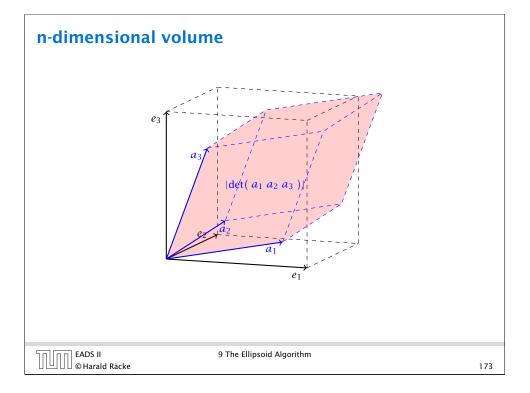


169

The Easy Case • $(e_1 - \hat{c}')^t \hat{Q}'^{-1}(e_1 - \hat{c}') = 1$ gives $\begin{pmatrix} 1 - t \\ 0 \\ \vdots \\ 0 \end{pmatrix}^t \cdot \begin{pmatrix} \frac{1}{a^2} & 0 & \cdots & 0 \\ 0 & \frac{1}{b^2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \frac{1}{b^2} \end{pmatrix} \cdot \begin{pmatrix} 1 - t \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$ • This gives $(1 - t)^2 = a^2$.







The Easy Case We want to choose t such that the volume of \hat{E}' is minimal. Lemma 30 Let *L* be an affine transformation and $K \subseteq \mathbb{R}^n$. Then $\operatorname{vol}(L(K)) = |\operatorname{det}(L)| \cdot \operatorname{vol}(K)$. EADS II © Harald Räcke 9 The Ellipsoid Algorithm 172

The Easy Case • We want to choose t such that the volume of \hat{E}' is minimal. $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')| ,$ where $\hat{Q}' = \hat{L}' \hat{L}'^t$. We have $\hat{L'}^{-1} = \begin{pmatrix} \frac{1}{a} & 0 & \dots & 0 \\ 0 & \frac{1}{b} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & & 0 & \frac{1}{b} \end{pmatrix} \text{ and } \hat{L'} = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$ • Note that *a* and *b* in the above equations depend on *t*, by the previous equations.

9 The Ellipsoid Algorithm

EADS II

EADS II © Harald Räcke

The Easy Case	
$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot \operatorname{det}(\hat{L}') $	
$= \operatorname{vol}(B(0,1)) \cdot ab^{n-1}$	
$= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$	
$= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$	
EADS II 9 The Ellipsoid Algorithm	17

The Easy Case

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for *b*, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}} = \frac{n^{2}}{n^{2}-1}$$

EADS II © Harald Räcke	9 The Ellipsoid Algorithm
🛛 💾 🛛 🖓 © Harald Räcke	

177

The Easy Case

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$

$$= \frac{1}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right)$$

$$= \frac{1}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot \sqrt{1-2t} \right)^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (\sqrt{1-t})^n \right)$$

$$= \frac{1}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t-1 \right)$$

$$= \frac{1}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t-1 \right)$$

$$= \frac{1}{N^2} \cdot \left(\sqrt{1-2t} \right)^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t-1 \right)$$

$$= \frac{1}{N^2} \cdot \left(\sqrt{1-2t} \right)^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t-1 \right)$$

$$= \frac{1}{N^2} \cdot \left(\sqrt{1-2t} \right)^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t-1 \right)$$

$$= \frac{1}{N^2} \cdot \left(\sqrt{1-2t} \right)^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t-1 \right)$$

$$= \frac{1}{N^2} \cdot \left(\sqrt{1-2t} \right)^{n-3} \cdot \left(1-t \right)^{n-1} \cdot \left((n+1)t-1 \right)$$

The Easy Case

Let $y_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$\begin{split} \gamma_n^2 &= \Big(\frac{n}{n+1}\Big)^2 \Big(\frac{n^2}{n^2-1}\Big)^{n-1} \\ &= \Big(1 - \frac{1}{n+1}\Big)^2 \Big(1 + \frac{1}{(n-1)(n+1)}\Big)^{n-1} \\ &\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}} \\ &= e^{-\frac{1}{n+1}} \end{split}$$

where we used $(1 + x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

This gives
$$\gamma_n \leq e^{-\frac{1}{2(n+1)}}$$
.

EADS II © Harald Räcke 9 The Ellipsoid Algorithm

How to Compute the New Ellipsoid

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_{1} .
- Compute the new center ĉ' and the new matrix Q̂' for this simplified setting.
- Use the transformations *R* and *f* to get the new center *c'* and the new matrix *Q'* for the original ellipsoid *E*.

EADS II © Harald Räcke 9 The Ellipsoid Algorithm

a ea

 $E^{\hat{E}}$

 $\hat{E}' \ \bar{E}'$

179

181

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^t(x - c) \le 0\};\$

$$f^{-1}(H) = \{f^{-1}(x) \mid a^{t}(x-c) \le 0\}$$

= $\{f^{-1}(f(y)) \mid a^{t}(f(y)-c) \le 0\}$
= $\{y \mid a^{t}(f(y)-c) \le 0\}$
= $\{y \mid a^{t}(Ly+c-c) \le 0\}$
= $\{y \mid (a^{t}L)y \le 0\}$

This means
$$\bar{a} = L^t a$$
.

הח הר	EADS II © Harald Räcke
	© Harald Räcke

9 The Ellipsoid Algorithm

Our progress is the same:

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$
$$= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor det(*L*).

	9 The Ellipsoid Algorithm	
🛛 🕒 🛛 🖉 © Harald Räcke		180

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{t}a}{\|L^{t}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{t}a}{\|L^{t}a\|} = R \cdot e_{1}$$

Hence,

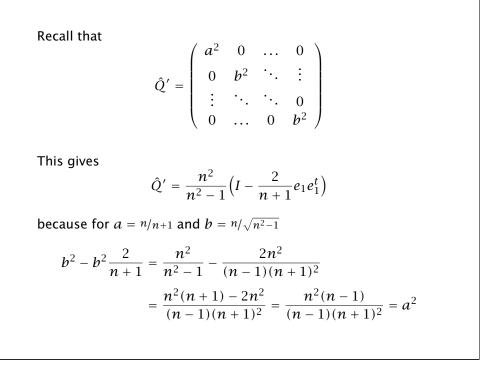
$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1}e_1 = -\frac{1}{n+1}\frac{L^t a}{\|L^t a\|}$$

$$\begin{split} c' &= f(\bar{c}') = L \cdot \bar{c}' + c \\ &= -\frac{1}{n+1} L \frac{L^t a}{\|L^t a\|} + c \\ &= c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^t Qa}} \end{split}$$

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}', \bar{E}' and E' refer to the ellipsoids centered in the origin.

	9 The Ellipsoid Algorithm	
UUU © Harald Räcke		183

9 The Ellipso	id Algorithm	
	$\begin{split} \bar{E}' &= R(\hat{E}') \\ &= \{ R(x) \mid x^t \hat{Q}'^{-1} x \le 1 \} \\ &= \{ y \mid (R^{-1} y)^t \hat{Q}'^{-1} R^{-1} y \le 1 \} \\ &= \{ y \mid y^t (R^t)^{-1} \hat{Q}'^{-1} R^{-1} y \le 1 \} \\ &= \{ y \mid y^t (\underline{R} \hat{Q}' R^t)^{-1} y \le 1 \} \\ &= \{ y \mid y^t (\underline{R} \hat{Q}' R^t)^{-1} y \le 1 \} \end{split}$	
EADS II © Harald Räcke	9 The Ellipsoid Algorithm	185



9 The Ellips	oid Algorithm	
Hence,	$\begin{split} \bar{Q}' &= R\hat{Q}'R^t \\ &= R \cdot \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^t \right) \cdot R^t \\ &= \frac{n^2}{n^2 - 1} \left(R \cdot R^t - \frac{2}{n+1} (Re_1) (Re_1)^t \right) \\ &= \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} \frac{L^t a a^t L}{\ L^t a\ ^2} \right) \end{split}$	
EADS II © Harald Bäcke	9 The Ellipsoid Algorithm	186

9 The Ellipsoid Algorithm

$$E' = L(\bar{E}')$$

= {L(x) | $x^t \bar{Q}'^{-1} x \le 1$ }
= { y | $(L^{-1}y)^t \bar{Q}'^{-1} L^{-1} y \le 1$ }
= { y | $y^t (L^t)^{-1} \bar{Q}'^{-1} L^{-1} y \le 1$ }
= { y | $y^t (\underline{L}\bar{Q}'L^t)^{-1} y \le 1$ }

EADS II	9 The Ellipsoid Algorithm	
UUU © Harald Räcke		187

Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm 1: **input:** point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$ 2: **output:** point $x \in K$ or "*K* is empty" 3: *Q* ← ??? 4: repeat if $c \in K$ then return c5: else 6: choose a violated hyperplane *a* 7: $c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^t Qa}}$ 8: $Q \leftarrow \frac{n^2}{n^2 - 1} \Big(Q - \frac{2}{n+1} \frac{Qaa^t Q}{a^t Oa} \Big)$ 9: endif 10: 11: until ??? 12: return "K is empty"

9 The Ellipsoid Algorithm

Hence,

$$Q' = L\bar{Q}'L^{t}$$

$$= L \cdot \frac{n^{2}}{n^{2} - 1} \left(I - \frac{2}{n+1} \frac{L^{t}aa^{t}L}{a^{t}Qa}\right) \cdot L^{t}$$

$$= \frac{n^{2}}{n^{2} - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^{t}Q}{a^{t}Qa}\right)$$
EADS II
9 The Ellipsoid Algorithm
188

Repeat: Size of basic solutions

Lemma 31

Let $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ be a bounded polytop. Let $\langle a_{\max} \rangle$ be the maximum encoding length of an entry in A. Then every entry x_j in a basic solution fulfills $|x_j| = \frac{D_j}{D}$ with $D_j, D \le 2^{2n\langle a_{\max} \rangle + n \log_2 n}$.

In the following we use $\delta := 2^{n \langle a_{\max} \rangle + n \log_2 n}$.

Note that here we have $P = \{x \mid Ax \le b\}$. The previous lemmas we had about the size of feasible solutions were slightly different as they were for different polytopes.

Repeat: Size of basic solutions

Proof: Let $\bar{A} = \begin{bmatrix} A \\ -A \end{bmatrix}$, $\bar{b} = \begin{pmatrix} b \\ -b \end{pmatrix}$, be the matrix and right-hand vector after transforming the system to standard form.

The determinant of the matrices \bar{A}_B and \bar{M}_j (matrix obt. when replacing the *j*-th column of \bar{A}_B by \bar{b}) can become at most

 $\begin{aligned} \det(\bar{A}_B), \det(\bar{M}_j) &\leq \|\vec{\ell}_{\max}\|^n \\ &\leq (\sqrt{n} \cdot 2^{\langle a_{\max} \rangle})^n \leq 2^{n \langle a_{\max} \rangle + n \log_2 n} \end{aligned}$

where $\bar{\ell}_{\max}$ is the longest column-vector that can be obtained after deleting all but n rows and columns from \bar{A} .

This holds because columns from I_m selected when going from \overline{A} to \overline{A}_B do not increase the determinant. Only the at most n columns from matrices A and -A that \overline{A} consists of contribute.

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded.

In this case every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0, R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^n B(0, 1) \le (n\delta)^n B(0, 1)$.

```
EADS II
© Harald Räcke
```

9 The Ellipsoid Algorithm

194

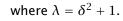
When can we terminate?

Let $P := \{x \mid Ax \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop. Let $\langle a_{\max} \rangle$ be the encoding length of the largest entry in A or b.

Consider the following polytope

$$P_{\lambda} := \left\{ x \mid Ax \le b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\}$$

Lemma 32 P_{λ} is feasible if	and only if P is feasible.	
⇐: obvious!		
Salaa EADS II	9 The Ellipsoid Algorithm	
UUU© Harald Räcke		



EADS II

🛛 © Harald Räcke

9 The Ellipsoid Algorithm

⇒:

Consider the polytops

$$\bar{P} = \left\{ x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x = \begin{pmatrix} b \\ -b \end{pmatrix}; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x = \begin{pmatrix} b \\ -b \end{pmatrix} + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\}$$

P is feasible if and only if \overline{P} is feasible, and P_{λ} feasible if and only if \overline{P}_{λ} feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded.

By Cramers rule we get

$$(\bar{A}_B^{-1}\bar{b})_i < 0 \implies (\bar{A}_B^{-1}\bar{b})_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

EADS II

|||||| © Harald Räcke

$$(\bar{A}_B^{-1}\vec{1})_i \le \det(\bar{M}_j)$$

where \bar{M}_j is obtained by replacing the *j*-th column of \bar{A}_B by $\vec{1}$.

However, we showed that the determinants of \bar{A}_B and \bar{M}_j can become at most δ .

9 The Ellipsoid Algorithm

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

Let $\bar{A} = \begin{bmatrix} A \\ -A \end{bmatrix}$], and $\bar{b} =$	$\binom{b}{-b}$.
---	--------------------	-------------------

 $ar{P}_\lambda$ feasible implies that there is a basic feasible solution represented by

$$x_B = \bar{A}_B^{-1}\bar{b} + \frac{1}{\lambda}\bar{A}_B^{-1}\begin{pmatrix}1\\\vdots\\1\end{pmatrix}$$

(The other *x*-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}\bar{b})_i < 0 \le (\bar{A}_B^{-1}\bar{b})_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

Lemma 33

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0,1) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$\begin{aligned} A(x+\vec{\ell}))_i &= (Ax)_i + (A\vec{\ell})_i \le b_i + A_i\vec{\ell} \\ &\le b_i + \|A_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\max} \rangle} \cdot r \\ &\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\max} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda} \end{aligned}$$

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

EADS II © Harald Räcke

197

9 The Ellipsoid Algorithm

How many iterations do we need until the volume becomes too small?

$$e^{-\frac{1}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

Hence,

$$i > 2(n+1) \ln \left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$

= 2(n+1) ln $\left(n^n \delta^n \cdot \delta^{3n}\right)$
= 8n(n+1) ln(δ) + 2(n+1)n ln(n
= $\mathcal{O}(\operatorname{poly}(n, \langle a_{\max} \rangle))$

EADS II © Harald Räcke 9 The Ellipsoid Algorithm

Separation Oracle:

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- ► or finds a hyperplane separating *x* from *K*.

We will usually assume that \boldsymbol{A} is a polynomial-time algorithm.

In order to find a point in *K* we need

- a guarantee that a ball of radius r is contained in K,
- an initial ball B(c, R) with radius R that contains K,
- ► a separation oracle for *K*.

The Ellipsoid algorithm requires $O(\text{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

EADS II © Harald Räcke

9 The Ellipsoid Algorithm

201

199

	hm 1 ellipsoid-algorithm
1: inp	it: point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$, radii R and r
2:	with $K \subseteq B(0, R)$, and $B(x, r) \subseteq K$ for some x
3: out	put: point $x \in K$ or " K is empty"
4: <i>Q</i> ←	$diag(R^2,,R^2) // i.e., L = diag(R,,R)$
5: <i>C</i> ←	· 0
6: rep	eat
7:	if $c \in K$ then return c
8:	else
9:	choose a violated hyperplane <i>a</i>
10:	$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^t Qa}}$
11:	$Q \leftarrow \frac{n^2}{n^2 - 1} \Big(Q - \frac{2}{n+1} \frac{Qaa^t Q}{a^t Qaa} \Big)$
12:	endif
13: unt	il $\det(Q) \leq r^{2n} // \text{ i.e., } \det(L) \leq r^n$
14: ret	ırn "K is empty"

10 Karmarkars Algorithm

We want to solve the following linear program:

- min $v = c^t x$ subject to Ax = 0 and $x \in \Delta$.
- ► Here $\Delta = \{x \in \mathbb{R}^n \mid e^t x = 1, x \ge 0\}$ with $e^t = (1, ..., 1)$ denotes the standard simplex in \mathbb{R}^n .

Further assumptions:

- **1.** A is an $m \times n$ -matrix with rank m.
- **2.** Ae = 0, i.e., the center of the simplex is feasible.
- **3.** The optimum solution is 0.

10 Karmarkars Algorithm

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- Multiply c by -1 and do a minimization. \Rightarrow minimization problem
- We can check for feasibility by using the two phase algorithm. \Rightarrow can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. \Rightarrow optimum is 0
- Add a new variable pair x_{ℓ} , x'_{ℓ} (both restricted to be positive) and the constraint $\sum_i x_i = 1$. \Rightarrow solution in simplex
- Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. \Rightarrow vector b is 0
- ► If A does not have full column rank we can delete constraints (or conclude that the LP is infeasible). \Rightarrow A has full row rank

We still need to make e/n feasible.

10 Karmarkars Algorithm

Iteration:

- 1. Distort the problem by mapping the simplex onto itself so that the current point \bar{x} moves to the center.
- **2.** Project the optimization direction *c* onto the feasible region. Determine a distance to travel along this direction such that you do not leave the simplex (and you do not touch the border). \hat{x} is the point you reached.
- **3.** Do a backtransformation to transform \hat{x} into your new point x'.

10 Karmarkars Algorithm

The algorithm computes (strictly) feasible interior points $\bar{x}^{(0)} = \frac{e}{n}, x^{(1)}, x^{(2)}, \dots$ with

$$c^t x^k \le 2^{-\Theta(L)} c^t x^0$$

For $k = \Theta(L)$. A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) I can "snap" to an optimum vertex.

EADS II © Harald Räcke

10 Karmarkars Algorithm

The Transformation

Let $\bar{Y} = \text{diag}(\bar{x})$ the diagonal matrix with entries \bar{x} on the diagonal.

ŀ

Define

EADS II

∏∐∏]] ©Harald Räcke

$$\bar{F}_{\bar{X}}: x \mapsto \frac{\bar{Y}^{-1}x}{e^t \bar{Y}^{-1}x}$$
.

The inverse function is

$$F_{\bar{x}}^{-1}: \hat{x} \mapsto \frac{\bar{Y}\hat{x}}{e^t \bar{Y}\hat{x}}$$
.

Note that $\bar{x} > 0$ in every coordinate. Therefore the above is well defined.

EADS II © Harald Räcke 10 Karmarkars Algorithm

205

Properties

 $F_{\bar{x}}^{-1}$ really is the inverse of $F_{\bar{x}}$:

$$F_{\bar{x}}(F_{\bar{x}}^{-1}(\hat{x})) = \frac{\bar{Y}^{-1} \frac{\bar{Y}\hat{x}}{e^t \bar{Y}\hat{x}}}{e^t \bar{Y}^{-1} \frac{\bar{Y}\hat{x}}{e^t \bar{Y}\hat{x}}} = \frac{\hat{x}}{e^t \hat{x}} = \hat{x}$$

because $\hat{x} \in \Delta$.

Note that in particular every $\hat{x} \in \Delta$ has a preimage (Urbild) under $F_{\tilde{x}}$.

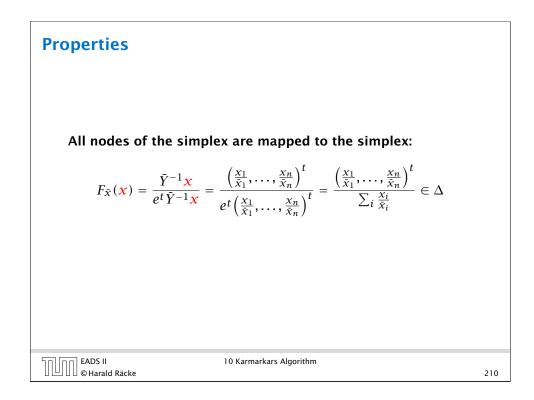
EADS II © Harald Räcke	10 Karmarkars Algorithm	

207

209

Properties A unit vectors e_i is mapped to itself: $F_{\bar{X}}(e_i) = \frac{\bar{Y}^{-1}e_i}{e^t \bar{Y}^{-1}e_i} = \frac{(0, \dots, 0, \bar{x}_i, 0, \dots, 0)^t}{e^t (0, \dots, 0, \bar{x}_i, 0, \dots, 0)^t} = e_i$

\bar{x} is mapped to e/n $F_{\bar{x}}(\bar{x}) = \frac{\bar{Y}^{-1}\bar{x}}{e^t\bar{Y}^{-1}\bar{x}} = \frac{e}{e^te} = \frac{e}{n}$ Image: Margin EADS II Of Karmarkars Algorithm



The Transformation

Easy to check:

- $F_{\bar{X}}^{-1}$ really is the inverse of $F_{\bar{X}}$.
- \bar{x} is mapped to e/n.
- A unit vectors e_i is mapped to itself.
- All nodes of the simplex are mapped to the simplex.

	10 Karmarkars Algorithm	
UUU© Harald Räcke		211

We still need to make e/n feasible.

- We know that our LP is feasible. Let \bar{x} be a feasible point.
- Apply $F_{\bar{X}}$, and solve

 $\min\{\hat{c}^t x \mid \hat{A}x = 0; x \in \Delta\}$

• The feasible point is moved to the center.

1	0	Karmarkars	A	aorithm
	<u> </u>	ita ina ita i		90

After the transformation we have the problem

$$\min\{c^{t}F_{\bar{x}}^{-1}(x) \mid AF_{\bar{x}}^{-1}(x) = 0; x \in \Delta\} \\ = \min\{\frac{c^{t}\bar{Y}x}{e^{t}\bar{Y}x} \mid \frac{A\bar{Y}x}{e^{t}\bar{Y}x} = 0; x \in \Delta\}$$

This holds since the back-transformation "reaches" every point in Δ (i.e. $F_{\tilde{\chi}}^{-1}(\Delta) = \Delta$).

Since the optimum solution is $\boldsymbol{0}$ this problem is the same as

$$\min\{\hat{c}^t x \mid \hat{A}x = 0, x \in \Delta\}$$

with
$$\hat{c} = \bar{Y}^t c = \bar{Y}c$$
 and $\hat{A} = A\bar{Y}$.

EADS II ©Harald Räcke

EADS II © Harald Räcke 10 Karmarkars Algorithm

212

10 Karmarkars Algorithm

When computing \hat{x} we do not want to leave the simplex or touch its boundary (why?).

For this we compute the radius of a ball that completely lies in the simplex.

 $B\left(rac{e}{n},
ho
ight) = \left\{x\in\mathbb{R}^n\mid \left\|x-rac{e}{n}\right\|\leq
ho
ight\}$.

We are looking for the largest radius r such that

 $B\left(rac{e}{n},r
ight)\cap\left\{x\mid e^{t}x=1
ight\}\subseteq\Delta.$

10 Karmarkars Algorithm

10 Karmarkars Algorithm

This holds for $r = \|\frac{e}{n} - (e - e_1)\frac{1}{n-1}\|$. (*r* is the distance between the center e/n and the center of the (n-1)-dimensional simplex obtained by intersecting a side ($x_i = 0$) of the unit cube with Δ .)

This gives
$$r = \frac{1}{\sqrt{n(n-1)}}$$
.

Now we consider the problem

$$\min\{\hat{c}^t x \mid \hat{A}x = 0, x \in B(e/n, r) \cap \Delta\}$$

EADS II © Harald Räcke

10 Karmarkars Algorithm

215

217

10 Karmarkars Algorithm

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A}x = 0$ or the constraint $x \in \Delta$.

Therefore we first project \hat{c} on the nullspace of

$$B = \begin{pmatrix} \hat{A} \\ e^t \end{pmatrix}$$

We use

$$P = I - B^t (BB^t)^{-1} B$$

Then

 $\hat{d} = P\hat{c}$

is the required projection.

50,00	EADS II © Harald Räcke
	© Harald Räcke

10 Karmarkars Algorithm

The Simplex x_3 \dot{x}_2 x_1 EADS II © Harald Räcke 10 Karmarkars Algorithm

10 Karmarkars Algorithm We get the new point $\hat{x}(\rho) = \frac{e}{n} - \rho \frac{\hat{d}}{\|d\|}$ for $\rho < r$. Choose $\rho = \alpha r$ with $\alpha = 1/4$. EADS II © Harald Räcke 10 Karmarkars Algorithm

10 Karmarkars Algorithm

Iteration of Karmarkars algorithm:

- ▶ Current solution x̄. Ȳ := diag(x̄₁,...,x̄_n).
 ▶ Transform the problem via F_{x̃}(x) = ^{Ȳ-1}_{e^tȲ⁻¹x}. Let ĉ = Ȳc, and = AȲ.
- Compute

 $d = (I - B^t (BB^t)^{-1}B)\hat{c}$,

where $B = \begin{pmatrix} \hat{A} \\ e^t \end{pmatrix}$.

Set

$$\hat{x} = \frac{e}{n} - \rho \frac{d}{\|d\|}$$

with
$$\rho = \alpha r$$
 with $\alpha = 1/4$ and $r = 1/\sqrt{n(n-1)}$.

• Compute $\bar{x}_{new} = F_{\bar{x}}^{-1}(\hat{x})$.

EADS II ©Harald Räcke	10 Karmarkars Algorithm	
🛛 🕒 🛛 🖉 @ Harald Räcke		219

Lemma 34

The new point \hat{x} in the transformed space is the point that minimizes the cost $\hat{c}^t x$ among all feasible points in $B(\frac{e}{n}, \rho)$.

EADS II © Harald Räcke	10 Karmarkars Algorithm	

Proof: Let z be another feasible point in $B(\frac{e}{n}, \rho)$. As $\hat{A}z = 0$, $\hat{A}\hat{x} = 0$, $e^t z = 1$, $e^t \hat{x} = 1$ we have $B(\hat{x} - z) = 0$. Further, $(\hat{c} - d)^t = (\hat{c} - P\hat{c})^t$ $= (B^t (BB^t)^{-1}B\hat{c})^t$ $= \hat{c}^t B^t (BB^t)^{-1}B$

Hence, we get

$$(\hat{c} - d)^t (\hat{x} - z) = 0 \text{ or } \hat{c}^t (\hat{x} - z) = d^t (\hat{x} - z)$$

which means that the cost-difference between \hat{x} and z is the same measured w.r.t. the cost-vector \hat{c} or the projected cost-vector d.

10 Karmarkars Algorithm

EADS II © Harald Räcke

But

$$\frac{d^t}{\|d\|}\left(\hat{x}-z\right) = \frac{d^t}{\|d\|}\left(\frac{e}{n}-\rho\frac{d}{\|d\|}-z\right) = \frac{d^t}{\|d\|}\left(\frac{e}{n}-z\right)-\rho < 0$$

as $\frac{e}{n} - z$ is a vector of length at most ρ .

This gives $d(\hat{x} - z) \le 0$ and therefore $\hat{c}\hat{x} \le \hat{c}z$.

EADS II 10 Karmarkars Algorithm 223

For a point z in the transformed space we use the potential function

$$\hat{f}(z) := f(F_{\bar{x}}^{-1}(z)) = f(\frac{\bar{Y}z}{e^t\bar{Y}z}) = f(\bar{Y}z)$$
$$= \sum_j \ln(\frac{c^t\bar{Y}z}{\bar{x}_j z_j}) = \sum_j \ln(\frac{\hat{c}^t z}{z_j}) - \sum_j \ln \bar{x}_j$$

Observation:

This means the potential of a point in the transformed space is simply the potential of its pre-image under F.

Note that if we are interested in potential-change we can ignore the additive term above. Then f and \hat{f} have the same form; only c is replaced by \hat{c} .

In order to measure the progress of the algorithm we introduce a potential function f:

$$f(x) = \sum_{j} \ln(\frac{c^t x}{x_j}) = n \ln(c^t x) - \sum_{j} \ln(x_j) .$$

- The function f is invariant to scaling (i.e., f(kx) = f(x)).
- ► The potential function essentially measures cost (note the term $n \ln(c^t x)$) but it penalizes us for choosing x_j values very small (by the term $-\sum_j \ln(x_j)$; note that $-\ln(x_j)$ is always positive).

EADS II © Harald Räcke	10 Karmarkars Algorithm

The basic idea is to show that one iteration of Karmarkar results in a constant decrease of \hat{f} . This means

$$\hat{f}(\hat{x}) \leq \hat{f}(\frac{e}{n}) - \delta$$
 ,

where δ is a constant.

This gives

EADS II © Harald Räcke

5

$$f(\bar{x}_{\text{new}}) \leq f(\bar{x}) - \delta$$
 .

225

Lemma 35

There is a feasible point z (i.e., $\hat{A}z = 0$) in $B(\frac{e}{n}, \rho) \cap \Delta$ that has

$$\hat{f}(z) \leq \hat{f}(\frac{e}{n}) - \delta$$

with $\delta = \ln(1 + \alpha)$.

Note that this shows the existence of a good point within the ball. In general it will be difficult to find this point.

EADS II 10 Karmarkars Algorithm	EADS II © Harald Räcke	10 Karmarkars Algorithm
---------------------------------	---------------------------	-------------------------

Hence,

$$\hat{c}^t z = (1-\lambda)\hat{c}^t \frac{e}{n} + \lambda \hat{c}^t z^*$$

The optimum cost (at z^*) is zero.

Therefore,

$$\frac{\hat{c}^t \frac{e}{n}}{\hat{c}^t z} = \frac{1}{1 - \lambda}$$

EADS II © Harald Räcke	10 Karmarkars Algorithm	229

Let z^* be the feasible point in the transformed space where $\hat{c}^t x$ is minimized. (Note that in contrast \hat{x} is the point in the intersection of the feasible region and $B(\frac{e}{n}, \rho)$ that minimizes this function; in general $z^* \neq \hat{x}$)

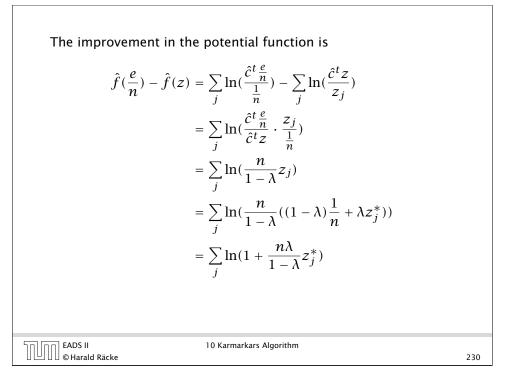
 z^* must lie at the boundary of the simplex. This means $z^* \notin B(\frac{e}{n}, \rho)$.

The point *z* we want to use lies farthest in the direction from $\frac{e}{n}$ to *z*^{*}, namely

$$z = (1 - \lambda)\frac{e}{n} + \lambda z^*$$

for some positive $\lambda < 1$.

רח EADS II	10 Karmarkars Algorithm	
UUU GHarald Räcke		228



We can use the fact that for non-negative s_i

$$\sum_{i} \ln(1+s_i) \geq \ln(1+\sum_{i} s_i)$$

This gives

$$\hat{f}(\frac{e}{n}) - \hat{f}(z) = \sum_{j} \ln(1 + \frac{n\lambda}{1 - \lambda} z_{j}^{*})$$
$$\geq \ln(1 + \frac{n\lambda}{1 - \lambda})$$

	10 Karmarkars Algorithm	
UUUC © Harald Räcke		231

Lemma 36

If we choose $\alpha = 1/4$ and $n \ge 4$ in Karmarkars algorithm the point \hat{x} satisfies

$$\hat{f}(\hat{x}) \le \hat{f}(\frac{e}{n}) - \delta$$

with $\delta = 1/10$.

EADS II © Harald Räcke	10 Karmarkars Algorithm

In order to get further we need a bound on $\boldsymbol{\lambda}:$

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here *R* is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

$$R = \sqrt{(n-1)/n}$$
. Since $r = 1/\sqrt{(n-1)n}$ we have $R/r = n-1$ and

$$\lambda \ge \alpha/(n-1)$$

Then

$$1 + n \frac{\lambda}{1 - \lambda} \ge 1 + \frac{n\alpha}{n - \alpha - 1} \ge 1 + \alpha$$

This gives the lemma.

	10 Karmarkars Algorithm	
UUU G Harald Räcke		232

Proof:

Define

$$g(x) = n \ln \frac{\hat{c}^t x}{\hat{c}^t \frac{e}{n}}$$
$$= n (\ln \hat{c}^t x - \ln \hat{c}^t \frac{e}{n}) .$$

This is the change in the cost part of the potential function when going from the center $\frac{e}{n}$ to the point x in the transformed space.

Similar, the penalty when going from $\frac{e}{n}$ to w increases by

$$h(w) = \operatorname{pen}(w) - \operatorname{pen}(\frac{e}{n}) = -\sum_{j} \ln \frac{w_{j}}{\frac{1}{n}}$$

where $pen(v) = -\sum_{j} ln(v_j)$.

EADS II	10 Karmarkars Algorithm	
UUU © Harald Räcke		235

We have

$$\hat{f}(\frac{e}{n}) - \hat{f}(z)] \ge \ln(1+\alpha)$$

by the previous lemma.

We have

$$[g(z) - g(\hat{x})] \ge 0$$

since \hat{x} is the point with minimum cost in the ball, and g is monotonically increasing with cost.

$$\hat{f}(\frac{e}{n}) - \hat{f}(\hat{x}) = \left[\hat{f}(\frac{e}{n}) - \hat{f}(z)\right] + h(z) - h(x) + \left[g(z) - g(\hat{x})\right]$$

where z is the point in the ball where \hat{f} achieves its minimum.

EADS II 10 Karmarkars Algorithm © Harald Räcke 236

For a point in the ball we have

We want to derive a lower bound on

$$\hat{f}(w) - (\hat{f}(\frac{e}{n}) + g(w))h(w)$$

(The increase in penalty when going from $\frac{e}{n}$ to w).

This is at most $\frac{\beta^2}{2(1-\beta)}$ with $\beta = n\alpha r$. Hence,

$$\hat{f}(\frac{e}{n}) - \hat{f}(\hat{x}) \ge \ln(1+\alpha) - \frac{\beta^2}{(1-\beta)} .$$

10 Karmarkars Algorithm

EADS II ©Harald Räcke 10 Karmarkars Algorithm

Lemma 37
For
$$|x| \le \beta < 1$$

 $|\ln(1+x) - x| \le \frac{x^2}{2(1-\beta)}$.

The decrease in potential is therefore at least

$$\ln(1+\alpha) - \frac{\beta^2}{1-\beta}$$

with $\beta = n\alpha r = \alpha \sqrt{\frac{n}{n-1}}$.

It can be shown that this is at least $\frac{1}{10}$ for $n \ge 4$ and $\alpha = 1/4$.

EADS II © Harald Räcke	10 Karmarkars Algorithm	
---------------------------	-------------------------	--

This gives for
$$w \in B(\frac{e}{n}, \rho)$$

$$\left| \sum_{j} \ln \frac{w_j}{1/n} \right| = \left| \sum_{j} \ln(\frac{1/n + (w_j - 1/n)}{1/n}) - \sum_{j} n(w_j - \frac{1}{n}) \right|$$

$$= \left| \sum_{j} \left[\ln(1 + \frac{\le n\alpha x < 1}{n(w_j - 1/n)}) - n(w_j - \frac{1}{n}) \right] \right|$$

$$\leq \sum_{j} \frac{n^2(w_j - 1/n)^2}{2(1 - \alpha n r)}$$

$$\leq \frac{(\alpha n r)^2}{2(1 - \alpha n r)}$$

Let $\bar{x}^{(k)}$ be the current point after the k-th iteration, and let $\bar{x}^{(0)} = \frac{e}{n}$.

Then $f(\bar{x}^{(k)}) \leq f(e/n) - k/10$. This gives

$$n\ln\frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le \sum_j \ln \bar{x}_j^{(k)} - \sum_j \ln\frac{1}{n} - k/10$$
$$\le n\ln n - k/10$$

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \leq e^{-\ell} \leq 2^{-\ell}$$

Hence, $\Theta(nL)$ iterations are sufficient. One iteration can be performed in time $O(n^3)$.

EADS II © Harald Räcke

239

241

10 Karmarkars Algorithm