How do we get an upper bound to a maximization LP?

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

How do we get an upper bound to a maximization LP?

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

How do we get an upper bound to a maximization LP?

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

Definition 2

Let $z = \max\{c^t x \mid Ax \ge b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$$

is called the dual problem.

Lemma 3

The dual of the dual problem is the primal problem.

Proof

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

$$w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$$

$$w = \max\{-b^t y \mid -A^t y \le -c, y \ge 0\}$$

$$z = \min\{-c^t x \mid -Ax \ge -b, x \ge 0\}$$

$$z = \max\{c^i x \mid Ax \ge b, x \ge 0\}$$

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

- $w = \max\{-b^t y \mid -A^t y \le -c, y \ge 0\}$

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

- $w = \max\{-b^t y \mid -A^t y \le -c, y \ge 0\}$

- $z = \min\{-c^t x \mid -Ax \ge -b, x \ge 0\}$
- $\triangleright z = \max\{c^t x \mid Ax \ge b, x \ge 0\}$

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

- $w = \max\{-b^t y \mid -A^t y \le -c, y \ge 0\}$

- $z = \min\{-c^t x \mid -Ax \ge -b, x \ge 0\}$
- $z = \max\{c^t x \mid Ax \ge b, x \ge 0\}$

Let
$$z = \max\{c^t x \mid Ax \le b, x \ge 0\}$$
 and $w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$ be a primal dual pair.

$$x$$
 is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

$$y$$
 is dual feasible, iff $y \in \{y \mid A^t y \ge c, y \ge 0\}$.

Theorem 4 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$c^t \hat{x} \le z \le w \le b^t \hat{y}$$

Let $z = \max\{c^t x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^t y \ge c, y \ge 0\}$.

Theorem 4 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$c^t \hat{x} \leq z \leq w \leq b^t \hat{y} \ .$$

$$A^t\hat{y} \geq c \Rightarrow \hat{x}^t A^t \hat{y} \geq \hat{x}^t c \ (\hat{x} \geq 0)$$

$$A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$$

This gives

$$c^t \hat{x} \le \hat{y}^t A \hat{x} \le b^t \hat{y}$$

Since, there exists primal feasible \hat{x} with $c^t\hat{x}=z$, and dual feasible \hat{y} with $b^ty=w$ we get $z\leq w$.

$$A^t \hat{y} \ge c \Rightarrow \hat{x}^t A^t \hat{y} \ge \hat{x}^t c \ (\hat{x} \ge 0)$$

$$A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$$

This gives

$$c^t \hat{x} \le \hat{y}^t A \hat{x} \le b^t \hat{y} .$$

Since, there exists primal feasible \hat{x} with $c^t \hat{x} = z$, and dual feasible \hat{y} with $b^t y = w$ we get $z \le w$.

$$A^t \hat{y} \geq c \Rightarrow \hat{x}^t A^t \hat{y} \geq \hat{x}^t c \ (\hat{x} \geq 0)$$

$$A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$$

This gives

$$c^t \hat{x} \le \hat{y}^t A \hat{x} \le b^t \hat{y} .$$

Since, there exists primal feasible \hat{x} with $c^t \hat{x} = z$, and dual feasible \hat{y} with $b^t y = w$ we get $z \le w$.

$$A^t \hat{y} \geq c \Rightarrow \hat{x}^t A^t \hat{y} \geq \hat{x}^t c \ (\hat{x} \geq 0)$$

$$A\hat{\mathbf{x}} \leq \mathbf{b} \Rightarrow \mathbf{y}^t A \hat{\mathbf{x}} \leq \hat{\mathbf{y}}^t b \ (\hat{\mathbf{y}} \geq 0)$$

This gives

$$c^t \hat{x} \le \hat{y}^t A \hat{x} \le b^t \hat{y} .$$

Since, there exists primal feasible \hat{x} with $c^t\hat{x}=z$, and dual feasible \hat{y} with $b^ty=w$ we get $z\leq w$.

$$A^t \hat{y} \ge c \Rightarrow \hat{x}^t A^t \hat{y} \ge \hat{x}^t c \ (\hat{x} \ge 0)$$

$$A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$$

This gives

$$c^t \hat{x} \le \hat{y}^t A \hat{x} \le b^t \hat{y} .$$

Since, there exists primal feasible \hat{x} with $c^t \hat{x} = z$, and dual feasible \hat{y} with $b^t y = w$ we get $z \le w$.

$$A^t \hat{y} \geq c \Rightarrow \hat{x}^t A^t \hat{y} \geq \hat{x}^t c \ (\hat{x} \geq 0)$$

$$A\hat{x} \leq b \Rightarrow y^t A\hat{x} \leq \hat{y}^t b \; (\hat{y} \geq 0)$$

This gives

$$c^t \hat{x} \le \hat{y}^t A \hat{x} \le b^t \hat{y}$$
.

Since, there exists primal feasible \hat{x} with $c^t\hat{x}=z$, and dual feasible \hat{y} with $b^ty=w$ we get $z\leq w$.

$$A^t \hat{y} \geq c \Rightarrow \hat{x}^t A^t \hat{y} \geq \hat{x}^t c \ (\hat{x} \geq 0)$$

$$A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$$

This gives

$$c^t \hat{x} \leq \hat{y}^t A \hat{x} \leq b^t \hat{y}$$
.

Since, there exists primal feasible \hat{x} with $c^t \hat{x} = z$, and dual feasible \hat{y} with $b^t y = w$ we get $z \le w$.

$$A^t \hat{y} \ge c \Rightarrow \hat{x}^t A^t \hat{y} \ge \hat{x}^t c \ (\hat{x} \ge 0)$$

$$A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$$

This gives

$$c^t \hat{x} \leq \hat{y}^t A \hat{x} \leq b^t \hat{y}$$
.

Since, there exists primal feasible \hat{x} with $c^t\hat{x}=z$, and dual feasible \hat{y} with $b^ty=w$ we get $z\leq w$.

$$A^t \hat{y} \ge c \Rightarrow \hat{x}^t A^t \hat{y} \ge \hat{x}^t c \ (\hat{x} \ge 0)$$

$$A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$$

This gives

$$c^t \hat{x} \leq \hat{y}^t A \hat{x} \leq b^t \hat{y}$$
.

Since, there exists primal feasible \hat{x} with $c^t\hat{x}=z$, and dual feasible \hat{y} with $b^ty=w$ we get $z\leq w$.

The following linear programs form a primal dual pair:

$$z = \max\{c^t x \mid Ax = b, x \ge 0\}$$
$$w = \min\{b^t y \mid A^t y \ge c\}$$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

Primal:

$$\max\{c^t x \mid Ax = b, x \ge 0\}$$

Primal:

$$\max\{c^t x \mid Ax = b, x \ge 0\}$$
$$= \max\{c^t x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

Primal:

$$\max\{c^{t}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{t}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{t}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Primal:

$$\max\{c^{t}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{t}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{t}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

$$\min\{[b^t - b^t]y \mid [A^t - A^t]y \ge c, y \ge 0\}$$

Primal:

$$\max\{c^{t}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{t}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{t}x \mid \begin{bmatrix} A \\ -A \end{bmatrix}x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

$$\min\{ \begin{bmatrix} b^t - b^t \end{bmatrix} y \mid \begin{bmatrix} A^t - A^t \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min\left\{ \begin{bmatrix} b^t - b^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^t - A^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

Primal:

$$\max\{c^{t}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{t}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{t}x \mid \begin{bmatrix} A \\ -A \end{bmatrix}x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

$$\min\{ \begin{bmatrix} b^t - b^t \end{bmatrix} y \mid \begin{bmatrix} A^t - A^t \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min\left\{ \begin{bmatrix} b^t - b^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^t - A^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^t \cdot (y^+ - y^-) \mid A^t \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

Primal:

$$\max\{c^{t}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{t}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{t}x \mid \begin{bmatrix} A \\ -A \end{bmatrix}x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

$$\min\{ \begin{bmatrix} b^t - b^t \end{bmatrix} y \mid \begin{bmatrix} A^t - A^t \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min\left\{ \begin{bmatrix} b^t - b^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^t - A^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^t \cdot (y^+ - y^-) \mid A^t \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^t y' \mid A^t y' \ge c, y' \ge 0 \right\}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

 $y^* = (A_B^{-1})^t c_B$ is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{\dagger}y^{*} = (Ax^{*})^{\dagger}y^{*} = (A_{B}x_{B}^{*})^{\dagger}y^{*}$$

$$= (A_B x_B^2)^* (A_B^{-1})^* c_B = (x_B^2)^* A_B^* (A_B^{-1})^* c_B = A_B^2$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

$$y^* = (A_B^{-1})^t c_B$$
 is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$= (A_B x_B^*)^{\dagger} (A_B^{-1})^{\dagger} c_B = (x_B^*)^{\dagger} A_B^{\dagger} (A_B^{-1})^{\dagger} c_B$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

 $y^* = (A_B^{-1})^t c_B$ is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{t}y^{*} = (Ax^{*})^{t}y^{*} = (A_{B}x_{B}^{*})^{t}y^{*}$$
$$= (A_{B}x_{B}^{*})^{t}(A_{B}^{-1})^{t}c_{B} = (x_{B}^{*})^{t}A_{B}^{t}(A_{B}^{-1})^{t}c_{B}$$
$$= c^{t}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

 $y^* = (A_B^{-1})^t c_B$ is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{t}y^{*} = (Ax^{*})^{t}y^{*} = (A_{B}x_{B}^{*})^{t}y^{*}$$
$$= (A_{B}x_{B}^{*})^{t}(A_{B}^{-1})^{t}c_{B} = (x_{B}^{*})^{t}A_{B}^{t}(A_{B}^{-1})^{t}c_{B}$$
$$= c^{t}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

 $y^* = (A_B^{-1})^t c_B$ is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{t}y^{*} = (Ax^{*})^{t}y^{*} = (A_{B}x_{B}^{*})^{t}y^{*}$$
$$= (A_{B}x_{B}^{*})^{t}(A_{B}^{-1})^{t}c_{B} = (x_{B}^{*})^{t}A_{B}^{t}(A_{B}^{-1})^{t}c_{B}$$
$$= c^{t}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_R^t A_R^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

 $y^* = (A_B^{-1})^t c_B$ is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{t}y^{*} = (Ax^{*})^{t}y^{*} = (A_{B}x_{B}^{*})^{t}y^{*}$$
$$= (A_{B}x_{B}^{*})^{t}(A_{B}^{-1})^{t}c_{B} = (x_{B}^{*})^{t}A_{B}^{t}(A_{B}^{-1})^{t}c_{B}$$
$$= c^{t}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

$$y^* = (A_B^{-1})^t c_B$$
 is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{t}y^{*} = (Ax^{*})^{t}y^{*} = (A_{B}x_{B}^{*})^{t}y^{*}$$
$$= (A_{B}x_{B}^{*})^{t}(A_{B}^{-1})^{t}c_{B} = (x_{B}^{*})^{t}A_{B}^{t}(A_{B}^{-1})^{t}c_{B}$$
$$= c^{t}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

$$y^* = (A_B^{-1})^t c_B$$
 is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{t}y^{*} = (Ax^{*})^{t}y^{*} = (A_{B}x_{B}^{*})^{t}y^{*}$$
$$= (A_{B}x_{B}^{*})^{t}(A_{B}^{-1})^{t}c_{B} = (x_{B}^{*})^{t}A_{B}^{t}(A_{B}^{-1})^{t}c_{B}$$
$$= c^{t}x^{*}$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

 $y^* = (A_B^{-1})^t c_B$ is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{t}y^{*} = (Ax^{*})^{t}y^{*} = (A_{B}x_{B}^{*})^{t}y^{*}$$
$$= (A_{B}x_{B}^{*})^{t}(A_{B}^{-1})^{t}c_{B} = (x_{B}^{*})^{t}A_{B}^{t}(A_{B}^{-1})^{t}c_{B}$$
$$= c^{t}x^{*}$$

Hence, the solution is optimal.

Strong Duality

Theorem 5 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

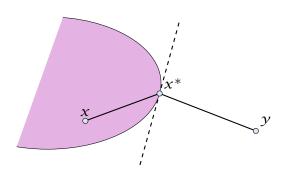
$$z^* = w^*$$

Lemma 6 (Weierstrass)

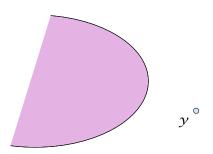
Let X be a compact set and let f(x) be a continuous function on X. Then $\min\{f(x):x\in X\}$ exists.

Lemma 7 (Projection Lemma)

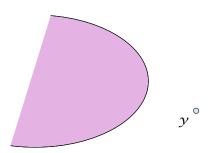
Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^t (x - x^*) \le 0$.



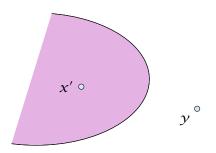
- ▶ Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



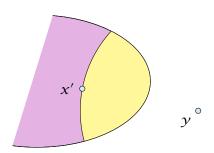
- ▶ Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



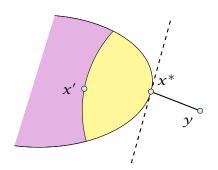
- ▶ Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



- ▶ Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



- ▶ Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

$$\|y - x^*\|^2$$

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^t (x - x^*)$$

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^t (x - x^*)$$

Hence, $(y - x^*)^t (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^t (x - x^*)$$

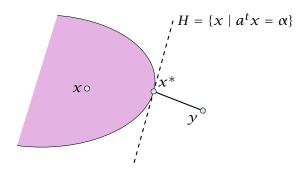
Hence,
$$(y - x^*)^t (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$$
.

Letting $\epsilon \to 0$ gives the result.

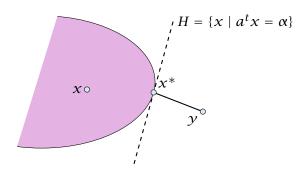
Theorem 8 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^t x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^t y < \alpha; a^t x \ge \alpha \text{ for all } x \in X)$

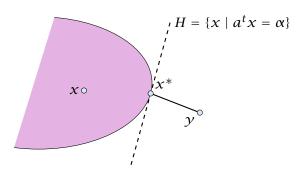
- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^t (x x^*) \le 0$ for all $x \in X$.
- ► Choose $a = (x^* y)$ and $\alpha = a^t x^*$
- For $x \in X$: $a^t(x x^*) \ge 0$, and, hence, $a^t x \ge \alpha$.
- ► Also, $a^t y = a^t (x^* a) = \alpha ||a||^2 < \alpha$



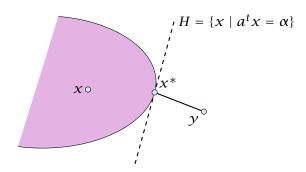
- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^t (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^t x^*$
- For $x \in X$: $a^t(x x^*) \ge 0$, and, hence, $a^t x \ge \alpha$.
- ► Also, $a^t y = a^t (x^* a) = \alpha ||a||^2 < \alpha$



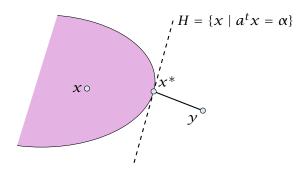
- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^t (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^t x^*$.
- For $x \in X$: $a^t(x x^*) \ge 0$, and, hence, $a^t x \ge \alpha$.
- Also, $a^t y = a^t (x^* a) = \alpha ||a||^2 < \alpha$



- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^t (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^t x^*$.
- For $x \in X$: $a^t(x x^*) \ge 0$, and, hence, $a^t x \ge \alpha$.
- Also, $a^t y = a^t (x^* a) = \alpha ||a||^2 < \alpha$



- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^t (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^t x^*$.
- For $x \in X$: $a^t(x x^*) \ge 0$, and, hence, $a^t x \ge \alpha$.
- Also, $a^t y = a^t (x^* a) = \alpha ||a||^2 < \alpha$



Lemma 9 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^t y \ge 0$, $b^t y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > y^t b = y^t A x \ge 0$$

Hence, at most one of the statements can hold.

Lemma 9 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^t y \ge 0$, $b^t y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > y^t b = y^t A x \ge 0$$

Hence, at most one of the statements can hold

Lemma 9 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^t y \ge 0$, $b^t y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > y^t b = y^t A x \ge 0$$

Hence, at most one of the statements can hold.

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$

We want to show that there is y with $A^t y \ge 0$, $b^t y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^t y \ge 0$, $b^t y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^t y \ge 0$, $b^t y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^t y \ge 0$, $b^t y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^ty \ge 0$, $b^ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^ty \ge 0$, $b^ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^t y \ge 0$, $b^t y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^t y \ge 0$, $b^t y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$$

Lemma 10 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^t y \ge 0$, $b^t y < 0$, $y \ge 0$

Rewrite the conditions:

1.
$$\exists x \in \mathbb{R}^n \text{ with } \begin{bmatrix} A I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$$

2.
$$\exists y \in \mathbb{R}^m \text{ with } \begin{bmatrix} A^t \\ I \end{bmatrix} y \ge 0, b^t y < 0$$

Lemma 10 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^t y \ge 0$, $b^t y < 0$, $y \ge 0$

Rewrite the conditions:

1.
$$\exists x \in \mathbb{R}^n \text{ with } \begin{bmatrix} A I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$$

2.
$$\exists y \in \mathbb{R}^m \text{ with } \begin{bmatrix} A^t \\ I \end{bmatrix} y \ge 0, b^t y < 0$$

$$P: z = \max\{c^t x \mid Ax \le b, x \ge 0\}$$

D:
$$w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$$

Theorem 11 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

 $z \le w$: follows from weak duality

 $z \le w$: follows from weak duality

 $z \geq w$:

 $z \le w$: follows from weak duality

 $z \ge w$:

We show $z < \alpha$ implies $w < \alpha$.

 $z \le w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$

$$s.t. \quad Ax \leq b$$

$$-c^t x \leq -\alpha$$

$$x \geq 0$$

 $z \leq w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$

$$s.t. \quad Ax \leq b$$

$$-c^t x \leq -\alpha$$

$$x \geq 0$$

$$\exists y \in \mathbb{R}^{m}; z \in \mathbb{R}$$

$$s.t. \quad A^{t}y - cz \geq 0$$

$$yb^{t} - \alpha z < 0$$

$$y, z \geq 0$$

 $z \leq w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$

$$s.t. \quad Ax \leq b$$

$$-c^t x \leq -\alpha$$

$$x \geq 0$$

$$\exists y \in \mathbb{R}^{m}; z \in \mathbb{R}$$

$$s.t. \quad A^{t}y - cz \geq 0$$

$$yb^{t} - \alpha z < 0$$

$$y, z \geq 0$$

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

$$\exists y \in \mathbb{R}^{m}; z \in \mathbb{R}$$

$$s.t. \quad A^{t}y - cz \geq 0$$

$$yb^{t} - \alpha z < 0$$

$$y, z \geq 0$$

$$\exists y \in \mathbb{R}^{m}; z \in \mathbb{R}$$

$$s.t. \quad A^{t}y - cz \geq 0$$

$$yb^{t} - \alpha z < 0$$

$$y, z \geq 0$$

If the solution y, z has z = 0 we have that

$$\exists y \in \mathbb{R}^m$$

$$s.t. \quad A^t y \geq 0$$

$$y b^t < 0$$

$$y \geq 0$$

is feasible.

$$\exists y \in \mathbb{R}^{m}; z \in \mathbb{R}$$

$$s.t. \quad A^{t}y - cz \geq 0$$

$$yb^{t} - \alpha z < 0$$

$$y, z \geq 0$$

If the solution y, z has z = 0 we have that

$$\exists y \in \mathbb{R}^m$$

$$s.t. \quad A^t y \geq 0$$

$$y b^t < 0$$

$$y \geq 0$$

is feasible. By Farkas lemma this gives that LP ${\cal P}$ is infeasible. Contradiction to the assumption of the lemma.

Hence, there exists a solution y, z with z > 0.

We can rescale this solution (scaling both y and z) s.t. z = 1.

Then y is feasible for the dual but $b^ty < lpha.$ This means that w < lpha.

Hence, there exists a solution y, z with z > 0.

We can rescale this solution (scaling both y and z) s.t. z = 1.

Then y is feasible for the dual but $b^ty<lpha$. This means that w<lpha .

Hence, there exists a solution y, z with z > 0.

We can rescale this solution (scaling both y and z) s.t. z = 1.

Then y is feasible for the dual but $b^ty<lpha$. This means that w<lpha.

Hence, there exists a solution y, z with z > 0.

We can rescale this solution (scaling both y and z) s.t. z = 1.

Then y is feasible for the dual but $b^t y < \alpha$. This means that $w < \alpha$.

Definition 12 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is LP in P?

Proof

Definition 12 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α . Suppose that $\alpha > \operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual
- A verifier can check that the associated dual solution fulfills all dual constraint and that it has dual cost $< \alpha$.

Definition 12 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α . Suppose that $\alpha > \operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraint and that it has dual cost $< \alpha$.

Definition 12 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α . Suppose that $\alpha > \operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraint and that it has dual cost $< \alpha$.

Complementary Slackness

Lemma 13

Assume a linear program $P = \max\{c^t x \mid Ax \leq b; x \geq 0\}$ has solution x^* and its dual $D = \min\{b^t y \mid A^t y \geq c; y \geq 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in P is not tight than $y_i^* = 0$.

Complementary Slackness

Lemma 13

Assume a linear program $P = \max\{c^t x \mid Ax \leq b; x \geq 0\}$ has solution x^* and its dual $D = \min\{b^t y \mid A^t y \geq c; y \geq 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in P is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^t x^* \le y^{*t} A x^* \le b^t y^*$$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^t x^* \le y^{*t} A x^* \le b^t y^*$$

Because of strong duality we then get

$$c^t x^* = y^{*t} A x^* = b^t y^*$$

This gives e.g.

$$\sum_{i} (y^t A - c^t)_j x_j^* = 0$$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^t x^* \le y^{*t} A x^* \le b^t y^*$$

Because of strong duality we then get

$$c^t x^* = y^{*t} A x^* = b^t y^*$$

This gives e.g.

$$\sum_{i} (y^t A - c^t)_j x_j^* = 0$$

From the constraint of the dual it follows that $y^t A \ge c^t$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^t A - c^t)_j > 0$ (the j-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

Brewer: find mix of ale and beer that maximizes profits

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

min
$$480C$$
 + $160H$ + $1190M$
s.t. $5C$ + $4H$ + $35M \ge 13$
 $15C$ + $4H$ + $20M \ge 23$
 $C, H, M \ge 0$

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous

Brewer: find mix of ale and beer that maximizes profits

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

min
$$480C + 160H + 1190M$$

s.t. $5C + 4H + 35M \ge 13$
 $15C + 4H + 20M \ge 23$
 $C, H, M \ge 0$

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous

Brewer: find mix of ale and beer that maximizes profits

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

min
$$480C$$
 + $160H$ + $1190M$
s.t. $5C$ + $4H$ + $35M \ge 13$
 $15C$ + $4H$ + $20M \ge 23$
 $C, H, M \ge 0$

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^tx\mid Ax\leq b+\varepsilon;x\geq 0\}$. Because of strong duality this is equal to

$$\begin{array}{ll}
\min & (b^t + \epsilon^t)y \\
\text{s.t.} & A^t y \ge c \\
y \ge 0
\end{array}$$

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

```
\begin{array}{ccc}
\min & (b^t + \epsilon^t)y \\
\text{s.t.} & A^t y \ge c \\
& y \ge 0
\end{array}
```


Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

```
\begin{array}{ll} \min & (b^t + \epsilon^t) y \\ \text{s.t.} & A^t y \ge c \\ & y \ge 0 \end{array}
```


Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

$$\begin{array}{lll}
\min & (b^t + \epsilon^t)y \\
\text{s.t.} & A^t y & \geq c \\
& y & \geq 0
\end{array}$$

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i arepsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

- If the brewer has slack of some resource (e.g. com) then hee
- is not willing to pay anything for it (corresponding dual variable is zero)
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewers of this resource in the profit of the present of the profit of the pro
 - Therefore its slack must be zero

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

```
If the brewer has slack of some resource (e.g. com) then hee
```


If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

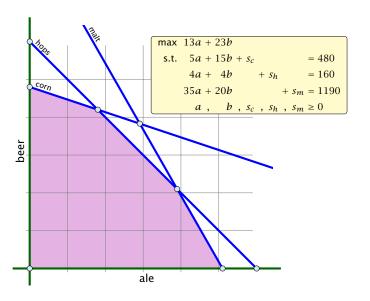
Therefore we can interpret the dual variables as marginal prices.

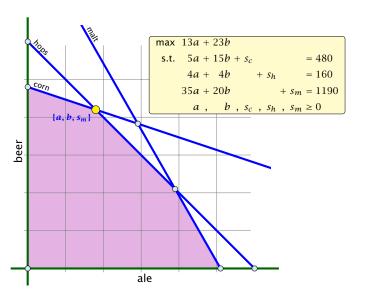
- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- ▶ If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource Therefore its slack must be zero.

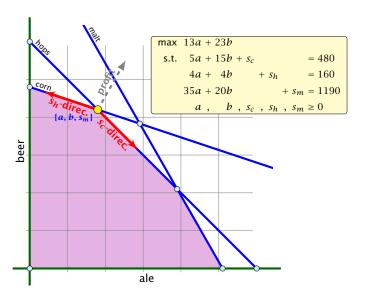
If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

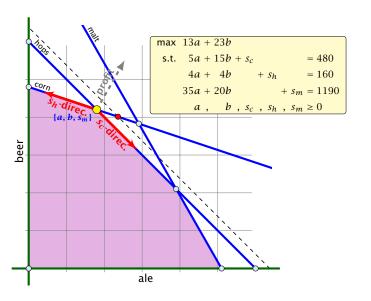
Therefore we can interpret the dual variables as marginal prices.

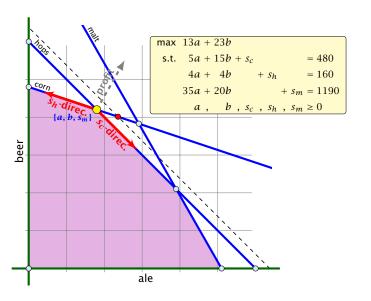
- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

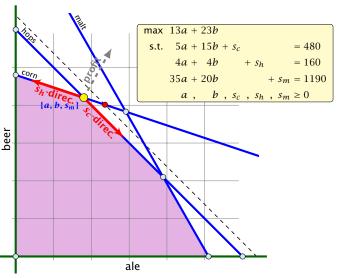




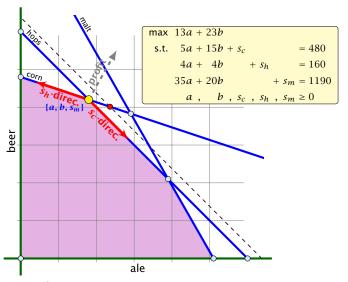




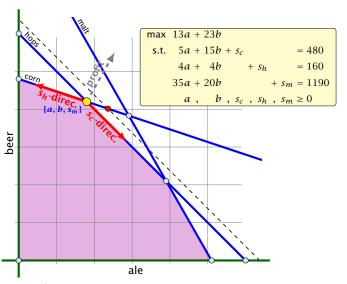




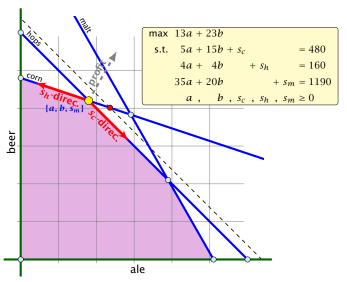
The change in profit when increasing hops by one unit is $-\tilde{c}_h$



The change in profit when increasing hops by one unit is $-\tilde{c}_h = -c_h + c_B^t A_B^{-1} A_{*h}$



The change in profit when increasing hops by one unit is $-\tilde{c}_h = -c_h + c_B^t A_B^{-1} A_{*h} = c_B^t A_B^{-1} e_h$.



The change in profit when increasing hops by one unit is $-\tilde{c}_h = -c_h + c_B^t A_B^{-1} A_{*h} = c_B^t A_B^{-1} e_h.$

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Definition 14

An (s,t)-flow in a (complete) directed graph $G=(V,V\times V,c)$ is a function $f:V\times V\mapsto \mathbb{R}^+_0$ that satisfies

1. For each edge (x, y)

$$0 \le f_{xy} \le c_{xy} .$$

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv}$$

(flow conservation constraints)

Definition 14

An (s,t)-flow in a (complete) directed graph $G=(V,V\times V,c)$ is a function $f:V\times V\mapsto \mathbb{R}^+_0$ that satisfies

1. For each edge (x, y)

$$0 \le f_{xy} \le c_{xy}$$
.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} .$$

(flow conservation constraints)

Definition 15

The value of an (s, t)-flow f is defined as

$$val(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} .$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value

Definition 15

The value of an (s, t)-flow f is defined as

$$val(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} .$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
s.t.	$f_{xy}(x, y \neq s, t)$:	$1\ell_{xy}-1p_x+1p_y$	≥	0
	$f_{sy}(y \neq s,t)$:	$1\ell_{sy}$ $+1p_y$	≥	1
	$f_{xs}(x \neq s,t)$:	$1\ell_{xs}$ $-1p_x$	≥	-1
	$f_{ty} (y \neq s, t)$:	$1\ell_{ty}$ $+1p_y$	≥	0
	$f_{xt} (x \neq s, t)$:	$1\ell_{xt}$ – $1p_x$	≥	0
	f_{st} :	$1\ell_{st}$	≥	1
	f_{ts} :	$1\ell_{ts}$	≥	-1
		ℓ_{xy}	≥	0


```
\begin{array}{lll} \min & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \; (x,y \neq s,t) \colon & 1\ell_{xy} - 1p_x + 1p_y \; \geq \; 0 \\ & f_{sy} \; (y \neq s,t) \colon & 1\ell_{sy} - \; 1 + 1p_y \; \geq \; 0 \\ & f_{xs} \; (x \neq s,t) \colon & 1\ell_{xs} - 1p_x + \; 1 \; \geq \; 0 \\ & f_{ty} \; (y \neq s,t) \colon & 1\ell_{ty} - \; 0 + 1p_y \; \geq \; 0 \\ & f_{xt} \; (x \neq s,t) \colon & 1\ell_{xt} - 1p_x + \; 0 \; \geq \; 0 \\ & f_{st} \colon & 1\ell_{st} - \; 1 + \; 0 \; \geq \; 0 \\ & f_{ts} \colon & 1\ell_{ts} - \; 0 + \; 1 \; \geq \; 0 \\ & \ell_{xy} \; \geq \; 0 \end{array}
```


min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. $f_{xy}(x, y \neq s, t) : 1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$f_{sy}(y \neq s, t) : 1\ell_{sy} - p_s + 1p_y \ge 0$$

$$f_{xs}(x \neq s, t) : 1\ell_{xs} - 1p_x + p_s \ge 0$$

$$f_{ty}(y \neq s, t) : 1\ell_{ty} - p_t + 1p_y \ge 0$$

$$f_{xt}(x \neq s, t) : 1\ell_{xt} - 1p_x + p_t \ge 0$$

$$f_{st} : 1\ell_{st} - p_s + p_t \ge 0$$

$$f_{ts} : 1\ell_{ts} - p_t + p_s \ge 0$$

$$\ell_{xy} \ge 0$$

with $p_t = 0$ and $p_s = 1$.

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

