Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 7 (Integrality Gap)
The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

Lemma 8

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

$$
\begin{aligned}
\hline \max & & \sum_{j} w_{j} z_{j} & \\
\text { s.t. } & \forall j & \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) & \geq z_{j} \\
& \forall i & y_{i} & \in\{0,1\} \\
& \forall j & z_{j} & \leq 1
\end{aligned}
$$

Consider: $\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right)$

- any solution can satisfy at most 3 clauses
- we can set $y_{1}=y_{2}=1 / 2$ in the LP; this allows to set $z_{1}=z_{2}=z_{3}=z_{4}=1$
- hence, the LP has value 4 .

Facility Location

Integer Program

\min	$\forall j \in D$	$\sum_{i \in F} f_{i} y_{i}+\sum_{i \in F} \sum_{j \in D} c_{i j} x_{i j}$	
$\mathrm{s.t}$.	$\sum_{i \in F} x_{i j}$	$=1$	
	$\forall i \in F, j \in D$	$x_{i j} \leq$	y_{i}
$\forall i \in F, j \in D$	$x_{i j}$	$\in\{0,1\}$	
$\forall i \in F$	y_{i}	$\in\{0,1\}$	

As usual we get an LP by relaxing the integrality constraints.

$$
s(c, f) \leq s\left(c, f^{\prime}\right)+s\left(c^{\prime}, f\right)+s\left(c^{\prime}, f^{\prime}\right)
$$

Facility Location

Dual Linear Program

\max		$\sum_{j \in D} v_{j}$	
s.t.	$\forall i \in F$	$\sum_{j \in D} w_{i j} \leq$	f_{i}
	$\forall i \in F, j \in D$	$v_{j}-w_{i j} \leq$	$c_{i j}$
	$\forall i \in F, j \in D$	$w_{i j}$	≥ 0

Facility Location

Definition 9
Given an LP solution $\left(x^{*}, y^{*}\right)$ we say that facility i neighbours client j if $x_{i j}>0$. Let $N(j)=\left\{i \in F: x_{i j}^{*}>0\right\}$.

Lemma 10
If $\left(x^{*}, y^{*}\right)$ is an optimal solution to the facility location LP and
(v^{*}, w^{*}) is an optimal dual solution, then $x_{i j}^{*}>0$ implies
$c_{i j} \leq v_{j}^{*}$.

Follows from slackness conditions.
Suppose we open set $S \subseteq F$ of facilities s.t. for all clients we have $S \cap N(j) \neq \emptyset$

Then every client j has a facility i s.t. assignment cost for this client is at most $c_{i j} \leq v_{j}^{*}$.

Hence, the total assignment cost is

$$
\sum_{j} c_{i_{j} j} \leq \sum_{j} v_{j}^{*} \leq \mathrm{OPT}
$$

where i_{j} is the facility that client j is assigned to.

Problem: Facility cost may be huge!

Suppose we can partition a subset $F^{\prime} \subseteq F$ of facilities into neighbour sets of some clients. I.e.

$$
F^{\prime}=\biguplus_{k} N\left(j_{k}\right)
$$

where j_{1}, j_{2}, \ldots form a subset of the clients.

Now in each set $N\left(j_{k}\right)$ we open the cheapest facility. Call it $f_{i_{k}}$.

We have

$$
f_{i_{k}}=f_{i_{k}} \sum_{i \in N\left(j_{k}\right)} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*} .
$$

Summing over all k gives

$$
\sum_{k} f_{i_{k}} \leq \sum_{k} \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*}=\sum_{i \in F^{\prime}} f_{i} y_{i}^{*} \leq \sum_{i \in F} f_{i} y_{i}^{*}
$$

Facility cost is at most the facility cost in an optimum solution.

Problem: so far clients $\boldsymbol{j}_{1}, \boldsymbol{j}_{2}, \ldots$ have a neighboring facility. What about the others?

Definition 11
Let $N^{2}(j)$ denote all neighboring clients of the neighboring facilities of client j.

Note that $N(j)$ is a set of facilities while $N^{2}(j)$ is a set of clients.

```
Algorithm 1 FacilityLocation
    \(C \leftarrow D / /\) unassigned clients
    \(k \leftarrow 0\)
    while \(C \neq 0\) do
        \(k \leftarrow k+1\)
        choose \(j_{k} \in C\) that minimizes \(v_{j}^{*}\)
        choose \(i_{k} \in N\left(j_{k}\right)\) as cheapest facility
        assign \(j_{k}\) and all unassigned clients in \(N^{2}\left(j_{k}\right)\) to \(i_{k}\)
        \(C \leftarrow C-\left\{j_{k}\right\}-N^{2}\left(j_{k}\right)\)
```

Facility cost of this algorithm is at most OPT because the sets $N\left(j_{k}\right)$ are disjoint.

Total assignment cost:

- Fix k; set $j=j_{k}$ and $i=i_{k}$. We know that $c_{i j} \leq v_{j}^{*}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.

$$
c_{i \ell} \leq c_{i j}+c_{h j}+c_{h \ell} \leq v_{j}^{*}+v_{j}^{*}+v_{\ell}^{*} \leq 3 v_{\ell}^{*}
$$

Summing this over all facilities gives that the total assignment cost is at most 3 - OPT. Hence, we get a 4 -approximation.

Observation:

- Suppose when choosing a client j_{k}, instead of opening the cheapest facility in its neighborhood we choose a random facility according to $x_{i j_{k}}^{*}$.
- Then we incur connection cost

$$
\sum_{i} c_{i j_{k}} x_{i j_{k}}^{*}
$$

for client j_{k}. (In the previous algorithm we estimated this by $v_{j_{k}}^{*}$).

- Define

$$
C_{j}^{*}=\sum_{i} c_{i j} x_{i j}^{*}
$$

to be the connection cost for client j.

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of some j_{k}). (recall that neighborhoods of different $j_{k}^{\prime} s$ are disjoint).

We open facility i with probability $x_{i j_{k}} \leq y_{i}$ (in case it is in some neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most

$$
\sum_{i \in F} f_{i} y_{i}
$$

In the above analysis we use the inequality

$$
\sum_{i \in F} f_{i} y_{i}^{*} \leq \mathrm{OPT}
$$

We know something stronger namely

$$
\sum_{i \in F} f_{i} y_{i}^{*}+\sum_{i \in F} \sum_{j \in D} c_{i j} x_{i j}^{*} \leq \mathrm{OPT}
$$

In the above analysis we use the inequality $\sum_{i \in F} f_{i} y_{i}^{*} \leq \mathrm{OPT}$ We know something stronger namely $\sum_{i \in F} f_{i} y_{i}^{*}+\sum_{i \in F} \sum_{j \in D} c_{i j} x_{i j}^{*} \leq \mathrm{OPT}$	
19 Facility Location	398

Algorithm 1 FacilityLocation	
$1: C \leftarrow D / /$ unassigned clients	
2: $k \leftarrow 0$	
3: while $C \neq 0$ do	
4:	$k \leftarrow k+1$
5:	choose $j_{k} \in C$ that minimizes $v_{j}^{*}+C_{j}^{*}$
6:	choose $i_{k} \in N\left(j_{k}\right)$ according to probability $x_{i j_{k}}$.
7:	assign j_{k} and all unassigned clients in $N^{2}\left(j_{k}\right)$ to i_{k}
8:	$C \leftarrow C-\left\{j_{k}\right\}-N^{2}\left(j_{k}\right)$

Total assignment cost:

- Fix k; set $j=j_{k}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.
- If we assign a client ℓ to the same facility as i we pay at most

$$
\sum_{i} c_{i j} x_{i j_{k}}^{*}+c_{h j}+c_{h \ell} \leq C_{j}^{*}+v_{j}^{*}+v_{\ell}^{*} \leq C_{\ell}^{*}+2 v_{\ell}^{*}
$$

Summing this over all clients gives that the total assignment cost is at most

$$
\sum_{j} C_{j}^{*}+\sum_{j} 2 v_{j}^{*} \leq \sum_{j} C_{j}^{*}+2 \mathrm{OPT}
$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

Adding the facility cost gives a 3-approximation.

Lemma 13
For $0 \leq \delta \leq 1$ we have that

$$
\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \leq e^{-U \delta^{2} / 3}
$$

and

$$
\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{L} \leq e^{-L \delta^{2} / 2}
$$

