Given a set L of (possible) locations for placing facilities and a set D of customers together with cost functions $s:D\times L\to \mathbb{R}^+$ and $o:L\to \mathbb{R}^+$ find a set of facility locations F together with an assignment $\phi:D\to F$ of customers to open facilities such that

$$\sum_{f \in F} o(f) + \sum_c s(c, \phi(c))$$

is minimized.

In the metric facility location problem we have

$$s(c,f) \le s(c,f') + s(c',f) + s(c',f')$$
.

Integer Program

As usual we get an LP by relaxing the integrality constraints.

Dual Linear Program

Definition 9

Given an LP solution (x^*, y^*) we say that facility i neighbours client j if $x_{ij} > 0$. Let $N(j) = \{i \in F : x_{ij}^* > 0\}$.

Lemma 10

If (x^*, y^*) is an optimal solution to the facility location LP and (v^*, w^*) is an optimal dual solution, then $x^*_{ij} > 0$ implies $c_{ij} \leq v^*_j$.

Follows from slackness conditions.

Suppose we open set $S \subseteq F$ of facilities s.t. for all clients we have $S \cap N(j) \neq \emptyset$.

Then every client j has a facility i s.t. assignment cost for this client is at most $c_{ij} \leq v_j^*$.

Hence, the total assignment cost is

$$\sum_{j} c_{i_j j} \le \sum_{j} v_j^* \le \text{OPT} ,$$

where i_i is the facility that client j is assigned to.

Problem: Facility cost may be huge!

Suppose we can partition a subset $F' \subseteq F$ of facilities into neighbour sets of some clients. I.e.

$$F' = \biguplus_k N(j_k)$$

where j_1, j_2, \ldots form a subset of the clients.

Now in each set $N(j_k)$ we open the cheapest facility. Call it f_{i_k} .

We have

$$f_{i_k} = f_{i_k} \sum_{i \in N(j_k)} x_{ij_k}^* \leq \sum_{i \in N(j_k)} f_i x_{ij_k}^* \leq \sum_{i \in N(j_k)} f_i y_i^* \ .$$

Summing over all k gives

$$\sum_{k} f_{i_k} \leq \sum_{k} \sum_{i \in N(j_k)} f_i \mathcal{Y}_i^* = \sum_{i \in F'} f_i \mathcal{Y}_i^* \leq \sum_{i \in F} f_i \mathcal{Y}_i^*$$

Facility cost is at most the facility cost in an optimum solution.

Problem: so far clients j_1, j_2, \ldots have a neighboring facility. What about the others?

Definition 11

Let $N^2(j)$ denote all neighboring clients of the neighboring facilities of client j.

Note that N(j) is a set of facilities while $N^2(j)$ is a set of clients.

Algorithm 1 FacilityLocation

1: $C \leftarrow D//$ unassigned clients 2: $k \leftarrow 0$ 3: **while** $C \neq 0$ **do** 4: $k \leftarrow k + 1$ 5: choose $j_k \in C$ that minimizes v_j^* 6: choose $i_k \in N(j_k)$ as cheapest facility 7: assign j_k and all unassigned clients in $N^2(j_k)$ to i_k 8: $C \leftarrow C - \{j_k\} - N^2(j_k)$

Facility cost of this algorithm is at most OPT because the sets $N(j_k)$ are disjoint.

Total assignment cost:

- Fix k; set $j = j_k$ and $i = i_k$. We know that $c_{ij} \le v_i^*$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).

$$c_{i\ell} \le c_{ij} + c_{hj} + c_{h\ell} \le v_j^* + v_j^* + v_\ell^* \le 3v_\ell^*$$

Summing this over all facilities gives that the total assignment cost is at most $3 \cdot OPT$. Hence, we get a 4-approximation.

In the above analysis we use the inequality

$$\sum_{i \in F} f_i y_i^* \le \text{OPT} .$$

We know something stronger namely

$$\sum_{i \in F} f_i y_i^* + \sum_{i \in F} \sum_{j \in D} c_{ij} x_{ij}^* \le \text{OPT} \ .$$

Observation:

- Suppose when choosing a client j_k , instead of opening the cheapest facility in its neighborhood we choose a random facility according to $x_{ij_k}^*$.
- Then we incur connection cost

$$\sum_{i} c_{ij_k} x_{ij_k}^*$$

for client j_k . (In the previous algorithm we estimated this by $v_{j_k}^*$).

Define

$$C_j^* = \sum_i c_{ij} x_{ij}^*$$

to be the connection cost for client j.

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of some j_k). (recall that neighborhoods of different $j'_k s$ are disjoint).

We open facility i with probability $x_{ij_k} \le y_i$ (in case it is in some neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most

$$\sum_{i \in F} f_i y_i$$
.

Algorithm 1 FacilityLocation

1: $C \leftarrow D//$ unassigned clients 2: $k \leftarrow 0$ 3: **while** $C \neq 0$ **do** 4: $k \leftarrow k + 1$ 5: choose $j_k \in C$ that minimizes $v_j^* + C_j^*$ 6: choose $i_k \in N(j_k)$ according to probability x_{ij_k} . 7: assign j_k and all unassigned clients in $N^2(j_k)$ to i_k 8: $C \leftarrow C - \{j_k\} - N^2(j_k)$

Total assignment cost:

- Fix k; set $j = j_k$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).
- If we assign a client ℓ to the same facility as i we pay at most

$$\sum_{i} c_{ij} x_{ijk}^* + c_{hj} + c_{h\ell} \le C_j^* + v_j^* + v_\ell^* \le C_\ell^* + 2v_\ell^*$$

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{i} C_{j}^{*} + \sum_{i} 2v_{j}^{*} \le \sum_{i} C_{j}^{*} + 2OPT$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

Adding the facility cost gives a 3-approximation.