Facility Location

Given a set L of (possible) locations for placing facilities and a set D of customers together with cost functions $s: D \times L \rightarrow \mathbb{R}^{+}$ and $o: L \rightarrow \mathbb{R}^{+}$find a set of facility locations F together with an assignment $\phi: D \rightarrow F$ of customers to open facilities such that

$$
\sum_{f \in F} o(f)+\sum_{c} s(c, \phi(c))
$$

is minimized.
In the metric facility location problem we have

$$
s(c, f) \leq s\left(c, f^{\prime}\right)+s\left(c^{\prime}, f\right)+s\left(c^{\prime}, f^{\prime}\right) .
$$

Facility Location

Integer Program

$$
\begin{array}{rrrl}
\text { min } & \sum_{i \in F} f_{i} y_{i}+\sum_{i \in F} \sum_{j \in D} c_{i j} x_{i j} & \\
\mathrm{s.t.} & \forall j \in D & \sum_{i \in F} x_{i j} & =1 \\
& x_{i j} & \leq y_{i} \\
\forall i \in F, j \in D & x_{i j} & \in\{0,1\} \\
\forall i \in F, j \in D & y_{i} & \in\{0,1\} \\
& \forall i \in F &
\end{array}
$$

As usual we get an LP by relaxing the integrality constraints.

Facility Location

Dual Linear Program

| \max | | $\sum_{j \in D} v_{j}$ | |
| ---: | ---: | ---: | :--- | :--- |
| s.t. | $\forall i \in F$ | $\sum_{j \in D} w_{i j}$ | $\leq f_{i}$ |
| | $\forall i \in F, j \in D$ | $v_{j}-w_{i j}$ | $\leq c_{i j}$ |
| | $\forall i \in F, j \in D$ | $w_{i j}$ | ≥ 0 |

Facility Location

Definition 9
Given an LP solution (x^{*}, y^{*}) we say that facility i neighbours client j if $x_{i j}>0$. Let $N(j)=\left\{i \in F: x_{i j}^{*}>0\right\}$.

Lemma 10

If $\left(x^{*}, y^{*}\right)$ is an optimal solution to the facility location LP and
$\left(v^{*}, w^{*}\right)$ is an optimal dual solution, then $x_{i j}^{*}>0$ implies
$c_{i j} \leq v_{j}^{*}$.
Follows from slackness conditions.

Suppose we open set $S \subseteq F$ of facilities s.t. for all clients we have $S \cap N(j) \neq \emptyset$.

Suppose we open set $S \subseteq F$ of facilities s.t. for all clients we have $S \cap N(j) \neq \emptyset$.

Then every client j has a facility i s.t. assignment cost for this client is at most $c_{i j} \leq v_{j}^{*}$.

Suppose we open set $S \subseteq F$ of facilities s.t. for all clients we have $S \cap N(j) \neq \emptyset$.

Then every client j has a facility i s.t. assignment cost for this client is at most $c_{i j} \leq v_{j}^{*}$.

Hence, the total assignment cost is

$$
\sum_{j} c_{i_{j} j} \leq \sum_{j} v_{j}^{*} \leq \mathrm{OPT}
$$

where i_{j} is the facility that client j is assigned to.

Problem: Facility cost may be huge!

Problem: Facility cost may be huge!

Suppose we can partition a subset $F^{\prime} \subseteq F$ of facilities into neighbour sets of some clients. I.e.

$$
F^{\prime}=\biguplus_{k} N\left(j_{k}\right)
$$

where j_{1}, j_{2}, \ldots form a subset of the clients.

Now in each set $N\left(j_{k}\right)$ we open the cheapest facility. Call it $f_{i_{k}}$.
We have

$$
f_{i_{k}}
$$

Now in each set $N\left(j_{k}\right)$ we open the cheapest facility. Call it $f_{i_{k}}$.
We have

$$
f_{i_{k}}=f_{i_{k}} \sum_{i \in N\left(j_{k}\right)} x_{i j_{k}}^{*}
$$

Now in each set $N\left(j_{k}\right)$ we open the cheapest facility. Call it $f_{i_{k}}$.
We have

$$
f_{i_{k}}=f_{i_{k}} \sum_{i \in N\left(j_{k}\right)} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} x_{i j_{k}}^{*}
$$

Now in each set $N\left(j_{k}\right)$ we open the cheapest facility. Call it $f_{i_{k}}$.
We have

$$
f_{i_{k}}=f_{i_{k}} \sum_{i \in N\left(j_{k}\right)} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*}
$$

Now in each set $N\left(j_{k}\right)$ we open the cheapest facility. Call it $f_{i_{k}}$.
We have

$$
f_{i_{k}}=f_{i_{k}} \sum_{i \in N\left(j_{k}\right)} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*} .
$$

Summing over all k gives

$$
\sum_{k} f_{i_{k}}
$$

Now in each set $N\left(j_{k}\right)$ we open the cheapest facility. Call it $f_{i_{k}}$.
We have

$$
f_{i_{k}}=f_{i_{k}} \sum_{i \in N\left(j_{k}\right)} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*} .
$$

Summing over all k gives

$$
\sum_{k} f_{i_{k}} \leq \sum_{k} \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*}
$$

Now in each set $N\left(j_{k}\right)$ we open the cheapest facility. Call it $f_{i_{k}}$.
We have

$$
f_{i_{k}}=f_{i_{k}} \sum_{i \in N\left(j_{k}\right)} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*} .
$$

Summing over all k gives

$$
\sum_{k} f_{i_{k}} \leq \sum_{k} \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*}=\sum_{i \in F^{\prime}} f_{i} y_{i}^{*}
$$

Now in each set $N\left(j_{k}\right)$ we open the cheapest facility. Call it $f_{i_{k}}$.
We have

$$
f_{i_{k}}=f_{i_{k}} \sum_{i \in N\left(j_{k}\right)} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*} .
$$

Summing over all k gives

$$
\sum_{k} f_{i_{k}} \leq \sum_{k} \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*}=\sum_{i \in F^{\prime}} f_{i} y_{i}^{*} \leq \sum_{i \in F} f_{i} y_{i}^{*}
$$

Now in each set $N\left(j_{k}\right)$ we open the cheapest facility. Call it $f_{i_{k}}$.
We have

$$
f_{i_{k}}=f_{i_{k}} \sum_{i \in N\left(j_{k}\right)} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*} .
$$

Summing over all k gives

$$
\sum_{k} f_{i_{k}} \leq \sum_{k} \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*}=\sum_{i \in F^{\prime}} f_{i} y_{i}^{*} \leq \sum_{i \in F} f_{i} y_{i}^{*}
$$

Facility cost is at most the facility cost in an optimum solution.

Problem: so far clients $\boldsymbol{j}_{1}, \boldsymbol{j}_{2}, \ldots$ have a neighboring facility. What about the others?

Problem: so far clients $\boldsymbol{j}_{1}, \boldsymbol{j}_{2}, \ldots$ have a neighboring facility. What about the others?

Definition 11

Let $N^{2}(j)$ denote all neighboring clients of the neighboring facilities of client j.

Problem: so far clients $\boldsymbol{j}_{1}, \boldsymbol{j}_{2}, \ldots$ have a neighboring facility. What about the others?

Definition 11

Let $N^{2}(j)$ denote all neighboring clients of the neighboring facilities of client j.

Note that $N(j)$ is a set of facilities while $N^{2}(j)$ is a set of clients.

```
Algorithm 1 FacilityLocation
    1: \(C \leftarrow D / /\) unassigned clients
    2: \(k \leftarrow 0\)
    3: while \(C \neq 0\) do
    4: \(\quad k \leftarrow k+1\)
    5: \(\quad\) choose \(j_{k} \in C\) that minimizes \(v_{j}^{*}\)
    6: \(\quad\) choose \(i_{k} \in N\left(j_{k}\right)\) as cheapest facility
    7: \(\quad\) assign \(j_{k}\) and all unassigned clients in \(N^{2}\left(j_{k}\right)\) to \(i_{k}\)
    8: \(\quad C \leftarrow C-\left\{j_{k}\right\}-N^{2}\left(j_{k}\right)\)
```

Facility cost of this algorithm is at most OPT because the sets $N\left(j_{k}\right)$ are disjoint.

Facility cost of this algorithm is at most OPT because the sets $N\left(j_{k}\right)$ are disjoint.

Total assignment cost:

- Fix k; set $j=j_{k}$ and $i=i_{k}$. We know that $c_{i j} \leq v_{j}^{*}$.

Facility cost of this algorithm is at most OPT because the sets $N\left(j_{k}\right)$ are disjoint.

Total assignment cost:

- Fix k; set $j=j_{k}$ and $i=i_{k}$. We know that $c_{i j} \leq v_{j}^{*}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.

Facility cost of this algorithm is at most OPT because the sets $N\left(j_{k}\right)$ are disjoint.

Total assignment cost:

- Fix k; set $j=j_{k}$ and $i=i_{k}$. We know that $c_{i j} \leq v_{j}^{*}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.

$$
c_{i \ell}
$$

Facility cost of this algorithm is at most OPT because the sets $N\left(j_{k}\right)$ are disjoint.

Total assignment cost:

- Fix k; set $j=j_{k}$ and $i=i_{k}$. We know that $c_{i j} \leq v_{j}^{*}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.

$$
c_{i \ell} \leq c_{i j}+c_{h j}+c_{h \ell}
$$

Facility cost of this algorithm is at most OPT because the sets $N\left(j_{k}\right)$ are disjoint.

Total assignment cost:

- Fix k; set $j=j_{k}$ and $i=i_{k}$. We know that $c_{i j} \leq v_{j}^{*}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.

$$
c_{i \ell} \leq c_{i j}+c_{h j}+c_{h \ell} \leq v_{j}^{*}+v_{j}^{*}+v_{\ell}^{*}
$$

Facility cost of this algorithm is at most OPT because the sets $N\left(j_{k}\right)$ are disjoint.

Total assignment cost:

- Fix k; set $j=j_{k}$ and $i=i_{k}$. We know that $c_{i j} \leq v_{j}^{*}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.

$$
c_{i \ell} \leq c_{i j}+c_{h j}+c_{h \ell} \leq v_{j}^{*}+v_{j}^{*}+v_{\ell}^{*} \leq 3 v_{\ell}^{*}
$$

Facility cost of this algorithm is at most OPT because the sets $N\left(j_{k}\right)$ are disjoint.

Total assignment cost:

- Fix k; set $j=j_{k}$ and $i=i_{k}$. We know that $c_{i j} \leq v_{j}^{*}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.

$$
c_{i \ell} \leq c_{i j}+c_{h j}+c_{h \ell} \leq v_{j}^{*}+v_{j}^{*}+v_{\ell}^{*} \leq 3 v_{\ell}^{*}
$$

Summing this over all facilities gives that the total assignment cost is at most 3 - OPT. Hence, we get a 4 -approximation.

In the above analysis we use the inequality

$$
\sum_{i \in F} f_{i} y_{i}^{*} \leq \mathrm{OPT}
$$

In the above analysis we use the inequality

$$
\sum_{i \in F} f_{i} y_{i}^{*} \leq \mathrm{OPT}
$$

We know something stronger namely

$$
\sum_{i \in F} f_{i} y_{i}^{*}+\sum_{i \in F} \sum_{j \in D} c_{i j} x_{i j}^{*} \leq \mathrm{OPT}
$$

Observation:

- Suppose when choosing a client j_{k}, instead of opening the cheapest facility in its neighborhood we choose a random facility according to $x_{i j_{k}}^{*}$.

Observation:

- Suppose when choosing a client j_{k}, instead of opening the cheapest facility in its neighborhood we choose a random facility according to $x_{i j_{k}}^{*}$.
- Then we incur connection cost

$$
\sum_{i} c_{i j_{k}} x_{i j_{k}}^{*}
$$

for client j_{k}. (In the previous algorithm we estimated this by $v_{j_{k}}^{*}$.

Observation:

- Suppose when choosing a client j_{k}, instead of opening the cheapest facility in its neighborhood we choose a random facility according to $x_{i j_{k}}^{*}$.
- Then we incur connection cost

$$
\sum_{i} c_{i j_{k}} x_{i j_{k}}^{*}
$$

for client j_{k}. (In the previous algorithm we estimated this by $v_{j_{k}}^{*}$.

- Define

$$
C_{j}^{*}=\sum_{i} c_{i j} x_{i j}^{*}
$$

to be the connection cost for client j.

What will our facility cost be?

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of some j_{k}). (recall that neighborhoods of different $j_{k}^{\prime} s$ are disjoint).

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of some j_{k}). (recall that neighborhoods of different $j_{k}^{\prime} s$ are disjoint).

We open facility i with probability $x_{i j_{k}} \leq y_{i}$ (in case it is in some neighborhood; otw. we open it with probability zero).

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of some j_{k}). (recall that neighborhoods of different $j_{k}^{\prime} s$ are disjoint).

We open facility i with probability $x_{i j_{k}} \leq y_{i}$ (in case it is in some neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most

$$
\sum_{i \in F} f_{i} y_{i}
$$

```
Algorithm 1 FacilityLocation
    1: \(C \leftarrow D / /\) unassigned clients
    2: \(k \leftarrow 0\)
    3: while \(C \neq 0\) do
    4: \(\quad k \leftarrow k+1\)
    5: \(\quad\) choose \(j_{k} \in C\) that minimizes \(v_{j}^{*}+C_{j}^{*}\)
    6: \(\quad\) choose \(i_{k} \in N\left(j_{k}\right)\) according to probability \(x_{i j_{k}}\).
    7: \(\quad\) assign \(j_{k}\) and all unassigned clients in \(N^{2}\left(j_{k}\right)\) to \(i_{k}\)
    8: \(\quad C \leftarrow C-\left\{j_{k}\right\}-N^{2}\left(j_{k}\right)\)
```


Total assignment cost:

- Fix k; set $j=j_{k}$.

Total assignment cost:

- Fix k; set $j=j_{k}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.

Total assignment cost:

- Fix k; set $j=j_{k}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.
- If we assign a client ℓ to the same facility as i we pay at most

Total assignment cost:

- Fix k; set $j=j_{k}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.
- If we assign a client ℓ to the same facility as i we pay at most

$$
\sum_{i} c_{i j} x_{i j_{k}}^{*}+c_{h j}+c_{h \ell}
$$

Total assignment cost:

- Fix k; set $j=j_{k}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.
- If we assign a client ℓ to the same facility as i we pay at most

$$
\sum_{i} c_{i j} x_{i j_{k}}^{*}+c_{h j}+c_{h \ell} \leq C_{j}^{*}+v_{j}^{*}+v_{\ell}^{*}
$$

Total assignment cost:

- Fix k; set $j=j_{k}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.
- If we assign a client ℓ to the same facility as i we pay at most

$$
\sum_{i} c_{i j} x_{i j_{k}}^{*}+c_{h j}+c_{h \ell} \leq C_{j}^{*}+v_{j}^{*}+v_{\ell}^{*} \leq C_{\ell}^{*}+2 v_{\ell}^{*}
$$

Total assignment cost:

- Fix k; set $j=j_{k}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.
- If we assign a client ℓ to the same facility as i we pay at most

$$
\sum_{i} c_{i j} x_{i j_{k}}^{*}+c_{h j}+c_{h \ell} \leq C_{j}^{*}+v_{j}^{*}+v_{\ell}^{*} \leq C_{\ell}^{*}+2 v_{\ell}^{*}
$$

Total assignment cost:

- Fix k; set $j=j_{k}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.
- If we assign a client ℓ to the same facility as i we pay at most

$$
\sum_{i} c_{i j} x_{i j_{k}}^{*}+c_{h j}+c_{h \ell} \leq C_{j}^{*}+v_{j}^{*}+v_{\ell}^{*} \leq C_{\ell}^{*}+2 v_{\ell}^{*}
$$

Summing this over all clients gives that the total assignment cost is at most

$$
\sum_{j} C_{j}^{*}+\sum_{j} 2 v_{j}^{*} \leq \sum_{j} C_{j}^{*}+2 \mathrm{OPT}
$$

Total assignment cost:

- Fix k; set $j=j_{k}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.
- If we assign a client ℓ to the same facility as i we pay at most

$$
\sum_{i} c_{i j} x_{i j_{k}}^{*}+c_{h j}+c_{h \ell} \leq C_{j}^{*}+v_{j}^{*}+v_{\ell}^{*} \leq C_{\ell}^{*}+2 v_{\ell}^{*}
$$

Summing this over all clients gives that the total assignment cost is at most

$$
\sum_{j} C_{j}^{*}+\sum_{j} 2 v_{j}^{*} \leq \sum_{j} C_{j}^{*}+2 \mathrm{OPT}
$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

Total assignment cost:

- Fix k; set $j=j_{k}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.
- If we assign a client ℓ to the same facility as i we pay at most

$$
\sum_{i} c_{i j} x_{i j_{k}}^{*}+c_{h j}+c_{h \ell} \leq C_{j}^{*}+v_{j}^{*}+v_{\ell}^{*} \leq C_{\ell}^{*}+2 v_{\ell}^{*}
$$

Summing this over all clients gives that the total assignment cost is at most

$$
\sum_{j} C_{j}^{*}+\sum_{j} 2 v_{j}^{*} \leq \sum_{j} C_{j}^{*}+2 \mathrm{OPT}
$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

Adding the facility cost gives a 3-approximation.

