	$T \leftarrow D//$ unassigned clients
2: k	$\leftarrow 0$
	while $C \neq 0$ do
	$k \leftarrow k + 1$
5:	choose $j_k \in C$ that minimizes $v_j^* + \mathcal{C}_j^*$
	choose $i_k \in N(j_k)$ according to probability x_{ij_k} .
7:	assign j_k and all unassigned clients in $N^2(j_k)$ to i_k
8:	$C \leftarrow C - \{j_k\} - N^2(j_k)$

Lemma 12 (Chernoff Bounds)

Let X_1, \ldots, X_n be *n* independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^{n} X_i$ and $\mu = E[X], L \le \mu \le U, \text{ and } \delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$

and

$$\Pr[X \le (1-\delta)L] < \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L$$

EADS II

||||||| © Harald Räcke

20.1 Chernoff Bounds

Total assignment cost:

- Fix k; set $j = j_k$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).
- If we assign a client ℓ to the same facility as *i* we pay at most

$$\sum_{i} c_{ij} x_{ijk}^* + c_{hj} + c_{h\ell} \le C_j^* + v_j^* + v_\ell^* \le C_\ell^* + 2v_\ell^*$$

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{j} C_{j}^{*} + \sum_{j} 2v_{j}^{*} \leq \sum_{j} C_{j}^{*} + 2\text{OPT}$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

Adding the facility cost gives a 3-approximation.

Lemma 13 For $0 \le \delta \le 1$ we have that

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta^2/3}$$

and

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

403

20.1 Chernoff Bounds

Integer Multicommodity Flows

- Given s_i - t_i pairs in a graph.
- Connect each pair by a paths such that not too many path use any given edge.

20.1 Chernoff Bounds Räcke 405
Kacke

Theorem 14

If $W^* \ge c \ln n$ for some constant c, then with probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n}$.

Integer Multicommodity Flows

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set \mathcal{P}_i at random according to the probability distribution given by the Linear Programming Solution.

EADS II © Harald Räcke

EADS II © Harald Räcke 20.1 Chernoff Bounds

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge *e* is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_i \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

406

Integer Multicommodity Flows

Choose $\delta = \sqrt{(c \ln n)/W^*}$.

Then

$$\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$$

EADS II © Harald Räcke	20.1 Chernoff Bounds	

Repetition: Primal Dual for Set Cover

Algorithm:

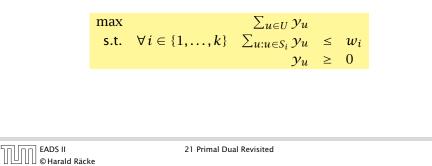
- Start with $\gamma = 0$ (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- \blacktriangleright While x not feasible
 - Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_i set $x_i = 1$ (add this set to your solution).

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min		$\sum_{i=1}^k w_i x_i$			
s.t.	$\forall u \in U$	$\sum_{i:u\in S_i} x_i$	\geq	1	
	$\forall i \in \{1,\ldots,k\}$	x_i	≥	0	

Dual Formulation:



Repetition: Primal Dual for Set Cover Analysis: For every set S_i with $x_i = 1$ we have $\sum_{e \in S_i} y_e = w_j$ Hence our cost is $\sum_{j} w_{j} = \sum_{j} \sum_{e \in S_{i}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e} \le f \cdot \sum_{e} y_{e} \le f \cdot \text{OPT}$ EADS II © Harald Räcke

EADS II |∐|||| © Harald Räcke 409

410