Algorithm 1 FacilityLocation	
$1: C \leftarrow D / /$ unassigned clients	
2: $k \leftarrow 0$	
3: while $C \neq 0$ do	
4:	$k \leftarrow k+1$
5:	choose $j_{k} \in C$ that minimizes $v_{j}^{*}+C_{j}^{*}$
6:	choose $i_{k} \in N\left(j_{k}\right)$ according to probability $x_{i j_{k}}$.
7:	assign j_{k} and all unassigned clients in $N^{2}\left(j_{k}\right)$ to i_{k}
8:	$C \leftarrow C-\left\{j_{k}\right\}-N^{2}\left(j_{k}\right)$

Total assignment cost:

- Fix k; set $j=j_{k}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.
- If we assign a client ℓ to the same facility as i we pay at most

$$
\sum_{i} c_{i j} x_{i j_{k}}^{*}+c_{h j}+c_{h \ell} \leq C_{j}^{*}+v_{j}^{*}+v_{\ell}^{*} \leq C_{\ell}^{*}+2 v_{\ell}^{*}
$$

Summing this over all clients gives that the total assignment cost is at most

$$
\sum_{j} C_{j}^{*}+\sum_{j} 2 v_{j}^{*} \leq \sum_{j} C_{j}^{*}+2 \mathrm{OPT}
$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

Adding the facility cost gives a 3-approximation.

Lemma 13
For $0 \leq \delta \leq 1$ we have that

$$
\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \leq e^{-U \delta^{2} / 3}
$$

and

$$
\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{L} \leq e^{-L \delta^{2} / 2}
$$

Integer Multicommodity Flows

- Given $s_{i}-t_{i}$ pairs in a graph.
- Connect each pair by a paths such that not too many path use any given edge.

$$
\begin{array}{rlrl}
\min & & \\
\text { s.t. } & \forall i \quad \sum_{p \in \mathcal{P}_{i}} x_{p} & =1 \\
& & \sum_{p: e \in p} x_{p} & \leq W \\
x_{p} & \in\{0,1\}
\end{array}
$$

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set \mathcal{P}_{i} at random according to the probability distribution given by the Linear Programming Solution.

Integer Multicommodity Flows

Let X_{e}^{i} be a random variable that indicates whether the path for $s_{i}-t_{i}$ uses edge e.

Then the number of paths using edge e is $Y_{e}=\sum_{i} X_{e}^{i}$.

$$
E\left[Y_{e}\right]=\sum_{i} \sum_{p \in \mathcal{P}_{i}: e \in p} x_{p}^{*}=\sum_{p: e \in P} x_{p}^{*} \leq W^{*}
$$

Integer Multicommodity Flows

Choose $\delta=\sqrt{(c \ln n) / W^{*}}$.

Then

$$
\operatorname{Pr}\left[Y_{e} \geq(1+\delta) W^{*}\right]<e^{-W^{*} \delta^{2} / 3}=\frac{1}{n^{c / 3}}
$$

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with $y=0$ (feasible dual solution).

Start with $x=0$ (integral primal solution that may be infeasible).

- While x not feasible
- Identify an element e that is not covered in current primal integral solution.
- Increase dual variable y_{e} until a dual constraint becomes tight (maybe increase by 0 !)
- If this is the constraint for set S_{j} set $x_{j}=1$ (add this set to your solution).

Repetition: Primal Dual for Set Cover

Primal Relaxation:

\[

\]

Dual Formulation:

\max		
s.t.	$\forall i \in\{1, \ldots, k\}$	$\sum_{u \in U} y_{u}$
$\sum_{u: u \in S_{i}} y_{u}$	$\leq w_{i}$	
y_{u}	≥ 0	

Repetition: Primal Dual for Set Cover

Analysis:

- For every set S_{j} with $x_{j}=1$ we have

$$
\sum_{e \in S_{j}} y_{e}=w_{j}
$$

- Hence our cost is

$$
\sum_{j} w_{j}=\sum_{j} \sum_{e \in S_{j}} y_{e}=\sum_{e}\left|\left\{j: e \in S_{j}\right\}\right| \cdot y_{e} \leq f \cdot \sum_{e} y_{e} \leq f \cdot \mathrm{OPT}
$$

