Lemma 12 (Chernoff Bounds)

Let X_{1}, \ldots, X_{n} be n independent 0-1 random variables, not necessarily identically distributed. Then for $X=\sum_{i=1}^{n} X_{i}$ and $\mu=E[X], L \leq \mu \leq U$, and $\delta>0$

$$
\operatorname{Pr}[X \geq(1+\delta) U]<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U}
$$

and

$$
\operatorname{Pr}[X \leq(1-\delta) L]<\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{L}
$$

Lemma 13

For $0 \leq \delta \leq 1$ we have that

$$
\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \leq e^{-U \delta^{2} / 3}
$$

and

$$
\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{L} \leq e^{-L \delta^{2} / 2}
$$

Integer Multicommodity Flows

- Given $s_{i}-t_{i}$ pairs in a graph.
- Connect each pair by a paths such that not too many path use any given edge.

\min		W	
s.t.	$\forall i \quad \sum_{p \in \mathcal{P}_{i}} x_{p}$	$=1$	
		$\sum_{p: e \in p} x_{p}$	$\leq W$
		x_{p}	$\in\{0,1\}$

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set \mathcal{P}_{i} at random according to the probability distribution given by the Linear Programming Solution.

Theorem 14
If $W^{*} \geq c \ln n$ for some constant c, then with probability at least $n^{-c / 3}$ the total number of paths using any edge is at most $W^{*}+\sqrt{c W^{*} \ln n}$.

Integer Multicommodity Flows

Let X_{e}^{i} be a random variable that indicates whether the path for $s_{i}-t_{i}$ uses edge e.

Then the number of paths using edge e is $Y_{e}=\sum_{i} X_{e}^{i}$.

$$
E\left[Y_{e}\right]=\sum_{i} \sum_{p \in \mathcal{P}_{i}: e \in p} x_{p}^{*}=\sum_{p: e \in P} x_{p}^{*} \leq W^{*}
$$

Integer Multicommodity Flows

Choose $\delta=\sqrt{(c \ln n) / W^{*}}$.
Then

$$
\operatorname{Pr}\left[Y_{e} \geq(1+\delta) W^{*}\right]<e^{-W^{*} \delta^{2} / 3}=\frac{1}{n^{c / 3}}
$$

