
A crucial ingredient for the design and analysis of approximation

algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization

problems).

Therefore Linear Programs or Integer Linear Programs play a

vital role in the design of many approximation algorithms.
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Definition 2

An Integer Linear Program or Integer Program is a Linear

Program in which all variables are required to be integral.

Definition 3

A Mixed Integer Program is a Linear Program in which a subset

of the variables are required to be integral.
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Many important combinatorial optimization problems can be

formulated in the form of an Integer Program.

Note that solving Integer Programs in general is

NP-complete!
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Set Cover

Given a ground set U , a collection of subsets S1, . . . , Sk ⊆ U ,

where the i-th subset Si has weight/cost wi. Find a collection

I ⊆ {1, . . . , k} such that

∀u ∈ U∃i ∈ I : u ∈ Si (every element is covered)

and ∑
i∈I
wi is minimized.
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IP-Formulation of Set Cover

min
∑
iwixi

s.t. ∀u ∈ U
∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ≥ 0

∀i ∈ {1, . . . , k} xi integral
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IP-Formulation of Set Cover

min
∑
iwixi

s.t. ∀u ∈ U
∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ {0,1}
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Vertex Cover

Given a graph G = (V , E) and a weight wv for every node. Find a

vertex subset S ⊆ V of minimum weight such that every edge is

incident to at least one vertex in S.
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IP-Formulation of Vertex Cover

min
∑
v∈V wvxv

s.t. ∀e = (i, j) ∈ E xi + xj ≥ 1

∀v ∈ V xv ∈ {0,1}
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Maximum Weighted Matching

Given a graph G = (V , E), and a weight we for every edge e ∈ E.

Find a subset of edges of maximum weight such that no vertex

is incident to more than one edge.

max
∑
e∈Ewexe

s.t. ∀v ∈ V
∑
e:v∈e xe ≤ 1

∀e ∈ E xe ∈ {0,1}
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Maximum Independent Set

Given a graph G = (V , E), and a weight wv for every node v ∈ V .

Find a subset S ⊆ V of nodes of maximum weight such that no

two vertices in S are adjacent.

max
∑
v∈V wvxv

s.t. ∀e = (i, j) ∈ E xi + xj ≤ 1

∀v ∈ V xv ∈ {0,1}
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Knapsack

Given a set of items {1, . . . , n}, where the i-th item has weight

wi and profit pi, and given a threshold K. Find a subset

I ⊆ {1, . . . , n} of items of total weight at most K such that the

profit is maximized.

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ K

∀i ∈ {1, . . . , n} xi ∈ {0,1}
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Facility Location

Given a set L of (possible) locations for placing facilities and a

set C of customers together with cost functions s : C × L→ R+
and o : L→ R+ find a set of facility locations F together with an

assignment φ : C → F of customers to open facilities such that∑
f∈F

o(f)+
∑
c
s(c,φ(c))

is minimized.

In the metric facility location problem we have

s(c, f ) ≤ s(c, f ′)+ s(c′, f )+ s(c′, f ′) .
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Facility Location

min
∑
f xfo(f)+

∑
c
∑
f ycf s(c, f )

s.t. ∀c ∈ C, f ∈ L ycf ≤ xf
∀c ∈ C

∑
f ycf ≥ 1

∀f ∈ L xf ∈ {0,1}
∀c ∈ C, f ∈ L ycf ∈ {0,1}

ñ y+cf ≤ xf ensures that we cannot assign customers to

facilities that are not open.

ñ
∑
f ycf ≥ 1 ensures that every customer is assigned to a

facility.
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Relaxations

Definition 4

A linear program LP is a relaxation of an integer program IP if

any feasible solution for IP is also feasible for LP and if the

objective values of these solutions are identical in both

programs.

We obtain a relaxation for all examples by writing xi ∈ [0,1]
instead of xi ∈ {0,1}.
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By solving a relaxation we obtain an upper bound for a

maximization problem and a lower bound for a minimization

problem.
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