A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

Definition 2

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 3

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

Set Cover

Given a ground set U, a collection of subsets $S_{1}, \ldots, S_{k} \subseteq U$, where the i-th subset S_{i} has weight/cost w_{i}. Find a collection $I \subseteq\{1, \ldots, k\}$ such that
$\forall u \in U \exists i \in I: u \in S_{i}$ (every element is covered)
and

$$
\sum_{i \in I} w_{i} \text { is minimized. }
$$

min		$\sum_{i} w_{i} x_{i}$		
s.t.	$\forall u \in U$	$\sum_{i: u \in S_{i}} x_{i}$	\geq	1
	$\forall i \in\{1, \ldots, k\}$	x_{i}	\geq	0
	$\forall i \in\{1, \ldots, k\}$	x_{i}	integral	

Vertex Cover

Given a graph $G=(V, E)$ and a weight w_{v} for every node. Find a vertex subset $S \subseteq V$ of minimum weight such that every edge is incident to at least one vertex in S.

IP-Formulation of Set Cover

min	$\forall u \in U$	$\sum_{i} w_{i} x_{i}$	
s.t.	$\forall i: u \in S_{i} x_{i}$	≥ 1	
	$\forall i \in\{1, \ldots, k\}$	x_{i}	$\in\{0,1\}$

$$
\forall i \in\{1, \ldots, k\} \quad x_{i} \in\{0,1\}
$$

IP-Formulation of Vertex Cover

\[

\]

Maximum Weighted Matching

Given a graph $G=(V, E)$, and a weight w_{e} for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

\max	$\sum_{e \in E} w_{e} x_{e}$		
s.t.	$\forall v \in V$	$\sum_{e: v \in e} x_{e} \leq 1$	
	$\forall e \in E$	$x_{e} \in\{0,1\}$	

Knapsack

Given a set of items $\{1, \ldots, n\}$, where the i-th item has weight w_{i} and profit p_{i}, and given a threshold K. Find a subset $I \subseteq\{1, \ldots, n\}$ of items of total weight at most K such that the profit is maximized.

\max		$\sum_{i=1}^{n} p_{i} x_{i}$	
s.t.	$\forall i \in\{1, \ldots, n\}$	$\sum_{i=1}^{n} w_{i} x_{i}$	$\leq K$
	x_{i}	$\in\{0,1\}$	

Maximum Independent Set

Given a graph $G=(V, E)$, and a weight w_{v} for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

\[

\]

Facility Location

Given a set L of (possible) locations for placing facilities and a set C of customers together with cost functions $s: C \times L \rightarrow \mathbb{R}^{+}$ and $o: L \rightarrow \mathbb{R}^{+}$find a set of facility locations F together with an assignment $\phi: C \rightarrow F$ of customers to open facilities such that

$$
\sum_{f \in F} o(f)+\sum_{c} s(c, \phi(c))
$$

is minimized.

In the metric facility location problem we have

$$
s(c, f) \leq s\left(c, f^{\prime}\right)+s\left(c^{\prime}, f\right)+s\left(c^{\prime}, f^{\prime}\right)
$$

Facility Location

\min		$\sum_{f} x_{f} o(f)+\sum_{c} \sum_{f} y_{c f} \mathcal{S}(c, f)$	
s.t.	$\forall c \in C, f \in L$	$y_{c f} \leq x_{f}$	
	$\forall c \in C$	$\sum_{f} y_{c f}$	≥ 1
	$\forall f \in L$	x_{f}	$\in\{0,1\}$
	$\forall c \in C, f \in L$	$y_{c f}$	$\in\{0,1\}$

- $y_{+} c f \leq x_{f}$ ensures that we cannot assign customers to facilities that are not open.
- $\sum_{f} y_{c f} \geq 1$ ensures that every customer is assigned to a facility.

Relaxations

Definition 4
A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_{i} \in[0,1]$ instead of $x_{i} \in\{0,1\}$.

By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

