
There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.
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Definition 2

An α-approximation for an optimization problem is a

polynomial-time algorithm that for all instances of the problem

produces a solution whose value is within a factor of α of the

value of an optimal solution.
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Minimization Problem:

Let I denote the set of problem instances, and let for a given

instance I ∈ I, F(I) denote the set of feasible solutions. Further

let cost(F) denote the cost of a feasible solution F ∈ F .

Let for an algorithm A and instance I ∈ I, A(I) ∈ F(I) denote

the feasible solution computed by A. Then A is an

approximation algorithm with approximation guarantee α ≥ 1 if

∀I ∈ I : cost(A(I)) ≤ α · min
F∈F(I)

{cost(F)} = α ·OPT(I)
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Maximization Problem:

Let I denote the set of problem instances, and let for a given

instance I ∈ I, F(I) denote the set of feasible solutions. Further

let profit(F) denote the profit of a feasible solution F ∈ F .

Let for an algorithm A and instance I ∈ I, A(I) ∈ F(I) denote

the feasible solution computed by A. Then A is an

approximation algorithm with approximation guarantee α ≤ 1 if

∀I ∈ I : cost(A(I)) ≥ α · max
F∈F(I)

{profit(F)} = α ·OPT(I)
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Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying

heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum

solution on every instance.
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What can we hope for?

Definition 3

A polynomial-time approximation scheme (PTAS) is a family of

algorithms {Aε}, such that Aε is a (1+ ε)-approximation

algorithm (for minimization problems) or a

(1− ε)-approximation algorithm (for maximization problems).

Many NP-complete problems have polynomial time

approximation schemes.
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There are difficult problems!

The class MAX SNP (which we do not define) contains

optimization problems like maximum cut or MAX-3SAT.

Theorem 4

For any MAX SNP-hard problem, there does not exist a

polynomial-time approximation scheme, unless P = NP.

MAXCUT. Given a graph G = (V , E); partition V into two disjoint
pieces A and B s. t. the number of edges between both pieces is
maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the

variables that satisfies the maximum number of clauses.
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There are really difficult problems!

Theorem 5

For any constant ε > 0 there does not exist an

Ω(nε−1)-approximation algorithm for the maximum clique

problem on a given graph G with n nodes unless P = NP.

Note that an 1/n-approximation is trivial.
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