## 10 Karmarkars Algorithm

We want to solve the following linear program:

- $\min v=c^{t} x$ subject to $A x=0$ and $x \in \Delta$.


## 10 Karmarkars Algorithm

We want to solve the following linear program:

- $\min v=c^{t} x$ subject to $A x=0$ and $x \in \Delta$.
- Here $\Delta=\left\{x \in \mathbb{R}^{n} \mid e^{t} x=1, x \geq 0\right\}$ with $e^{t}=(1, \ldots, 1)$ denotes the standard simplex in $\mathbb{R}^{n}$.


## 10 Karmarkars Algorithm

We want to solve the following linear program:

- $\min v=c^{t} x$ subject to $A x=0$ and $x \in \Delta$.
- Here $\Delta=\left\{x \in \mathbb{R}^{n} \mid e^{t} x=1, x \geq 0\right\}$ with $e^{t}=(1, \ldots, 1)$ denotes the standard simplex in $\mathbb{R}^{n}$.

Further assumptions:

1. $A$ is an $m \times n$-matrix with rank $m$.

## 10 Karmarkars Algorithm

We want to solve the following linear program:

- $\min v=c^{t} x$ subject to $A x=0$ and $x \in \Delta$.
- Here $\Delta=\left\{x \in \mathbb{R}^{n} \mid e^{t} x=1, x \geq 0\right\}$ with $e^{t}=(1, \ldots, 1)$ denotes the standard simplex in $\mathbb{R}^{n}$.

Further assumptions:

1. $A$ is an $m \times n$-matrix with rank $m$.
2. $A e=0$, i.e., the center of the simplex is feasible.

## 10 Karmarkars Algorithm

We want to solve the following linear program:

- $\min v=c^{t} x$ subject to $A x=0$ and $x \in \Delta$.
- Here $\Delta=\left\{x \in \mathbb{R}^{n} \mid e^{t} x=1, x \geq 0\right\}$ with $e^{t}=(1, \ldots, 1)$ denotes the standard simplex in $\mathbb{R}^{n}$.

Further assumptions:

1. $A$ is an $m \times n$-matrix with rank $m$.
2. $A e=0$, i.e., the center of the simplex is feasible.
3. The optimum solution is 0 .

## 10 Karmarkars Algorithm

## 10 Karmarkars Algorithm

Suppose you start with $\max \left\{c^{t} x \mid A x=b ; x \geq 0\right\}$.

- Multiply $c$ by -1 and do a minimization. $\Rightarrow$ minimization problem


## 10 Karmarkars Algorithm

Suppose you start with $\max \left\{c^{t} x \mid A x=b ; x \geq 0\right\}$.

- Multiply $c$ by -1 and do a minimization. $\Rightarrow$ minimization problem
- We can check for feasibility by using the two phase algorithm. $\Rightarrow$ can assume that LP is feasible.


## 10 Karmarkars Algorithm

Suppose you start with $\max \left\{c^{t} x \mid A x=b ; x \geq 0\right\}$.

- Multiply $c$ by -1 and do a minimization. $\Rightarrow$ minimization problem
- We can check for feasibility by using the two phase algorithm. $\Rightarrow$ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. $\Rightarrow$ optimum is 0


## 10 Karmarkars Algorithm

Suppose you start with $\max \left\{c^{t} x \mid A x=b ; x \geq 0\right\}$.

- Multiply $c$ by -1 and do a minimization. $\Rightarrow$ minimization problem
- We can check for feasibility by using the two phase algorithm. $\Rightarrow$ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. $\Rightarrow$ optimum is 0
- Add a new variable pair $x_{\ell}, x_{\ell}^{\prime}$ (both restricted to be positive) and the constraint $\sum_{i} x_{i}=1 . \Rightarrow$ solution in simplex


## 10 Karmarkars Algorithm

Suppose you start with $\max \left\{c^{t} x \mid A x=b ; x \geq 0\right\}$.

- Multiply $c$ by -1 and do a minimization. $\Rightarrow$ minimization problem
- We can check for feasibility by using the two phase algorithm. $\Rightarrow$ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. $\Rightarrow$ optimum is 0
- Add a new variable pair $x_{\ell}, x_{\ell}^{\prime}$ (both restricted to be positive) and the constraint $\sum_{i} x_{i}=1 . \Rightarrow$ solution in simplex
- Add $-\left(\sum_{i} x_{i}\right) b_{i}=-b_{i}$ to every constraint. $\Rightarrow$ vector $b$ is 0


## 10 Karmarkars Algorithm

Suppose you start with $\max \left\{c^{t} x \mid A x=b ; x \geq 0\right\}$.

- Multiply $c$ by -1 and do a minimization. $\Rightarrow$ minimization problem
- We can check for feasibility by using the two phase algorithm. $\Rightarrow$ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. $\Rightarrow$ optimum is 0
- Add a new variable pair $x_{\ell}, x_{\ell}^{\prime}$ (both restricted to be positive) and the constraint $\sum_{i} x_{i}=1 . \Rightarrow$ solution in simplex
- Add $-\left(\sum_{i} x_{i}\right) b_{i}=-b_{i}$ to every constraint. $\Rightarrow$ vector $b$ is 0
- If $A$ does not have full column rank we can delete constraints (or conclude that the LP is infeasible).
$\Rightarrow A$ has full row rank


## 10 Karmarkars Algorithm

Suppose you start with $\max \left\{c^{t} x \mid A x=b ; x \geq 0\right\}$.

- Multiply $c$ by -1 and do a minimization. $\Rightarrow$ minimization problem
- We can check for feasibility by using the two phase algorithm. $\Rightarrow$ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. $\Rightarrow$ optimum is 0
- Add a new variable pair $x_{\ell}, x_{\ell}^{\prime}$ (both restricted to be positive) and the constraint $\sum_{i} x_{i}=1 . \Rightarrow$ solution in simplex
- Add $-\left(\sum_{i} x_{i}\right) b_{i}=-b_{i}$ to every constraint. $\Rightarrow$ vector $b$ is 0
- If $A$ does not have full column rank we can delete constraints (or conclude that the LP is infeasible).
$\Rightarrow A$ has full row rank
We still need to make $e / n$ feasible.


## 10 Karmarkars Algorithm

The algorithm computes (strictly) feasible interior points
$\bar{x}^{(0)}=\frac{e}{n}, x^{(1)}, x^{(2)}, \ldots$ with

$$
c^{t} x^{k} \leq 2^{-\Theta(L)} c^{t} x^{0}
$$

For $k=\Theta(L)$. A point $x$ is strictly feasible if $x>0$.

## 10 Karmarkars Algorithm

The algorithm computes (strictly) feasible interior points $\bar{x}^{(0)}=\frac{e}{n}, x^{(1)}, x^{(2)}, \ldots$ with

$$
c^{t} x^{k} \leq 2^{-\Theta(L)} c^{t} x^{0}
$$

For $k=\Theta(L)$. A point $x$ is strictly feasible if $x>0$.

If my objective value is close enough to 0 (the optimum!!) I can "snap" to an optimum vertex.

## 10 Karmarkars Algorithm

## Iteration:

1. Distort the problem by mapping the simplex onto itself so that the current point $\bar{x}$ moves to the center.

## 10 Karmarkars Algorithm

## Iteration:

1. Distort the problem by mapping the simplex onto itself so that the current point $\bar{x}$ moves to the center.
2. Project the optimization direction $c$ onto the feasible region. Determine a distance to travel along this direction such that you do not leave the simplex (and you do not touch the border). $\hat{x}$ is the point you reached.

## 10 Karmarkars Algorithm

## Iteration:

1. Distort the problem by mapping the simplex onto itself so that the current point $\bar{x}$ moves to the center.
2. Project the optimization direction $c$ onto the feasible region. Determine a distance to travel along this direction such that you do not leave the simplex (and you do not touch the border). $\hat{x}$ is the point you reached.
3. Do a backtransformation to transform $\hat{x}$ into your new point $x^{\prime}$.

## The Transformation

Let $\bar{Y}=\operatorname{diag}(\bar{x})$ the diagonal matrix with entries $\bar{x}$ on the diagonal.

## The Transformation

Let $\bar{Y}=\operatorname{diag}(\bar{x})$ the diagonal matrix with entries $\bar{x}$ on the diagonal.

Define

$$
F_{\bar{x}}: x \mapsto \frac{\bar{Y}^{-1} x}{e^{t} \bar{Y}^{-1} x}
$$

## The Transformation

Let $\bar{Y}=\operatorname{diag}(\bar{x})$ the diagonal matrix with entries $\bar{x}$ on the diagonal.

Define

$$
F_{\bar{x}}: x \mapsto \frac{\bar{Y}^{-1} x}{e^{t} \bar{Y}^{-1} x} .
$$

The inverse function is

$$
F_{\bar{x}}^{-1}: \hat{x} \mapsto \frac{\bar{Y} \hat{x}}{e^{t} \bar{Y} \hat{x}}
$$

## The Transformation

Let $\bar{Y}=\operatorname{diag}(\bar{x})$ the diagonal matrix with entries $\bar{x}$ on the diagonal.

Define

$$
F_{\bar{x}}: x \mapsto \frac{\bar{Y}^{-1} x}{e^{t} \bar{Y}^{-1} x}
$$

The inverse function is

$$
F_{\bar{x}}^{-1}: \hat{x} \mapsto \frac{\bar{Y} \hat{x}}{e^{t} \bar{Y} \hat{x}}
$$

Note that $\bar{x}>0$ in every coordinate. Therefore the above is well defined.

## Properties

$F_{\bar{x}}^{-1}$ really is the inverse of $F_{\bar{x}}$ :

$$
F_{\bar{x}}\left(F_{\hat{X}}^{-1}(\hat{X})\right)=\frac{\bar{Y}^{-1} \frac{\bar{Y} \hat{x}}{e^{t} \hat{X}}}{e^{t} \bar{Y}^{-1} \frac{\bar{Y} \hat{\hat{x}}}{e^{t} \bar{Y} \hat{x}}}=\frac{\hat{x}}{e^{t} \hat{x}}=\hat{x}
$$

because $\hat{x} \in \Delta$.
Note that in particular every $\hat{x} \in \Delta$ has a preimage (Urbild) under $F_{\bar{x}}$.

## Properties

$\bar{x}$ is mapped to $\boldsymbol{e} / \boldsymbol{n}$

$$
F_{\bar{x}}(\bar{x})=\frac{\bar{Y}^{-1} \bar{x}}{e^{t} \bar{Y}^{-1} \bar{x}}=\frac{e}{e^{t} e}=\frac{e}{n}
$$

## Properties

A unit vectors $\boldsymbol{e}_{\boldsymbol{i}}$ is mapped to itself:

$$
F_{\bar{x}}\left(e_{i}\right)=\frac{\bar{Y}^{-1} e_{i}}{e^{t} \bar{Y}^{-1} e_{i}}=\frac{\left(0, \ldots, 0, \bar{x}_{i}, 0, \ldots, 0\right)^{t}}{e^{t}\left(0, \ldots, 0, \bar{x}_{i}, 0, \ldots, 0\right)^{t}}=e_{i}
$$

## Properties

## All nodes of the simplex are mapped to the simplex:

$$
F_{\bar{x}}(x)=\frac{\bar{Y}^{-1} x}{e^{t} \bar{Y}^{-1} x}=\frac{\left(\frac{x_{1}}{\bar{x}_{1}}, \ldots, \frac{x_{n}}{\bar{x}_{n}}\right)^{t}}{e^{t}\left(\frac{x_{1}}{\bar{x}_{1}}, \ldots, \frac{x_{n}}{\bar{x}_{n}}\right)^{t}}=\frac{\left(\frac{x_{1}}{\bar{x}_{1}}, \ldots, \frac{x_{n}}{\bar{x}_{n}}\right)^{t}}{\sum_{i} \frac{x_{i}}{\bar{x}_{i}}} \in \Delta
$$

## The Transformation

Easy to check:

- $F_{\bar{x}}^{-1}$ really is the inverse of $F_{\bar{x}}$.


## The Transformation

## Easy to check:

- $F_{\bar{x}}^{-1}$ really is the inverse of $F_{\bar{x}}$.
- $\bar{x}$ is mapped to $e / n$.


## The Transformation

## Easy to check:

- $F_{\bar{x}}^{-1}$ really is the inverse of $F_{\bar{x}}$.
- $\bar{x}$ is mapped to $e / n$.
- A unit vectors $e_{i}$ is mapped to itself.


## The Transformation

## Easy to check:

- $F_{\bar{x}}^{-1}$ really is the inverse of $F_{\bar{x}}$.
- $\bar{x}$ is mapped to $e / n$.
- A unit vectors $e_{i}$ is mapped to itself.
- All nodes of the simplex are mapped to the simplex.


## 10 Karmarkars Algorithm

## 10 Karmarkars Algorithm

After the transformation we have the problem

$$
\min \left\{c^{t} F_{\bar{x}}^{-1}(x) \mid A F_{\bar{x}}^{-1}(x)=0 ; x \in \Delta\right\}
$$

This holds since the back-transformation "reaches" every point in $\Delta$ (i.e. $F_{\bar{\chi}}^{-1}(\Delta)=\Delta$ ).

## 10 Karmarkars Algorithm

After the transformation we have the problem

$$
\begin{aligned}
& \min \left\{c^{t} F_{\bar{x}}^{-1}(x) \mid A F_{\bar{x}}^{-1}(x)=0 ; x \in \Delta\right\} \\
& \quad=\min \left\{\left.\frac{c^{t} \bar{Y} x}{e^{t} \bar{Y} x} \right\rvert\, \frac{A \bar{Y} x}{e^{t} \bar{Y} x}=0 ; x \in \Delta\right\}
\end{aligned}
$$

This holds since the back-transformation "reaches" every point in $\Delta$ (i.e. $F_{\bar{x}}^{-1}(\Delta)=\Delta$ ).

## 10 Karmarkars Algorithm

After the transformation we have the problem

$$
\begin{aligned}
& \min \left\{c^{t} F_{\bar{x}}^{-1}(x) \mid A F_{\bar{x}}^{-1}(x)=0 ; x \in \Delta\right\} \\
& \quad=\min \left\{\left.\frac{c^{t} \bar{Y} x}{e^{t} \bar{Y} x} \right\rvert\, \frac{A \bar{Y} x}{e^{t} \bar{Y} x}=0 ; x \in \Delta\right\}
\end{aligned}
$$

This holds since the back-transformation "reaches" every point in $\Delta$ (i.e. $F_{\bar{x}}^{-1}(\Delta)=\Delta$ ).

Since the optimum solution is 0 this problem is the same as

$$
\min \left\{\hat{c}^{t} x \mid \hat{A} x=0, x \in \Delta\right\}
$$

with $\hat{c}=\bar{Y}^{t} c=\bar{Y} c$ and $\hat{A}=A \bar{Y}$.

We still need to make $e / n$ feasible.

- We know that our LP is feasible. Let $\bar{x}$ be a feasible point.
- Apply $F_{\bar{x}}$, and solve

$$
\min \left\{\hat{c}^{t} x \mid \hat{A} x=0 ; x \in \Delta\right\}
$$

- The feasible point is moved to the center.


## 10 Karmarkars Algorithm

When computing $\hat{x}$ we do not want to leave the simplex or touch its boundary (why?).

## 10 Karmarkars Algorithm

When computing $\hat{x}$ we do not want to leave the simplex or touch its boundary (why?).

For this we compute the radius of a ball that completely lies in the simplex.

## 10 Karmarkars Algorithm

When computing $\hat{x}$ we do not want to leave the simplex or touch its boundary (why?).

For this we compute the radius of a ball that completely lies in the simplex.

$$
B\left(\frac{e}{n}, \rho\right)=\left\{x \in \mathbb{R}^{n} \left\lvert\,\left\|x-\frac{e}{n}\right\| \leq \rho\right.\right\} .
$$

## 10 Karmarkars Algorithm

When computing $\hat{x}$ we do not want to leave the simplex or touch its boundary (why?).

For this we compute the radius of a ball that completely lies in the simplex.

$$
B\left(\frac{e}{n}, \rho\right)=\left\{x \in \mathbb{R}^{n} \left\lvert\,\left\|x-\frac{e}{n}\right\| \leq \rho\right.\right\} .
$$

We are looking for the largest radius $r$ such that

$$
B\left(\frac{e}{n}, r\right) \cap\left\{x \mid e^{t} x=1\right\} \subseteq \Delta .
$$

## 10 Karmarkars Algorithm

## 10 Karmarkars Algorithm

This holds for $r=\left\|\frac{e}{n}-\left(e-e_{1}\right) \frac{1}{n-1}\right\| .(r$ is the distance between the center $e / n$ and the center of the ( $n-1$ )-dimensional simplex obtained by intersecting a side ( $x_{i}=0$ ) of the unit cube with $\Delta$.)

## 10 Karmarkars Algorithm

This holds for $r=\left\|\frac{e}{n}-\left(e-e_{1}\right) \frac{1}{n-1}\right\| .(r$ is the distance between the center $e / n$ and the center of the ( $n-1$ )-dimensional simplex obtained by intersecting a side ( $x_{i}=0$ ) of the unit cube with $\Delta$.)

This gives $r=\frac{1}{\sqrt{n(n-1)}}$.

## 10 Karmarkars Algorithm

This holds for $r=\left\|\frac{e}{n}-\left(e-e_{1}\right) \frac{1}{n-1}\right\| .(r$ is the distance between the center $e / n$ and the center of the ( $n-1$ )-dimensional simplex obtained by intersecting a side ( $x_{i}=0$ ) of the unit cube with $\Delta$.)

This gives $r=\frac{1}{\sqrt{n(n-1)}}$.
Now we consider the problem

$$
\min \left\{\hat{c}^{t} x \mid \hat{A} x=0, x \in B(e / n, r) \cap \Delta\right\}
$$

## The Simplex



## 10 Karmarkars Algorithm

## 10 Karmarkars Algorithm

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

## 10 Karmarkars Algorithm

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A} x=0$ or the constraint $x \in \Delta$.

## 10 Karmarkars Algorithm

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A} x=0$ or the constraint $x \in \Delta$.

Therefore we first project $\hat{c}$ on the nullspace of

$$
B=\binom{\hat{A}}{e^{t}}
$$

## 10 Karmarkars Algorithm

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A} x=0$ or the constraint $x \in \Delta$.

Therefore we first project $\hat{c}$ on the nullspace of

$$
B=\binom{\hat{A}}{e^{t}}
$$

We use

$$
P=I-B^{t}\left(B B^{t}\right)^{-1} B
$$

Then

$$
\hat{d}=P \hat{c}
$$

is the required projection.

## 10 Karmarkars Algorithm

We get the new point

$$
\hat{x}(\rho)=\frac{e}{n}-\rho \frac{\hat{d}}{\|d\|}
$$

for $\rho<r$.

## 10 Karmarkars Algorithm

We get the new point

$$
\hat{x}(\rho)=\frac{e}{n}-\rho \frac{\hat{d}}{\|d\|}
$$

for $\rho<r$.
Choose $\rho=\alpha r$ with $\alpha=1 / 4$.

## 10 Karmarkars Algorithm

## Iteration of Karmarkars algorithm:

- Current solution $\bar{x} . \bar{Y}:=\operatorname{diag}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$.
- Transform the problem via $F_{\bar{X}}(x)=\frac{\bar{Y}^{-1} x}{e^{t} \bar{Y}^{-1} x}$. Let $\hat{c}=\bar{Y} c$, and $\hat{A}=A \bar{Y}$.
- Compute

$$
d=\left(I-B^{t}\left(B B^{t}\right)^{-1} B\right) \hat{c},
$$

where $B=\binom{\hat{A}}{e^{t}}$.

- Set

$$
\hat{x}=\frac{e}{n}-\rho \frac{d}{\|d\|}
$$

with $\rho=\alpha r$ with $\alpha=1 / 4$ and $r=1 / \sqrt{n(n-1)}$.

- Compute $\bar{x}_{\text {new }}=F_{\bar{x}}^{-1}(\hat{x})$.


## The Simplex



## Lemma 2

The new point $\hat{x}$ in the transformed space is the point that minimizes the cost $\hat{c}^{t} x$ among all feasible points in $B\left(\frac{e}{n}, \rho\right)$.

Proof: Let $z$ be another feasible point in $B\left(\frac{e}{n}, \rho\right)$.

## Proof: Let $z$ be another feasible point in $B\left(\frac{e}{n}, \rho\right)$.

As $\hat{A} z=0, \hat{A} \hat{x}=0, e^{t} z=1, e^{t} \hat{x}=1$

Proof: Let $z$ be another feasible point in $B\left(\frac{e}{n}, \rho\right)$.
As $\hat{A} z=0, \hat{A} \hat{x}=0, e^{t} z=1, e^{t} \hat{x}=1$ we have

$$
B(\hat{x}-z)=0 .
$$

Proof: Let $z$ be another feasible point in $B\left(\frac{e}{n}, \rho\right)$.
As $\hat{A} z=0, \hat{A} \hat{x}=0, e^{t} z=1, e^{t} \hat{x}=1$ we have

$$
B(\hat{x}-z)=0 .
$$

Further,

$$
(\hat{c}-d)^{t}
$$

Proof: Let $z$ be another feasible point in $B\left(\frac{e}{n}, \rho\right)$.
As $\hat{A} z=0, \hat{A} \hat{x}=0, e^{t} z=1, e^{t} \hat{x}=1$ we have

$$
B(\hat{x}-z)=0 .
$$

Further,

$$
(\hat{c}-d)^{t}=(\hat{c}-P \hat{c})^{t}
$$

Proof: Let $z$ be another feasible point in $B\left(\frac{e}{n}, \rho\right)$.
As $\hat{A} z=0, \hat{A} \hat{x}=0, e^{t} z=1, e^{t} \hat{x}=1$ we have

$$
B(\hat{x}-z)=0 .
$$

Further,

$$
\begin{aligned}
(\hat{c}-d)^{t} & =(\hat{c}-P \hat{c})^{t} \\
& =\left(B^{t}\left(B B^{t}\right)^{-1} B \hat{c}\right)^{t}
\end{aligned}
$$

Proof: Let $z$ be another feasible point in $B\left(\frac{e}{n}, \rho\right)$.
As $\hat{A} z=0, \hat{A} \hat{x}=0, e^{t} z=1, e^{t} \hat{x}=1$ we have

$$
B(\hat{x}-z)=0 .
$$

Further,

$$
\begin{aligned}
(\hat{c}-d)^{t} & =(\hat{c}-P \hat{c})^{t} \\
& =\left(B^{t}\left(B B^{t}\right)^{-1} B \hat{c}\right)^{t} \\
& =\hat{c}^{t} B^{t}\left(B B^{t}\right)^{-1} B
\end{aligned}
$$

Proof: Let $z$ be another feasible point in $B\left(\frac{e}{n}, \rho\right)$.
As $\hat{A} z=0, \hat{A} \hat{x}=0, e^{t} z=1, e^{t} \hat{x}=1$ we have

$$
B(\hat{x}-z)=0 .
$$

Further,

$$
\begin{aligned}
(\hat{c}-d)^{t} & =(\hat{c}-P \hat{c})^{t} \\
& =\left(B^{t}\left(B B^{t}\right)^{-1} B \hat{c}\right)^{t} \\
& =\hat{c}^{t} B^{t}\left(B B^{t}\right)^{-1} B
\end{aligned}
$$

Hence, we get

$$
(\hat{c}-d)^{t}(\hat{x}-z)=0
$$

Proof: Let $z$ be another feasible point in $B\left(\frac{e}{n}, \rho\right)$.
As $\hat{A} z=0, \hat{A} \hat{x}=0, e^{t} z=1, e^{t} \hat{x}=1$ we have

$$
B(\hat{x}-z)=0 .
$$

Further,

$$
\begin{aligned}
(\hat{c}-d)^{t} & =(\hat{c}-P \hat{c})^{t} \\
& =\left(B^{t}\left(B B^{t}\right)^{-1} B \hat{c}\right)^{t} \\
& =\hat{c}^{t} B^{t}\left(B B^{t}\right)^{-1} B
\end{aligned}
$$

Hence, we get

$$
(\hat{c}-d)^{t}(\hat{x}-z)=0 \text { or } \hat{c}^{t}(\hat{x}-z)=d^{t}(\hat{x}-z)
$$

Proof: Let $z$ be another feasible point in $B\left(\frac{e}{n}, \rho\right)$.
As $\hat{A} z=0, \hat{A} \hat{x}=0, e^{t} z=1, e^{t} \hat{x}=1$ we have

$$
B(\hat{x}-z)=0 .
$$

Further,

$$
\begin{aligned}
(\hat{c}-d)^{t} & =(\hat{c}-P \hat{c})^{t} \\
& =\left(B^{t}\left(B B^{t}\right)^{-1} B \hat{c}\right)^{t} \\
& =\hat{c}^{t} B^{t}\left(B B^{t}\right)^{-1} B
\end{aligned}
$$

Hence, we get

$$
(\hat{c}-d)^{t}(\hat{x}-z)=0 \text { or } \hat{c}^{t}(\hat{x}-z)=d^{t}(\hat{x}-z)
$$

which means that the cost-difference between $\hat{x}$ and $z$ is the same measured w.r.t. the cost-vector $\hat{c}$ or the projected cost-vector $d$.

## But

$$
\frac{d^{t}}{\|d\|}(\hat{x}-z)
$$

## But

$$
\frac{d^{t}}{\|d\|}(\hat{x}-z)=\frac{d^{t}}{\|d\|}\left(\frac{e}{n}-\rho \frac{d}{\|d\|}-z\right)
$$

## But

$$
\frac{d^{t}}{\|d\|}(\hat{x}-z)=\frac{d^{t}}{\|d\|}\left(\frac{e}{n}-\rho \frac{d}{\|d\|}-z\right)=\frac{d^{t}}{\|d\|}\left(\frac{e}{n}-z\right)-\rho
$$

## But

$$
\frac{d^{t}}{\|d\|}(\hat{x}-z)=\frac{d^{t}}{\|d\|}\left(\frac{e}{n}-\rho \frac{d}{\|d\|}-z\right)=\frac{d^{t}}{\|d\|}\left(\frac{e}{n}-z\right)-\rho<0
$$

as $\frac{e}{n}-z$ is a vector of length at most $\rho$.

## But

$$
\frac{d^{t}}{\|d\|}(\hat{x}-z)=\frac{d^{t}}{\|d\|}\left(\frac{e}{n}-\rho \frac{d}{\|d\|}-z\right)=\frac{d^{t}}{\|d\|}\left(\frac{e}{n}-z\right)-\rho<0
$$

as $\frac{e}{n}-z$ is a vector of length at most $\rho$.
This gives $d(\hat{x}-z) \leq 0$ and therefore $\hat{c} \hat{x} \leq \hat{c} z$.

In order to measure the progress of the algorithm we introduce a potential function $f$ :

$$
f(x)
$$

In order to measure the progress of the algorithm we introduce a potential function $f$ :

$$
f(x)=\sum_{j} \ln \left(\frac{c^{t} x}{x_{j}}\right)
$$

In order to measure the progress of the algorithm we introduce a potential function $f$ :

$$
f(x)=\sum_{j} \ln \left(\frac{c^{t} x}{x_{j}}\right)=n \ln \left(c^{t} x\right)-\sum_{j} \ln \left(x_{j}\right) .
$$

In order to measure the progress of the algorithm we introduce a potential function $f$ :

$$
f(x)=\sum_{j} \ln \left(\frac{c^{t} x}{x_{j}}\right)=n \ln \left(c^{t} x\right)-\sum_{j} \ln \left(x_{j}\right) .
$$

- The function $f$ is invariant to scaling (i.e., $f(k x)=f(x)$ ).

In order to measure the progress of the algorithm we introduce a potential function $f$ :

$$
f(x)=\sum_{j} \ln \left(\frac{c^{t} x}{x_{j}}\right)=n \ln \left(c^{t} x\right)-\sum_{j} \ln \left(x_{j}\right)
$$

- The function $f$ is invariant to scaling (i.e., $f(k x)=f(x)$ ).
- The potential function essentially measures cost (note the term $n \ln \left(c^{t} x\right)$ ) but it penalizes us for choosing $x_{j}$ values very small (by the term $-\sum_{j} \ln \left(x_{j}\right)$; note that $-\ln \left(x_{j}\right)$ is always positive).

For a point $z$ in the transformed space we use the potential function

$$
\hat{f}(z)
$$

For a point $z$ in the transformed space we use the potential function

$$
\hat{f}(z):=f\left(F_{\bar{x}}^{-1}(z)\right)
$$

For a point $z$ in the transformed space we use the potential function

$$
\hat{f}(z):=f\left(F_{\bar{x}}^{-1}(z)\right)=f\left(\frac{\bar{Y} z}{e^{t} \bar{Y} z}\right)=f(\bar{Y} z)
$$

For a point $z$ in the transformed space we use the potential function

$$
\begin{aligned}
\hat{f}(z) & :=f\left(F_{\bar{x}}^{-1}(z)\right)=f\left(\frac{\bar{Y} z}{e^{t} \bar{Y} z}\right)=f(\bar{Y} z) \\
& =\sum_{j} \ln \left(\frac{c^{t} \bar{Y} z}{\bar{x}_{j} z_{j}}\right)
\end{aligned}
$$

For a point $z$ in the transformed space we use the potential function

$$
\begin{aligned}
\hat{f}(z) & :=f\left(F_{\bar{x}}^{-1}(z)\right)=f\left(\frac{\bar{Y} z}{e^{t} \bar{Y} z}\right)=f(\bar{Y} z) \\
& =\sum_{j} \ln \left(\frac{c^{t} \bar{Y} z}{\bar{x}_{j} z_{j}}\right)=\sum_{j} \ln \left(\frac{\hat{c}^{t} z}{z_{j}}\right)-\sum_{j} \ln \bar{x}_{j}
\end{aligned}
$$

For a point $z$ in the transformed space we use the potential function

$$
\begin{aligned}
\hat{f}(z) & :=f\left(F_{\bar{x}}^{-1}(z)\right)=f\left(\frac{\bar{Y} z}{e^{t} \bar{Y} z}\right)=f(\bar{Y} z) \\
& =\sum_{j} \ln \left(\frac{c^{t} \bar{Y} z}{\bar{x}_{j} z_{j}}\right)=\sum_{j} \ln \left(\frac{\hat{c}^{t} z}{z_{j}}\right)-\sum_{j} \ln \bar{x}_{j}
\end{aligned}
$$

Observation:
This means the potential of a point in the transformed space is simply the potential of its pre-image under $F$.

For a point $z$ in the transformed space we use the potential function

$$
\begin{aligned}
\hat{f}(z) & :=f\left(F_{\bar{x}}^{-1}(z)\right)=f\left(\frac{\bar{Y} z}{e^{t} \bar{Y} z}\right)=f(\bar{Y} z) \\
& =\sum_{j} \ln \left(\frac{c^{t} \bar{Y} z}{\bar{x}_{j} z_{j}}\right)=\sum_{j} \ln \left(\frac{\hat{c}^{t} z}{z_{j}}\right)-\sum_{j} \ln \bar{x}_{j}
\end{aligned}
$$

Observation:
This means the potential of a point in the transformed space is simply the potential of its pre-image under $F$.

Note that if we are interested in potential-change we can ignore the additive term above. Then $f$ and $\hat{f}$ have the same form; only $c$ is replaced by $\hat{c}$.

The basic idea is to show that one iteration of Karmarkar results in a constant decrease of $\hat{f}$. This means

$$
\hat{f}(\hat{x}) \leq \hat{f}\left(\frac{e}{n}\right)-\delta,
$$

where $\delta$ is a constant.

The basic idea is to show that one iteration of Karmarkar results in a constant decrease of $\hat{f}$. This means

$$
\hat{f}(\hat{x}) \leq \hat{f}\left(\frac{e}{n}\right)-\delta,
$$

where $\delta$ is a constant.

This gives

$$
f\left(\bar{x}_{\text {new }}\right) \leq f(\bar{x})-\delta .
$$

## Lemma 3

There is a feasible point $z$ (i.e., $\hat{A} z=0$ ) in $B\left(\frac{e}{n}, \rho\right) \cap \Delta$ that has

$$
\hat{f}(z) \leq \hat{f}\left(\frac{e}{n}\right)-\delta
$$

with $\delta=\ln (1+\alpha)$.

## Lemma 3

There is a feasible point $z$ (i.e., $\hat{A} z=0$ ) in $B\left(\frac{e}{n}, \rho\right) \cap \Delta$ that has

$$
\hat{f}(z) \leq \hat{f}\left(\frac{e}{n}\right)-\delta
$$

with $\delta=\ln (1+\alpha)$.

Note that this shows the existence of a good point within the ball. In general it will be difficult to find this point.

Let $z^{*}$ be the feasible point in the transformed space where $\hat{c}^{t} x$ is minimized. (Note that in contrast $\hat{x}$ is the point in the intersection of the feasible region and $B\left(\frac{e}{n}, \rho\right)$ that minimizes this function; in general $z^{*} \neq \hat{x}$ )

Let $z^{*}$ be the feasible point in the transformed space where $\hat{c}^{t} x$ is minimized. (Note that in contrast $\hat{x}$ is the point in the intersection of the feasible region and $B\left(\frac{e}{n}, \rho\right)$ that minimizes this function; in general $z^{*} \neq \hat{x}$ )
$z^{*}$ must lie at the boundary of the simplex. This means $z^{*} \notin B\left(\frac{e}{n}, \rho\right)$.

Let $z^{*}$ be the feasible point in the transformed space where $\hat{c}^{t} x$ is minimized. (Note that in contrast $\hat{x}$ is the point in the intersection of the feasible region and $B\left(\frac{e}{n}, \rho\right)$ that minimizes this function; in general $z^{*} \neq \hat{x}$ )
$z^{*}$ must lie at the boundary of the simplex. This means $z^{*} \notin B\left(\frac{e}{n}, \rho\right)$.

The point $z$ we want to use lies farthest in the direction from $\frac{e}{n}$ to $z^{*}$, namely

Let $z^{*}$ be the feasible point in the transformed space where $\hat{c}^{t} x$ is minimized. (Note that in contrast $\hat{x}$ is the point in the intersection of the feasible region and $B\left(\frac{e}{n}, \rho\right)$ that minimizes this function; in general $z^{*} \neq \hat{x}$ )
$z^{*}$ must lie at the boundary of the simplex. This means $z^{*} \notin B\left(\frac{e}{n}, \rho\right)$.

The point $z$ we want to use lies farthest in the direction from $\frac{e}{n}$ to $z^{*}$, namely

$$
z=(1-\lambda) \frac{e}{n}+\lambda z^{*}
$$

for some positive $\lambda<1$.

Hence,

$$
\hat{c}^{t} z=(1-\lambda) \hat{c}^{t} \frac{e}{n}+\lambda \hat{c}^{t} z^{*}
$$

Hence,

$$
\hat{c}^{t} z=(1-\lambda) \hat{c}^{t} \frac{e}{n}+\lambda \hat{c}^{t} z^{*}
$$

The optimum cost (at $z^{*}$ ) is zero.

Hence,

$$
\hat{c}^{t} z=(1-\lambda) \hat{c}^{t} \frac{e}{n}+\lambda \hat{c}^{t} z^{*}
$$

The optimum cost (at $z^{*}$ ) is zero.
Therefore,

$$
\frac{\hat{c}^{t} \frac{e}{n}}{\hat{c}^{t} z}=\frac{1}{1-\lambda}
$$

The improvement in the potential function is

$$
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z)
$$

The improvement in the potential function is

$$
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z)=\sum_{j} \ln \left(\frac{\hat{c}^{t} \frac{e}{n}}{\frac{1}{n}}\right)-\sum_{j} \ln \left(\frac{\hat{c}^{t} z}{z_{j}}\right)
$$

The improvement in the potential function is

$$
\begin{aligned}
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z) & =\sum_{j} \ln \left(\frac{\hat{c}^{t} \frac{e}{n}}{\frac{1}{n}}\right)-\sum_{j} \ln \left(\frac{\hat{c}^{t} z}{z_{j}}\right) \\
& =\sum_{j} \ln \left(\frac{\hat{c}^{t} \frac{e}{n}}{\hat{c}^{t} z} \cdot \frac{z_{j}}{\frac{1}{n}}\right)
\end{aligned}
$$

The improvement in the potential function is

$$
\begin{aligned}
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z) & =\sum_{j} \ln \left(\frac{\hat{c}^{t} \frac{e}{n}}{\frac{1}{n}}\right)-\sum_{j} \ln \left(\frac{\hat{c}^{t} z}{z_{j}}\right) \\
& =\sum_{j} \ln \left(\frac{\hat{c}^{t} \frac{e}{n}}{\hat{c}^{t} z} \cdot \frac{z_{j}}{\frac{1}{n}}\right) \\
& =\sum_{j} \ln \left(\frac{n}{1-\lambda} z_{j}\right)
\end{aligned}
$$

The improvement in the potential function is

$$
\begin{aligned}
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z) & =\sum_{j} \ln \left(\frac{\hat{c}^{t} \frac{e}{n}}{\frac{1}{n}}\right)-\sum_{j} \ln \left(\frac{\hat{c}^{t} z}{z_{j}}\right) \\
& =\sum_{j} \ln \left(\frac{\hat{c}^{t} \frac{e}{n}}{\hat{c}^{t} z} \cdot \frac{z_{j}}{\frac{1}{n}}\right) \\
& =\sum_{j} \ln \left(\frac{n}{1-\lambda} z_{j}\right) \\
& =\sum_{j} \ln \left(\frac{n}{1-\lambda}\left((1-\lambda) \frac{1}{n}+\lambda z_{j}^{*}\right)\right)
\end{aligned}
$$

The improvement in the potential function is

$$
\begin{aligned}
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z) & =\sum_{j} \ln \left(\frac{\hat{c}^{t} \frac{e}{n}}{\frac{1}{n}}\right)-\sum_{j} \ln \left(\frac{\hat{c}^{t} z}{z_{j}}\right) \\
& =\sum_{j} \ln \left(\frac{\hat{c}^{t} \frac{e}{n}}{\hat{c}^{t} z} \cdot \frac{z_{j}}{\frac{1}{n}}\right) \\
& =\sum_{j} \ln \left(\frac{n}{1-\lambda} z_{j}\right) \\
& =\sum_{j} \ln \left(\frac{n}{1-\lambda}\left((1-\lambda) \frac{1}{n}+\lambda z_{j}^{*}\right)\right) \\
& =\sum_{j} \ln \left(1+\frac{n \lambda}{1-\lambda} z_{j}^{*}\right)
\end{aligned}
$$

We can use the fact that for non-negative $s_{i}$

$$
\sum_{i} \ln \left(1+s_{i}\right) \geq \ln \left(1+\sum_{i} s_{i}\right)
$$

We can use the fact that for non-negative $s_{i}$

$$
\sum_{i} \ln \left(1+s_{i}\right) \geq \ln \left(1+\sum_{i} s_{i}\right)
$$

This gives

$$
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z)
$$

We can use the fact that for non-negative $s_{i}$

$$
\sum_{i} \ln \left(1+s_{i}\right) \geq \ln \left(1+\sum_{i} s_{i}\right)
$$

This gives

$$
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z)=\sum_{j} \ln \left(1+\frac{n \lambda}{1-\lambda} z_{j}^{*}\right)
$$

We can use the fact that for non-negative $s_{i}$

$$
\sum_{i} \ln \left(1+s_{i}\right) \geq \ln \left(1+\sum_{i} s_{i}\right)
$$

This gives

$$
\begin{aligned}
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z) & =\sum_{j} \ln \left(1+\frac{n \lambda}{1-\lambda} z_{j}^{*}\right) \\
& \geq \ln \left(1+\frac{n \lambda}{1-\lambda}\right)
\end{aligned}
$$

In order to get further we need a bound on $\lambda$ :
$\alpha r$

In order to get further we need a bound on $\lambda$ :

$$
\alpha r=\rho
$$

In order to get further we need a bound on $\lambda$ :

$$
\alpha r=\rho=\|z-e / n\|
$$

In order to get further we need a bound on $\lambda$ :

$$
\alpha r=\rho=\|z-e / n\|=\left\|\lambda\left(z^{*}-e / n\right)\right\|
$$

In order to get further we need a bound on $\lambda$ :

$$
\alpha r=\rho=\|z-e / n\|=\left\|\lambda\left(z^{*}-e / n\right)\right\| \leq \lambda R
$$

In order to get further we need a bound on $\lambda$ :

$$
\alpha r=\rho=\|z-e / n\|=\left\|\lambda\left(z^{*}-e / n\right)\right\| \leq \lambda R
$$

In order to get further we need a bound on $\lambda$ :

$$
\alpha r=\rho=\|z-e / n\|=\left\|\lambda\left(z^{*}-e / n\right)\right\| \leq \lambda R
$$

Here $R$ is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

In order to get further we need a bound on $\lambda$ :

$$
\alpha r=\rho=\|z-e / n\|=\left\|\lambda\left(z^{*}-e / n\right)\right\| \leq \lambda R
$$

Here $R$ is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.
$R=\sqrt{(n-1) / n}$.

In order to get further we need a bound on $\lambda$ :

$$
\alpha r=\rho=\|z-e / n\|=\left\|\lambda\left(z^{*}-e / n\right)\right\| \leq \lambda R
$$

Here $R$ is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.
$R=\sqrt{(n-1) / n}$. Since $r=1 / \sqrt{(n-1) n}$ we have $R / r=n-1$ and

$$
\lambda \geq \alpha /(n-1)
$$

In order to get further we need a bound on $\lambda$ :

$$
\alpha r=\rho=\|z-e / n\|=\left\|\lambda\left(z^{*}-e / n\right)\right\| \leq \lambda R
$$

Here $R$ is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.
$R=\sqrt{(n-1) / n}$. Since $r=1 / \sqrt{(n-1) n}$ we have $R / r=n-1$ and

$$
\lambda \geq \alpha /(n-1)
$$

Then

$$
1+n \frac{\lambda}{1-\lambda}
$$

In order to get further we need a bound on $\lambda$ :

$$
\alpha r=\rho=\|z-e / n\|=\left\|\lambda\left(z^{*}-e / n\right)\right\| \leq \lambda R
$$

Here $R$ is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.
$R=\sqrt{(n-1) / n}$. Since $r=1 / \sqrt{(n-1) n}$ we have $R / r=n-1$ and

$$
\lambda \geq \alpha /(n-1)
$$

Then

$$
1+n \frac{\lambda}{1-\lambda} \geq 1+\frac{n \alpha}{n-\alpha-1}
$$

In order to get further we need a bound on $\lambda$ :

$$
\alpha r=\rho=\|z-e / n\|=\left\|\lambda\left(z^{*}-e / n\right)\right\| \leq \lambda R
$$

Here $R$ is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.
$R=\sqrt{(n-1) / n}$. Since $r=1 / \sqrt{(n-1) n}$ we have $R / r=n-1$ and

$$
\lambda \geq \alpha /(n-1)
$$

Then

$$
1+n \frac{\lambda}{1-\lambda} \geq 1+\frac{n \alpha}{n-\alpha-1} \geq 1+\alpha
$$

In order to get further we need a bound on $\lambda$ :

$$
\alpha r=\rho=\|z-e / n\|=\left\|\lambda\left(z^{*}-e / n\right)\right\| \leq \lambda R
$$

Here $R$ is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.
$R=\sqrt{(n-1) / n}$. Since $r=1 / \sqrt{(n-1) n}$ we have $R / r=n-1$ and

$$
\lambda \geq \alpha /(n-1)
$$

Then

$$
1+n \frac{\lambda}{1-\lambda} \geq 1+\frac{n \alpha}{n-\alpha-1} \geq 1+\alpha
$$

This gives the lemma.

## Lemma 4

If we choose $\alpha=1 / 4$ and $n \geq 4$ in Karmarkars algorithm the point $\hat{x}$ satisfies

$$
\hat{f}(\hat{x}) \leq \hat{f}\left(\frac{e}{n}\right)-\delta
$$

with $\delta=1 / 10$.

## Proof:

## Proof:

## Define

$$
g(x)=
$$

## Proof:

Define

$$
g(x)=n \ln \frac{\hat{c}^{t} x}{\hat{c}^{t} \frac{e}{n}}
$$

## Proof:

Define

$$
\begin{aligned}
g(x) & =n \ln \frac{\hat{c}^{t} x}{\hat{c}^{t} \frac{e}{n}} \\
& =n\left(\ln \hat{c}^{t} x-\ln \hat{c}^{t} \frac{e}{n}\right)
\end{aligned}
$$

## Proof:

Define

$$
\begin{aligned}
g(x) & =n \ln \frac{\hat{c}^{t} x}{\hat{c}^{t} \frac{e}{n}} \\
& =n\left(\ln \hat{c}^{t} x-\ln \hat{c}^{t} \frac{e}{n}\right)
\end{aligned}
$$

This is the change in the cost part of the potential function when going from the center $\frac{e}{n}$ to the point $x$ in the transformed space.

Similar, the penalty when going from $\frac{e}{n}$ to $w$ increases by

$$
h(w)=\operatorname{pen}(w)-\operatorname{pen}\left(\frac{e}{n}\right)=-\sum_{j} \ln \frac{w_{j}}{\frac{1}{n}}
$$

where $\operatorname{pen}(v)=-\sum_{j} \ln \left(v_{j}\right)$.

## We want to derive a lower bound on

$$
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(\hat{x})
$$

We want to derive a lower bound on

$$
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(\hat{x})=\left[\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z)\right]
$$

We want to derive a lower bound on

$$
\begin{aligned}
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(\hat{x})= & {\left[\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z)\right] } \\
& +h(z)
\end{aligned}
$$

We want to derive a lower bound on

$$
\begin{aligned}
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(\hat{x})= & {\left[\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z)\right] } \\
& +h(z) \\
& -h(x)
\end{aligned}
$$

We want to derive a lower bound on

$$
\begin{aligned}
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(\hat{x})= & {\left[\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z)\right] } \\
& +h(z) \\
& -h(x) \\
& +[g(z)-g(\hat{x})]
\end{aligned}
$$

We want to derive a lower bound on

$$
\begin{aligned}
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(\hat{x})= & {\left[\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z)\right] } \\
& +h(z) \\
& -h(x) \\
& +[g(z)-g(\hat{x})]
\end{aligned}
$$

where $z$ is the point in the ball where $\hat{f}$ achieves its minimum.

We have

$$
\left[\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z)\right] \geq \ln (1+\alpha)
$$

by the previous lemma.

We have

$$
\left[\hat{f}\left(\frac{e}{n}\right)-\hat{f}(z)\right] \geq \ln (1+\alpha)
$$

by the previous lemma.

We have

$$
[g(z)-g(\hat{x})] \geq 0
$$

since $\hat{x}$ is the point with minimum cost in the ball, and $g$ is monotonically increasing with cost.

For a point in the ball we have

$$
\hat{f}(w)-\left(\hat{f}\left(\frac{e}{n}\right)+g(w)\right) h(w)
$$

(The increase in penalty when going from $\frac{e}{n}$ to $w$ ).

For a point in the ball we have

$$
\hat{f}(w)-\left(\hat{f}\left(\frac{e}{n}\right)+g(w)\right) h(w)
$$

(The increase in penalty when going from $\frac{e}{n}$ to $w$ ).
This is at most $\frac{\beta^{2}}{2(1-\beta)}$ with $\beta=n \alpha r$.

For a point in the ball we have

$$
\hat{f}(w)-\left(\hat{f}\left(\frac{e}{n}\right)+g(w)\right) h(w)
$$

(The increase in penalty when going from $\frac{e}{n}$ to $w$ ).
This is at most $\frac{\beta^{2}}{2(1-\beta)}$ with $\beta=n \alpha r$. Hence,

$$
\hat{f}\left(\frac{e}{n}\right)-\hat{f}(\hat{x}) \geq \ln (1+\alpha)-\frac{\beta^{2}}{(1-\beta)} .
$$

## Lemma 5

For $|x| \leq \beta<1$

$$
|\ln (1+x)-x| \leq \frac{x^{2}}{2(1-\beta)} .
$$

This gives for $w \in B\left(\frac{e}{n}, \rho\right)$

$$
\left|\sum_{j} \ln \frac{w_{j}}{1 / n}\right|
$$

This gives for $w \in B\left(\frac{e}{n}, \rho\right)$

$$
\left|\sum_{j} \ln \frac{w_{j}}{1 / n}\right|=\left|\sum_{j} \ln \left(\frac{1 / n+\left(w_{j}-1 / n\right)}{1 / n}\right)-\sum_{j} n\left(w_{j}-\frac{1}{n}\right)\right|
$$

This gives for $w \in B\left(\frac{e}{n}, \rho\right)$

$$
\begin{aligned}
\left|\sum_{j} \ln \frac{w_{j}}{1 / n}\right| & =\left|\sum_{j} \ln \left(\frac{1 / n+\left(w_{j}-1 / n\right)}{1 / n}\right)-\sum_{j} n\left(w_{j}-\frac{1}{n}\right)\right| \\
& =|\sum_{j}[\ln (1+\overbrace{n\left(w_{j}-1 / n\right)}^{\leq n \alpha r<1})-n\left(w_{j}-\frac{1}{n}\right)]|
\end{aligned}
$$

This gives for $w \in B\left(\frac{e}{n}, \rho\right)$

$$
\begin{aligned}
\left|\sum_{j} \ln \frac{w_{j}}{1 / n}\right| & =\left|\sum_{j} \ln \left(\frac{1 / n+\left(w_{j}-1 / n\right)}{1 / n}\right)-\sum_{j} n\left(w_{j}-\frac{1}{n}\right)\right| \\
& =|\sum_{j}[\ln (1+\overbrace{n\left(w_{j}-1 / n\right)}^{\leq n \alpha r<1})-n\left(w_{j}-\frac{1}{n}\right)]| \\
& \leq \sum_{j} \frac{n^{2}\left(w_{j}-1 / n\right)^{2}}{2(1-\alpha n r)}
\end{aligned}
$$

This gives for $w \in B\left(\frac{e}{n}, \rho\right)$

$$
\begin{aligned}
\left|\sum_{j} \ln \frac{w_{j}}{1 / n}\right| & =\left|\sum_{j} \ln \left(\frac{1 / n+\left(w_{j}-1 / n\right)}{1 / n}\right)-\sum_{j} n\left(w_{j}-\frac{1}{n}\right)\right| \\
& =\left\lvert\, \sum_{j}[\left.\ln (1+\overbrace{n\left(w_{j}-1 / n\right)}^{\leq n \alpha r<1}-n\left(w_{j}-\frac{1}{n}\right)] \right\rvert\,\right. \\
& \leq \sum_{j} \frac{n^{2}\left(w_{j}-1 / n\right)^{2}}{2(1-\alpha n r)} \\
& \leq \frac{(\alpha n r)^{2}}{2(1-\alpha n r)}
\end{aligned}
$$

The decrease in potential is therefore at least

$$
\ln (1+\alpha)-\frac{\beta^{2}}{1-\beta}
$$

with $\beta=n \alpha r=\alpha \sqrt{\frac{n}{n-1}}$.

The decrease in potential is therefore at least

$$
\ln (1+\alpha)-\frac{\beta^{2}}{1-\beta}
$$

with $\beta=n \alpha r=\alpha \sqrt{\frac{n}{n-1}}$.
It can be shown that this is at least $\frac{1}{10}$ for $n \geq 4$ and $\alpha=1 / 4$.

Let $\bar{x}^{(k)}$ be the current point after the $k$-th iteration, and let $\bar{x}^{(0)}=\frac{e}{n}$.

Let $\bar{x}^{(k)}$ be the current point after the $k$-th iteration, and let $\bar{x}^{(0)}=\frac{e}{n}$.

Then $f\left(\bar{x}^{(k)}\right) \leq f(e / n)-k / 10$.

Let $\bar{x}^{(k)}$ be the current point after the $k$-th iteration, and let $\bar{x}^{(0)}=\frac{e}{n}$.

Then $f\left(\bar{x}^{(k)}\right) \leq f(e / n)-k / 10$. This gives

$$
n \ln \frac{c^{t} \bar{x}^{(k)}}{c^{t} \frac{e}{n}}
$$

Let $\bar{x}^{(k)}$ be the current point after the $k$-th iteration, and let $\bar{x}^{(0)}=\frac{e}{n}$.

Then $f\left(\bar{x}^{(k)}\right) \leq f(e / n)-k / 10$.
This gives

$$
n \ln \frac{c^{t} \bar{x}^{(k)}}{c^{t} \frac{e}{n}} \leq \sum_{j} \ln \bar{x}_{j}^{(k)}-\sum_{j} \ln \frac{1}{n}-k / 10
$$

Let $\bar{x}^{(k)}$ be the current point after the $k$-th iteration, and let $\bar{x}^{(0)}=\frac{e}{n}$.

Then $f\left(\bar{x}^{(k)}\right) \leq f(e / n)-k / 10$.
This gives

$$
\begin{aligned}
n \ln \frac{c^{t} \bar{x}^{(k)}}{c^{t} \frac{e}{n}} & \leq \sum_{j} \ln \bar{x}_{j}^{(k)}-\sum_{j} \ln \frac{1}{n}-k / 10 \\
& \leq n \ln n-k / 10
\end{aligned}
$$

Let $\bar{x}^{(k)}$ be the current point after the $k$-th iteration, and let $\bar{x}^{(0)}=\frac{e}{n}$.

Then $f\left(\bar{x}^{(k)}\right) \leq f(e / n)-k / 10$.
This gives

$$
\begin{aligned}
n \ln \frac{c^{t} \bar{x}^{(k)}}{c^{t} \frac{e}{n}} & \leq \sum_{j} \ln \bar{x}_{j}^{(k)}-\sum_{j} \ln \frac{1}{n}-k / 10 \\
& \leq n \ln n-k / 10
\end{aligned}
$$

Choosing $k=10 n(\ell+\ln n)$ with $\ell=\Theta(L)$ we get

$$
\frac{c^{t} \bar{x}^{(k)}}{c^{t} \frac{e}{n}} \leq e^{-\ell} \leq 2^{-\ell}
$$

Let $\bar{x}^{(k)}$ be the current point after the $k$-th iteration, and let $\bar{x}^{(0)}=\frac{e}{n}$.

Then $f\left(\bar{x}^{(k)}\right) \leq f(e / n)-k / 10$.
This gives

$$
\begin{aligned}
n \ln \frac{c^{t} \bar{x}^{(k)}}{c^{t} \frac{e}{n}} & \leq \sum_{j} \ln \bar{x}_{j}^{(k)}-\sum_{j} \ln \frac{1}{n}-k / 10 \\
& \leq n \ln n-k / 10
\end{aligned}
$$

Choosing $k=10 n(\ell+\ln n)$ with $\ell=\Theta(L)$ we get

$$
\frac{c^{t} \bar{x}^{(k)}}{c^{t} \frac{e}{n}} \leq e^{-\ell} \leq 2^{-\ell}
$$

Hence, $\Theta(n L)$ iterations are sufficient. One iteration can be performed in time $\mathcal{O}\left(n^{3}\right)$.

