
18 MAXSAT

Problem definition:

ñ n Boolean variables

ñ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

ñ Non-negative weight wj for each clause Cj.
ñ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.
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18 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.
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MAXSAT: Flipping Coins

Set each xi independently to true with probability 1
2 (and, hence,

to false with probability 1
2 , as well).
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Define random variable Xj with

Xj =
{

1 if Cj satisfied

0 otw.

Then the total weight W of satisfied clauses is given by

W =
∑
j
wjXj
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E[W] =
∑
j
wjE[Xj]

=
∑
j
wjPr[Cj is satisified]

=
∑
j
wj
(
1−

(1
2

)`j)
≥ 1

2

∑
j
wj

≥ 1
2

OPT
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MAXSAT: LP formulation

ñ Let for a clause Cj, Pj be the set of positive literals and Nj
the set of negative literals.

Cj =
∨
j∈Pj

xi ∨
∨
j∈Nj

x̄i

max
∑
jwjzj

s.t. ∀j
∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1
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MAXSAT: Randomized Rounding

Set each xi independently to true with probability yi (and,

hence, to false with probability (1−yi)).
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Lemma 2 (Geometric Mean ≤ Arithmetic Mean)

For any nonnegative a1, . . . , ak k∏
i=1

ai

1/k

≤ 1
k

k∑
i=1

ai
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Definition 3

A function f on an interval I is concave if for any two points s
and r from I and any λ ∈ [0,1] we have

f(λs + (1− λ)r) ≥ λf(s)+ (1− λ)f(r)

Lemma 4

Let f be a concave function on the interval [0,1], with f(0) = a
and f(1) = a+ b. Then

f(λ) = f((1− λ)0+ λ1)

≥ (1− λ)f(0)+ λf(1)
= a+ λb

for λ ∈ [0,1].

EADS II 18 MAXSAT

© Harald Räcke 373



Pr[Cj not satisfied] =
∏
i∈Pj
(1−yi)

∏
i∈Nj

yi

≤

 1
`j

 ∑
i∈Pj
(1−yi)+

∑
i∈Nj

yi



`j

=

1− 1
`j

 ∑
i∈Pj

yi +
∑
i∈Nj

(1−yi)



`j

≤
(

1−
zj
`j

)`j
.
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The function f(z) = 1− (1− z
` )
` is concave. Hence,

Pr[Cj satisfied] ≥ 1−
(

1−
zj
`j

)`j

≥
1−

(
1− 1

`j

)`j · zj .

f ′′(z) = −`−1
`

[
1− z

`

]`−2
≤ 0 for z ∈ [0,1]. Therefore, f is

concave.
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E[W] =
∑
j
wjPr[Cj is satisfied]

≥
∑
j
wjzj

1−
(

1− 1
`j

)`j
≥
(

1− 1
e

)
OPT .
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MAXSAT: The better of two

Theorem 5

Choosing the better of the two solutions given by randomized

rounding and coin flipping yields a 3
4 -approximation.
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Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}]
≥ E[1

2W1 + 1
2W2]

≥ 1
2

∑
j
wjzj

1−
(

1− 1
`j

)`j+ 1
2

∑
j
wj

(
1−

(
1
2

)`j)

≥
∑
j
wjzj

 1
2

1−
(

1− 1
`j

)`j+ 1
2

(
1−

(
1
2

)`j)
︸ ︷︷ ︸

≥ 3
4 for all integers



≥ 3
4

OPT
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MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability

that a variable is set to 1/true was exactly the value of the

corresponding variable in the linear program.

We could define a function f : [0,1]→ [0,1] and set xi to true

with probability f(yi).
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MAXSAT: Nonlinear Randomized Rounding

Let f : [0,1]→ [0,1] be a function with

1− 4−x ≤ f(x) ≤ 4x−1

Theorem 6

Rounding the LP-solution with a function f of the above form

gives a 3
4 -approximation.
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Pr[Cj not satisfied] =
∏
i∈Pj
(1− f(yi))

∏
i∈Nj

f(yi)

≤
∏
i∈Pj

4−yi
∏
i∈Nj

4yi−1

= 4
−(
∑
i∈Pj yi+

∑
i∈Nj (1−yi))

≤ 4−zj
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The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥

3
4

OPT
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Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 7 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.



Lemma 8

Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3
4 .

max
∑
jwjzj

s.t. ∀j
∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

Consider: (x1 ∨ x2)∧ (x̄1 ∨ x2)∧ (x1 ∨ x̄2)∧ (x̄1 ∨ x̄2)

ñ any solution can satisfy at most 3 clauses

ñ we can set y1 = y2 = 1/2 in the LP; this allows to set

z1 = z2 = z3 = z4 = 1

ñ hence, the LP has value 4.
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Facility Location

Given a set L of (possible) locations for placing facilities and a

set D of customers together with cost functions s : D × L→ R+

and o : L→ R+ find a set of facility locations F together with an

assignment φ : D → F of customers to open facilities such that∑
f∈F

o(f)+
∑
c
s(c,φ(c))

is minimized.

In the metric facility location problem we have

s(c, f ) ≤ s(c, f ′)+ s(c′, f )+ s(c′, f ′) .
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Facility Location

Integer Program

min
∑
i∈F fiyi +

∑
i∈F

∑
j∈D cijxij

s.t. ∀j ∈ D
∑
i∈F xij = 1

∀i ∈ F, j ∈ D xij ≤ yi
∀i ∈ F, j ∈ D xij ∈ {0,1}

∀i ∈ F yi ∈ {0,1}

As usual we get an LP by relaxing the integrality constraints.
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Facility Location

Dual Linear Program

max
∑
j∈D vj

s.t. ∀i ∈ F
∑
j∈Dwij ≤ fi

∀i ∈ F, j ∈ D vj −wij ≤ cij
∀i ∈ F, j ∈ D wij ≥ 0
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Facility Location

Definition 9

Given an LP solution (x∗, y∗) we say that facility i neighbours

client j if xij > 0. Let N(j) = {i ∈ F : x∗ij > 0}.
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Lemma 10

If (x∗, y∗) is an optimal solution to the facility location LP and

(v∗,w∗) is an optimal dual solution, then x∗ij > 0 implies

cij ≤ v∗j .

Follows from slackness conditions.
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Suppose we open set S ⊆ F of facilities s.t. for all clients we have

S ∩N(j) ≠ �.

Then every client j has a facility i s.t. assignment cost for this

client is at most cij ≤ v∗j .

Hence, the total assignment cost is∑
j
cijj ≤

∑
j
v∗j ≤ OPT ,

where ij is the facility that client j is assigned to.

EADS II 19 Facility Location

© Harald Räcke 392



Problem: Facility cost may be huge!

Suppose we can partition a subset F ′ ⊆ F of facilities into

neighbour sets of some clients. I.e.

F ′ =
⊎
k
N(jk)

where j1, j2, . . . form a subset of the clients.
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Now in each set N(jk) we open the cheapest facility. Call it fik .

We have

fik = fik
∑

i∈N(jk)
x∗ijk ≤

∑
i∈N(jk)

fix∗ijk ≤
∑

i∈N(jk)
fiy∗i .

Summing over all k gives

∑
k
fik ≤

∑
k

∑
i∈N(jk)

fiy∗i =
∑
i∈F ′

fiy∗i ≤
∑
i∈F
fiy∗i

Facility cost is at most the facility cost in an optimum solution.
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Problem: so far clients j1, j2, . . . have a neighboring facility.

What about the others?

Definition 11

Let N2(j) denote all neighboring clients of the neighboring

facilities of client j.

Note that N(j) is a set of facilities while N2(j) is a set of clients.
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Algorithm 1 FacilityLocation
1: C ← D// unassigned clients

2: k← 0

3: while C ≠ 0 do

4: k← k+ 1

5: choose jk ∈ C that minimizes v∗j
6: choose ik ∈ N(jk) as cheapest facility

7: assign jk and all unassigned clients in N2(jk) to ik
8: C ← C − {jk} −N2(jk)
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Facility cost of this algorithm is at most OPT because the sets

N(jk) are disjoint.

Total assignment cost:

ñ Fix k; set j = jk and i = ik. We know that cij ≤ v∗j .

ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).

ci` ≤ cij + chj + ch` ≤ v∗j + v∗j + v∗` ≤ 3v∗`

Summing this over all facilities gives that the total assignment

cost is at most 3 ·OPT. Hence, we get a 4-approximation.
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In the above analysis we use the inequality∑
i∈F
fiy∗i ≤ OPT .

We know something stronger namely∑
i∈F
fiy∗i +

∑
i∈F

∑
j∈D

cijx∗ij ≤ OPT .
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Observation:

ñ Suppose when choosing a client jk, instead of opening the

cheapest facility in its neighborhood we choose a random

facility according to x∗ijk .
ñ Then we incur connection cost∑

i
cijkx

∗
ijk

for client jk. (In the previous algorithm we estimated this by

v∗jk ).
ñ Define

C∗j =
∑
i
cijx∗ij

to be the connection cost for client j.
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What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of

some jk). (recall that neighborhoods of different j′ks are

disjoint).

We open facility i with probability xijk ≤ yi (in case it is in some

neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most∑
i∈F
fiyi .
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Algorithm 1 FacilityLocation
1: C ← D// unassigned clients

2: k← 0

3: while C ≠ 0 do

4: k← k+ 1

5: choose jk ∈ C that minimizes v∗j + C∗j
6: choose ik ∈ N(jk) according to probability xijk .
7: assign jk and all unassigned clients in N2(jk) to ik
8: C ← C − {jk} −N2(jk)

EADS II 19 Facility Location

© Harald Räcke 401



Total assignment cost:

ñ Fix k; set j = jk.
ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).
ñ If we assign a client ` to the same facility as i we pay at

most∑
i
cijx∗ijk + chj + ch` ≤ C

∗
j + v∗j + v∗` ≤ C

∗
` + 2v∗`

Summing this over all clients gives that the total assignment cost

is at most ∑
j
C∗j +

∑
j

2v∗j ≤
∑
j
C∗j + 2OPT

Hence, it is at most 2OPT plus the total assignment cost in an

optimum solution.

Adding the facility cost gives a 3-approximation.



Lemma 12 (Chernoff Bounds)

Let X1, . . . , Xn be n independent 0-1 random variables, not

necessarily identically distributed. Then for X =
∑n
i=1Xi and

µ = E[X], L ≤ µ ≤ U , and δ > 0

Pr[X ≥ (1+ δ)U] <
(

eδ

(1+ δ)1+δ

)U
,

and

Pr[X ≤ (1− δ)L] <
(

e−δ

(1− δ)1−δ

)L
,

EADS II 20.1 Chernoff Bounds

© Harald Räcke 403



Lemma 13

For 0 ≤ δ ≤ 1 we have that(
eδ

(1+ δ)1+δ

)U
≤ e−Uδ2/3

and (
e−δ

(1− δ)1−δ

)L
≤ e−Lδ2/2
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Integer Multicommodity Flows

ñ Given si-ti pairs in a graph.

ñ Connect each pair by a paths such that not too many path

use any given edge.

min W
s.t. ∀i

∑
p∈Pi xp = 1∑
p:e∈p xp ≤ W

xp ∈ {0,1}
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Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set Pi at random according

to the probability distribution given by the Linear Programming

Solution.
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Theorem 14

If W∗ ≥ c lnn for some constant c, then with probability at least

n−c/3 the total number of paths using any edge is at most

W∗ +
√
cW∗ lnn.
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Integer Multicommodity Flows

Let Xie be a random variable that indicates whether the path for

si-ti uses edge e.

Then the number of paths using edge e is Ye =
∑
iXie.

E[Ye] =
∑
i

∑
p∈Pi:e∈p

x∗p =
∑
p:e∈P

x∗p ≤ W∗
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Integer Multicommodity Flows

Choose δ =
√
(c lnn)/W∗.

Then

Pr[Ye ≥ (1+ δ)W∗] < e−W
∗δ2/3 = 1

nc/3
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Repetition: Primal Dual for Set Cover

Primal Relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U
∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ≥ 0

Dual Formulation:

max
∑
u∈U yu

s.t. ∀i ∈ {1, . . . , k}
∑
u:u∈Si yu ≤ wi

yu ≥ 0
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Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).
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Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is∑
j
wj =

∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}|·ye ≤ f ·

∑
e
ye ≤ f ·OPT
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Note that the constructed pair of primal and dual solution fulfills

primal slackness conditions.

This means

xj > 0⇒
∑
e∈Sj

ye = wj

If we would also fulfill dual slackness conditions

ye > 0⇒
∑
j:e∈Sj

xj = 1

then the solution would be optimal!!!
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We don’t fulfill these constraint but we fulfill an approximate

version:

ye > 0⇒ 1 ≤
∑
j:e∈Sj

xj ≤ f

This is sufficient to show that the solution is an

f -approximation.
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Suppose we have a primal/dual pair

min
∑
j cjxj

s.t. ∀i
∑
j: aijxj ≥ bi

∀j xj ≥ 0

max
∑
i biyi

s.t. ∀j
∑
i aijyi ≤ cj

∀i yi ≥ 0

and solutions that fulfill approximate slackness conditions:

xj > 0⇒
∑
i
aijyi ≥

1
α
cj

yi > 0⇒
∑
j
aijxj ≤ βbi
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Then

∑
j
cjxj ≤ α

∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi

∑
j
cjxjcj

primal cost

right hand side of j-th
dual constraint

∑
i
biyi

dual objective
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Feedback Vertex Set for Undirected Graphs

ñ Given a graph G = (V , E) and non-negative weights wv ≥ 0

for vertex v ∈ V .

ñ Choose a minimum cost subset of vertices s.t. every cycle

contains at least one vertex.
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We can encode this as an instance of Set Cover

ñ Each vertex can be viewed as a set that contains some

cycles.

ñ However, this encoding gives a Set Cover instance of

non-polynomial size.

ñ The O(logn)-approximation for Set Cover does not help us

to get a good solution.
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Let C denote the set of all cycles (where a cycle is identified by

its set of vertices)

Primal Relaxation:

min
∑
v wvxv

s.t. ∀C ∈ C
∑
v∈C xv ≥ 1

∀v xv ≥ 0

Dual Formulation:

max
∑
C∈C yC

s.t. ∀v ∈ V
∑
C :v∈C yC ≤ wv

∀C yC ≥ 0
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If we perform the previous dual technique for Set Cover we get

the following:

ñ Start with x = 0 and y = 0

ñ While there is a cycle C that is not covered (does not contain
a chosen vertex).

ñ Increase ye until dual constraint for some vertex v becomes
tight.

ñ set xv = 1.
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Then ∑
v
wvxv =

∑
v

∑
C :v∈C

yCxv

=
∑
v∈S

∑
C :v∈C

yC

=
∑
C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but

this is unrealistic.
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Algorithm 1 FeedbackVertexSet
1: y ← 0

2: x ← 0

3: while exists cycle C in G do

4: increase yC until there is v ∈ C s.t.
∑
C :v∈C yC = wv

5: xv = 1

6: remove v from G
7: repeatedly remove vertices of degree 1 from G
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Idea:

Always choose a short cycle that is not covered. If we always find

a cycle of length at most α we get an α-approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm

chooses at most one vertex from P .
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Observation:

If we always choose a cycle for which the number of vertices of

degree at least 3 is at most α we get an α-approximation.

Theorem 15

In any graph with no vertices of degree 1, there always exists a

cycle that has at most O(logn) vertices of degree 3 or more. We

can find such a cycle in linear time.

This means we have

yC > 0⇒ |S ∩ C| ≤ O(logn) .
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Primal Dual for Shortest Path

Given a graph G = (V , E) with two nodes s, t ∈ V and

edge-weights c : E → R+ find a shortest path between s and t
w.r.t. edge-weights c.

min
∑
e c(e)xe

s.t. ∀S ∈ S
∑
e:δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.
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Primal Dual for Shortest Path

The Dual:

max
∑
S yS

s.t. ∀e ∈ E
∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.

EADS II 21 Primal Dual Revisited

© Harald Räcke 426



Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.
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Algorithm 1 PrimalDualShortestPath
1: y ← 0

2: F ← �
3: while there is no s-t path in (V , F) do

4: Let C be the connected component of (V , F) con-

taining s
5: Increase yC until there is an edge e′ ∈ δ(C) such

that
∑
S:e′∈δ(S)yS = c(e′).

6: F ← F ∪ {e′}
7: Let P be an s-t path in (V , F)
8: return P
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Lemma 16

At each point in time the set F forms a tree.

Proof:

ñ In each iteration we take the current connected component

from (V , F) that contains s (call this component C) and add

some edge from δ(C) to F .

ñ Since, at most one end-point of the new edge is in C the

edge cannot close a cycle.
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∑
e∈P
c(e) =

∑
e∈P

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives∑
e∈P
c(e) =

∑
S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.
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If S contains two edges from P then there must exist a subpath

P ′ of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.
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Steiner Forest Problem:

Given a graph G = (V , E), together with source-target pairs

si, ti,i = 1, . . . , k, and a cost function c : E → R+ on the edges.

Find a subset F ⊆ E of the edges such that for every

i ∈ {1, . . . , k} there is a path between si and ti only using edges

in F .

min
∑
e c(e)xe

s.t. ∀S ⊆ V : S ∈ Si for some i
∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here Si contains all sets S such that si ∈ S and ti ∉ S.
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max
∑
S : ∃i s.t. S ∈ Si yS

s.t. ∀e ∈ E
∑
S:e∈δ(S)yS ≤ c(e)

yS ≥ 0

The difference to the dual of the shortest path problem is that

we have many more variables (sets for which we can generate a

moat of non-zero width).
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Algorithm 1 FirstTry
1: y ← 0

2: F ← �
3: while not all si-ti pairs connected in F do

4: Let C be some connected component of (V , F)
such that |C ∩ {si, ti}| = 1 for some i.

5: Increase yC until there is an edge e′ ∈ δ(C) s.t.∑
S∈Si:e′∈δ(S)yS = ce′

6: F ← F ∪ {e′}
7: Let Pi be an si-ti path in (V , F)
8: return

⋃
i Pi
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∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in

good shape.

However, this is not true:

ñ Take a graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.
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Algorithm 1 SecondTry

1: y ← 0; F ← �; ` ← 0

2: while not all si-ti pairs connected in F do

3: ` ← ` + 1

4: Let C be set of all connected components C of (V , F)
such that |C ∩ {si, ti}| = 1 for some i.

5: Increase yC for all C ∈ C uniformly until for some edge

e` ∈ δ(C′), C′ ∈ C s.t.
∑
S:e`∈δ(S)yS = ce`

6: F ← F ∪ {e`}
7: F ′ ← F
8: for k← ` downto 1 do // reverse deletion

9: if F ′ − ek is feasible solution then

10: remove ek from F ′

11: return F ′
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The reverse deletion step is not strictly necessary this way. It

would also be sufficient to simply delete all unnecessary edges

in any order.
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Example

s1 s2

s3

t1

t2

t3
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Lemma 17

For any C in any iteration of the algorithm∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

This means that the number of times a moat from C is crossed

in the final solution is at most twice the number of moats.

Proof: later...
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∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.
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Lemma 18

For any set of connected components C in any iteration of the

algorithm ∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. ei is the set we add to F . Let Fi be the set of

edges in F at the beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.
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ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from
C (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑
v∈R

deg(v) ≥
∑
C∈C
|δ(C)∩ F ′|

?
≤ 2|C| = 2|R|
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ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

EADS II 21 Primal Dual Revisited

© Harald Räcke 443


	MAXSAT
	Facility Location
	Integer Multicommodity Flows
	Chernoff Bounds

	Primal Dual Revisited

