Integer Multicommodity Flows

Choose $\delta = \sqrt{(c \ln n)/W^*}$.

Then

$$\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$$

EADS II © Harald Räcke	20.1 Chernoff Bounds	

Repetition: Primal Dual for Set Cover

Algorithm:

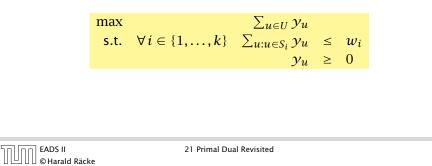
- Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).
- While *x* not feasible
 - Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set x_j = 1 (add this set to your solution).

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min		$\sum_{i=1}^k w_i x_i$			
s.t.	$\forall u \in U$	$\sum_{i:u\in S_i} x_i$	\geq	1	
	$\forall i \in \{1,\ldots,k\}$	x_i	≥	0	

Dual Formulation:



Analysis: • For every set S_j with $x_j = 1$ we have $\sum_{e \in S_j} y_e = w_j$ • Hence our cost is $\sum_j w_j = \sum_j \sum_{e \in S_j} y_e = \sum_e |\{j : e \in S_j\}| \cdot y_e \le f \cdot \sum_e y_e \le f \cdot \text{OPT}$

409

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

If we would also fulfill dual slackness conditions

$$y_e > 0 \Rightarrow \sum_{j:e \in S_j} x_j = 1$$

then the solution would be optimal!!!

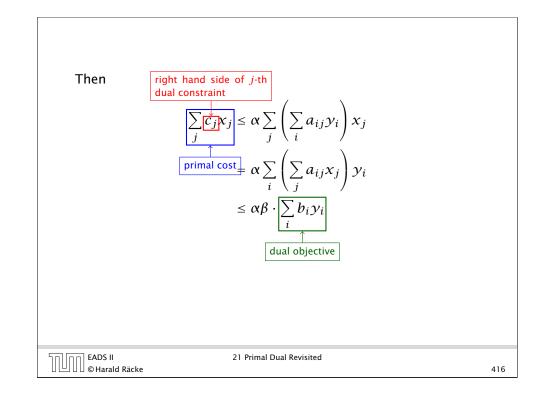
EADS II © Harald Räcke	21 Primal Dual Revisited	413
		-

We don't fulfill these constraint but we fulfill an approximate version:

$$y_e > 0 \Rightarrow 1 \le \sum_{j:e \in S_j} x_j \le f$$

This is sufficient to show that the solution is an f-approximation.

	21 Primal Dual Revisited	
UUU © Harald Räcke		414



Suppose we have a primal/dual pair

min		$\sum_j c_j x_j$			max		$\sum_i b_i y_i$		
s.t.	∀i	$\sum_{j:} a_{ij} x_j$	\geq	b_i	s.t.	$\forall j$	$\sum_i a_{ij} y_i$	\leq	c_j
	$\forall j$	x_j	\geq	0		∀i	${\mathcal Y}_i$	\geq	0

and solutions that fulfill approximate slackness conditions:

$$x_{j} > 0 \Rightarrow \sum_{i} a_{ij} y_{i} \ge \frac{1}{\alpha} c_{j}$$
$$y_{i} > 0 \Rightarrow \sum_{j} a_{ij} x_{j} \le \beta b_{i}$$

EADS II © Harald Räcke 21 Primal Dual Revisited

Feedback Vertex Set for Undirected Graphs Given a graph G = (V, E) and non-negative weights w_v ≥ 0 for vertex v ∈ V. Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex.

Let *C* denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

min		$\sum_{v} w_{v} x_{v}$		
s.t.	$\forall C \in C$	$\sum_{v \in C} x_v$	\geq	1
	$\forall v$	x_v	\geq	0

Dual Formulation:

EADS II

||||||| © Harald Räcke

max		$\sum_{C \in C} \mathcal{Y}_C$		
s.t.	$\forall v \in V$	$\sum_{C:v \in C} \mathcal{Y}_C$	\leq	w_v
	$\forall C$	$\mathcal{Y}_{\mathcal{C}}$	\geq	0

21 Primal Dual Revisited

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.
- The O(log n)-approximation for Set Cover does not help us to get a good solution.

	21 Primal Dual Revisited	
UUU GHarald Räcke		418

If we perform the previous dual technique for Set Cover we get the following:

- Start with x = 0 and y = 0
- While there is a cycle C that is not covered (does not contain a chosen vertex).
 - Increase y_e until dual constraint for some vertex v becomes tight.
 - set $x_v = 1$.

Then

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$
$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this is unrealistic.

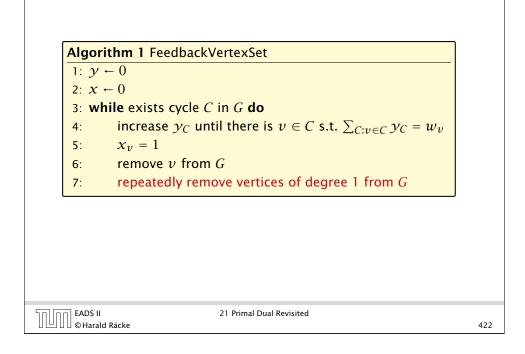
הח (הח EADS II	21 Primal Dual Revisited	
UUU©Harald Räcke		421

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses at most one vertex from P.



Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get an α -approximation.

Theorem 15

EADS II © Harald Räcke

In any graph with no vertices of degree 1, there always exists a cycle that has at most $O(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

$$y_C > 0 \Rightarrow |S \cap C| \le \mathcal{O}(\log n)$$
.

21 Primal Dual Revisited

Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes $s, t \in V$ and edge-weights $c : E \to \mathbb{R}^+$ find a shortest path between s and tw.r.t. edge-weights c.

min		$\sum_{e} c(e) x_{e}$		
s.t.	$\forall S \in S$	$\sum_{e:\delta(S)} x_e$	\geq	1
	$\forall e \in E$	x_e	\in	{0,1

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}.$

	21 Primal Dual Revisited	
UUU©Harald Räcke		425

Primal Dual fo	or Shortest Path
We can interpr the set <i>S</i> .	et the value \mathcal{Y}_S as the width of a moat surounding
	ave its own moat but all moats must be disjoint. In the shorter than all the moats that it has to cross.
, cu ge cu	
Soloo EADS II	21 Primal Dual Revisited

|||||||| © Harald Räcke

Primal Dual for Shortest Path

The Dual:

max		$\sum_{S} \gamma_{S}$		
s.t.	$\forall e \in E$	$\sum_{S:e\in\delta(S)} \mathcal{Y}_S$	\leq	c(e)
	$\forall S \in S$	$\mathcal{Y}S$	\geq	0

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}.$

EADS II הח	21 Primal Dual Revisited	
UUU GHarald Räcke		426

Algo	rithm 1 PrimalDualShortestPath
1: Y	$v \leftarrow 0$
2: F	$\leftarrow \emptyset$
3: N	while there is no s-t path in (V, F) do
4:	Let C be the connected component of (V, F) con-
	taining <i>s</i>
5:	Increase $\mathcal{Y}_{\mathcal{C}}$ until there is an edge $e' \in \delta(\mathcal{C})$ such
	that $\sum_{S:e'\in\delta(S)} y_S = c(e')$.
6:	$F \leftarrow F \cup \{e'\}$
7: L	et P be an s - t path in (V, F)
8: re	eturn P

Lemma 16

At each point in time the set F forms a tree.

Proof:

- ► In each iteration we take the current connected component from (V, F) that contains *s* (call this component *C*) and add some edge from $\delta(C)$ to *F*.
- Since, at most one end-point of the new edge is in C the edge cannot close a cycle.

EADS II © Harald Räcke	21 Primal Dual Revisited

If S contains two edges from P then there must exist a subpath P' of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

21 Primal Dual Revisited

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

EADS II

∐||||| © Harald Räcke

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \le \text{OPT}$$

21 Primal Dual Revisited

by weak duality.

Hence, we find a shortest path.

EADS II © Harald Räcke

429

431

430

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs $s_i, t_i, i = 1, ..., k$, and a cost function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in \{1, ..., k\}$ there is a path between s_i and t_i only using edges in F.

min		$\sum_{e} c(e) x_{e}$		
s.t.	$\forall S \subseteq V : S \in S_i \text{ for some } i$	$\sum_{e \in \delta(S)} x_e$	\geq	1
	$\forall e \in E$	x_e	\in	$\{0, 1\}$

Here S_i contains all sets S such that $s_i \in S$ and $t_i \notin S$.

The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width).

1 1111111111	EADS II © Harald Räcke	2	1 Primal Dual Revisited

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S$$

If we show that $\gamma_S > 0$ implies that $|\delta(S) \cap F| \le \alpha$ we are in good shape.

However, this is not true:

- Take a graph on k + 1 vertices v_0, v_1, \ldots, v_k .
- The *i*-th pair is v_0 - v_i .
- The first component C could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- The final set F contains all edges $\{v_0, v_i\}, i = 1, \dots, k$.
- $y_{\{v_0\}} > 0$ but $|\delta(\{v_0\}) \cap F| = k$.

EADS II	
© Harald	Räcke

435

433

1: y 2: F	$\leftarrow 0$
	hile not all s_i - t_i pairs connected in F do
4:	Let C be some connected component of (V, F)
	such that $ C \cap \{s_i, t_i\} = 1$ for some <i>i</i> .
5:	Increase y_C until there is an edge $e' \in \delta(C)$ s.t.
	$\sum_{S \in S_i: e' \in \delta(S)} \mathcal{Y}_S = C_{e'}$
6:	$F \leftarrow F \cup \{e'\}$
7: Le	et P_i be an s_i - t_i path in (V, F)
8: re	eturn $\bigcup_i P_i$

21 Primal Dual Revisited

EADS II © Harald Räcke	21 Primal Dual Revi

Algorithm 1 SecondTry 1: $\gamma \leftarrow 0$; $F \leftarrow \emptyset$; $\ell \leftarrow 0$ 2: while not all s_i - t_i pairs connected in F do 3: $\ell \leftarrow \ell + 1$ 4: Let C be set of all connected components C of (V, F)such that $|C \cap \{s_i, t_i\}| = 1$ for some *i*. Increase γ_C for all $C \in C$ uniformly until for some edge 5: $e_{\ell} \in \delta(C'), C' \in C$ s.t. $\sum_{S:e_{\ell} \in \delta(S)} y_S = c_{e_{\ell}}$ 6: $F \leftarrow F \cup \{e_\ell\}$ 7: $F' \leftarrow F$ 8: for $k \leftarrow \ell$ downto 1 do // reverse deletion **if** $F' - e_k$ is feasible solution **then** 9: remove e_k from F'10: 11: **return** *F*'

The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

	21 Primal Dual Revisited	
UUU © Harald Räcke		437

Lemma 17

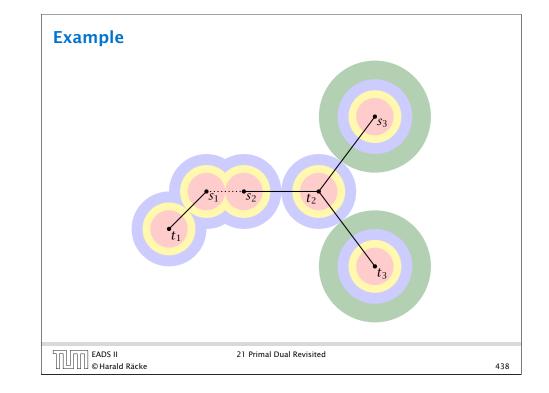
For any C in any iteration of the algorithm

$$\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|$$

This means that the number of times a moat from C is crossed in the final solution is at most twice the number of moats.

Proof: later...

21 Primal Dual Revisited



$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S .$$

We want to show that

$$\sum_{S} |F' \cap \delta(S)| \cdot \gamma_{S} \le 2 \sum_{S} \gamma_{S}$$

► In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |C|$.

Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

EADS II © Harald Räcke

Lemma 18

For any set of connected components C in any iteration of the algorithm

$$\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration *i*. *e_i* is the set we add to *F*. Let *F_i* be the set of edges in *F* at the beginning of the iteration.
- Let $H = F' F_i$.
- ► All edges in *H* are necessary for the solution.

	21 Primal Dual Revisited	
🛛 🕒 🛛 🖉 © Harald Räcke		441

- Contract all edges in F_i into single vertices V'.
- We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- ► Color a vertex $v \in V'$ red if it corresponds to a component from *C* (an active component). Otw. color it blue. (Let *B* the set of blue vertices (with non-zero degree) and *R* the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \geq \sum_{C \in C} |\delta(C) \cap F'| \stackrel{?}{\leq} 2|C| = 2|R|$$

EADS II © Harald Räcke	21 Primal Dual Revisited	442

- Suppose that no node in *B* has degree one.
- Then

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting b ∈ B comes from H, and, hence, is necessary.
 - But this means that the cluster corresponding to b must separate a source-target pair.
 - But then it must be a red node.

EADS II © Harald Räcke