
Ellipsoid Method

ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

z′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 159/443

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 159/443

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z

E

z′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 159/443

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z

E

z′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 159/443

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z

E

z′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 159/443

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z

E

z′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 159/443

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z

E

z′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 159/443

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z

E

z′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 159/443

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 159/443

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 159/443

Issues/Questions:

ñ How do you choose the first Ellipsoid? What is its volume?

ñ What if the polytop K is unbounded?

ñ How do you measure progress? By how much does the

volume decrease in each iteration?

ñ When can you stop? What is the minimum volume of a

non-empty polytop?

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 160/443

Definition 3

A mapping f : Rn → Rn with f(x) = Lx + t, where L is an

invertible matrix is called an affine transformation.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 161/443

Definition 4

A ball in Rn with center c and radius r is given by

B(c, r) = {x | (x − c)t(x − c) ≤ r2}
= {x |

∑
i
(x − c)2i /r2 ≤ 1}

B(0,1) is called the unit ball.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 162/443

Definition 5

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 163/443

Definition 5

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 163/443

Definition 5

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1))

= {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 163/443

Definition 5

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}

= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 163/443

Definition 5

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 163/443

Definition 5

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}

= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 163/443

Definition 5

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 163/443

Definition 5

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 163/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c
a

ĉ′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 164/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

a

ĉ′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 164/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

ĉ′

a

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 164/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

ĉ′

a

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 164/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

ĉ′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 164/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c̄

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 164/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 164/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c

c′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 164/443

The Easy Case

Ê′

e1

e2

ĉ′

ñ The new center lies on axis x1. Hence, ĉ′ = te1 for t > 0.
ñ The vectors e1, e2, . . . have to fulfill the ellipsoid constraint

with equality. Hence (ei − ĉ′)tQ̂′
−1
(ei − ĉ′) = 1.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 165/443

The Easy Case

Ê′

e1

e2

ĉ′

ñ The new center lies on axis x1. Hence, ĉ′ = te1 for t > 0.
ñ The vectors e1, e2, . . . have to fulfill the ellipsoid constraint

with equality. Hence (ei − ĉ′)tQ̂′
−1
(ei − ĉ′) = 1.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 165/443

The Easy Case

ñ The obtain the matrix Q̂′
−1

for our ellipsoid Ê′ note that Ê′

is axis-parallel.

ñ Let a denote the radius along the x1-axis and let b denote

the (common) radius for the other axes.

ñ The matrix

L̂′ =

a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b

maps the unit ball (via function f̂ ′(x) = L̂′x) to an

axis-parallel ellipsoid with radius a in direction x1 and b in

all other directions.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 166/443

The Easy Case

ñ The obtain the matrix Q̂′
−1

for our ellipsoid Ê′ note that Ê′

is axis-parallel.

ñ Let a denote the radius along the x1-axis and let b denote

the (common) radius for the other axes.

ñ The matrix

L̂′ =

a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b

maps the unit ball (via function f̂ ′(x) = L̂′x) to an

axis-parallel ellipsoid with radius a in direction x1 and b in

all other directions.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 166/443

The Easy Case

ñ The obtain the matrix Q̂′
−1

for our ellipsoid Ê′ note that Ê′

is axis-parallel.

ñ Let a denote the radius along the x1-axis and let b denote

the (common) radius for the other axes.

ñ The matrix

L̂′ =

a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b

maps the unit ball (via function f̂ ′(x) = L̂′x) to an

axis-parallel ellipsoid with radius a in direction x1 and b in

all other directions.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 166/443

The Easy Case

ñ As Q̂′ = L̂′L̂′t the matrix Q̂′
−1

is of the form

Q̂′
−1 =

1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 167/443

The Easy Case

ñ (e1 − ĉ′)tQ̂′
−1
(e1 − ĉ′) = 1 gives

1− t

0
...

0

t

·

1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2

 ·

1− t
0
...

0

 = 1

ñ This gives (1− t)2 = a2.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 168/443

The Easy Case

ñ For i ≠ 1 the equation (ei − ĉ′)tQ̂′
−1
(ei − ĉ′) = 1 gives

−t
1

0
...

0

t

·

1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2

 ·

−t
1

0
...

0

 = 1

ñ This gives t2
a2 + 1

b2 = 1, and hence

1
b2 = 1− t

2

a2

= 1− t2

(1− t)2 =
1− 2t
(1− t)2

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 169/443

The Easy Case

ñ For i ≠ 1 the equation (ei − ĉ′)tQ̂′
−1
(ei − ĉ′) = 1 gives

−t
1

0
...

0

t

·

1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2

 ·

−t
1

0
...

0

 = 1

ñ This gives t2
a2 + 1

b2 = 1, and hence

1
b2 = 1− t

2

a2 = 1− t2

(1− t)2

= 1− 2t
(1− t)2

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 169/443

The Easy Case

ñ For i ≠ 1 the equation (ei − ĉ′)tQ̂′
−1
(ei − ĉ′) = 1 gives

−t
1

0
...

0

t

·

1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2

 ·

−t
1

0
...

0

 = 1

ñ This gives t2
a2 + 1

b2 = 1, and hence

1
b2 = 1− t

2

a2 = 1− t2

(1− t)2 =
1− 2t
(1− t)2

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 169/443

Summary

So far we have

a = 1− t and b = 1− t√
1− 2t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 170/443

The Easy Case

We still have many choices for t:

Ê′

e1

e2

Choose t such that the volume of Ê′ is minimal!!!

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 171/443

The Easy Case

We still have many choices for t:

Ê′

e1

e2ĉ′

Choose t such that the volume of Ê′ is minimal!!!

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 171/443

The Easy Case

We still have many choices for t:

Ê′

e1

e2

ĉ′

Choose t such that the volume of Ê′ is minimal!!!

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 171/443

The Easy Case

We still have many choices for t:

Ê′

e1

e2

ĉ′

Choose t such that the volume of Ê′ is minimal!!!

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 171/443

The Easy Case

We still have many choices for t:

Ê′

e1

e2

ĉ′

Choose t such that the volume of Ê′ is minimal!!!

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 171/443

The Easy Case

We still have many choices for t:

Ê′

e1

e2

ĉ′

Choose t such that the volume of Ê′ is minimal!!!

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 171/443

The Easy Case

We want to choose t such that the volume of Ê′ is minimal.

Lemma 6

Let L be an affine transformation and K ⊆ Rn. Then

vol(L(K)) = |det(L)| · vol(K) .

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 172/443

The Easy Case

We want to choose t such that the volume of Ê′ is minimal.

Lemma 6

Let L be an affine transformation and K ⊆ Rn. Then

vol(L(K)) = |det(L)| · vol(K) .

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 172/443

n-dimensional volume

e1

e2

e3

a1

a2

a3

|det
(
a1 a2 a3

)
|

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 173/443

The Easy Case

ñ We want to choose t such that the volume of Ê′ is minimal.

vol(Ê′) = vol(B(0,1)) · |det(L̂′)| ,

where Q̂′ = L̂′L̂′t.
ñ We have

L̂′
−1 =

1
a 0 . . . 0

0 1
b

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b

 and L̂′ =

a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b

ñ Note that a and b in the above equations depend on t, by

the previous equations.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 174/443

The Easy Case

ñ We want to choose t such that the volume of Ê′ is minimal.

vol(Ê′) = vol(B(0,1)) · |det(L̂′)| ,

where Q̂′ = L̂′L̂′t.
ñ We have

L̂′
−1 =

1
a 0 . . . 0

0 1
b

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b

 and L̂′ =

a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b

ñ Note that a and b in the above equations depend on t, by

the previous equations.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 174/443

The Easy Case

ñ We want to choose t such that the volume of Ê′ is minimal.

vol(Ê′) = vol(B(0,1)) · |det(L̂′)| ,

where Q̂′ = L̂′L̂′t.
ñ We have

L̂′
−1 =

1
a 0 . . . 0

0 1
b

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b

 and L̂′ =

a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b

ñ Note that a and b in the above equations depend on t, by

the previous equations.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 174/443

The Easy Case

vol(Ê′)

= vol(B(0,1)) · |det(L̂′)|
= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 175/443

The Easy Case

vol(Ê′) = vol(B(0,1)) · |det(L̂′)|

= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 175/443

The Easy Case

vol(Ê′) = vol(B(0,1)) · |det(L̂′)|
= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 175/443

The Easy Case

vol(Ê′) = vol(B(0,1)) · |det(L̂′)|
= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 175/443

The Easy Case

vol(Ê′) = vol(B(0,1)) · |det(L̂′)|
= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 175/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2 ·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)

= 1

N2 ·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2

·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2 ·
(
(−1) ·n(1− t)n−1

· (
√

1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2 ·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2 ·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2

· 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2 ·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2)

· (1− t)n
)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2 ·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2 ·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2 ·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2 ·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2 ·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2 ·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2 ·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2 ·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2 ·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176/443

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a

= 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
=
(1− 1

n+1)
2

1− 2
n+1

=
(n
n+1)

2

n−1
n+1

= n2

n2 − 1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 177/443

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t

= n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
=
(1− 1

n+1)
2

1− 2
n+1

=
(n
n+1)

2

n−1
n+1

= n2

n2 − 1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 177/443

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
=
(1− 1

n+1)
2

1− 2
n+1

=
(n
n+1)

2

n−1
n+1

= n2

n2 − 1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 177/443

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b =

1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
=
(1− 1

n+1)
2

1− 2
n+1

=
(n
n+1)

2

n−1
n+1

= n2

n2 − 1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 177/443

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
=
(1− 1

n+1)
2

1− 2
n+1

=
(n
n+1)

2

n−1
n+1

= n2

n2 − 1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 177/443

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
=
(1− 1

n+1)
2

1− 2
n+1

=
(n
n+1)

2

n−1
n+1

= n2

n2 − 1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 177/443

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2

= (1− t)
2

1− 2t
=
(1− 1

n+1)
2

1− 2
n+1

=
(n
n+1)

2

n−1
n+1

= n2

n2 − 1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 177/443

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t

=
(1− 1

n+1)
2

1− 2
n+1

=
(n
n+1)

2

n−1
n+1

= n2

n2 − 1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 177/443

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
=
(1− 1

n+1)
2

1− 2
n+1

=
(n
n+1)

2

n−1
n+1

= n2

n2 − 1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 177/443

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
=
(1− 1

n+1)
2

1− 2
n+1

=
(n
n+1)

2

n−1
n+1

= n2

n2 − 1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 177/443

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
=
(1− 1

n+1)
2

1− 2
n+1

=
(n
n+1)

2

n−1
n+1

= n2

n2 − 1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 177/443

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n

=
(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 178/443

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 178/443

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 178/443

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 178/443

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 178/443

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 178/443

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 178/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c

E

a

ĉ′

Ê′

Ē′E′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 179/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

a

ĉ′

Ê′

Ē′E′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 179/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c̄
Ē

ĉ′

Ê′

Ē′E′

a

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 179/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

ĉ

Ê

ĉ′

Ê′

Ē′E′

a

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 179/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

ĉ

Ê

ĉ′

Ê′

Ē′E′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 179/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c̄
Ē

c̄′

Ê′

Ē′

E′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 179/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

Ê′ Ē′E′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 179/443

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c

E

c′

Ê′ Ē′

E′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 179/443

Our progress is the same:

e−
1

2(n+1)

≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 180/443

Our progress is the same:

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 180/443

Our progress is the same:

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 180/443

Our progress is the same:

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 180/443

Our progress is the same:

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 180/443

Our progress is the same:

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 180/443

Our progress is the same:

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 180/443

Our progress is the same:

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 180/443

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx+ c;

The halfspace to be intersected: H = {x | at(x − c) ≤ 0};

f−1(H)

= {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y)− c) ≤ 0}
= {y | at(f (y)− c) ≤ 0}
= {y | at(Ly + c − c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 181/443

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx+ c;

The halfspace to be intersected: H = {x | at(x − c) ≤ 0};

f−1(H)

= {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y)− c) ≤ 0}
= {y | at(f (y)− c) ≤ 0}
= {y | at(Ly + c − c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 181/443

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx+ c;

The halfspace to be intersected: H = {x | at(x − c) ≤ 0};

f−1(H)

= {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y)− c) ≤ 0}
= {y | at(f (y)− c) ≤ 0}
= {y | at(Ly + c − c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 181/443

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx+ c;

The halfspace to be intersected: H = {x | at(x − c) ≤ 0};

f−1(H) = {f−1(x) | at(x − c) ≤ 0}

= {f−1(f (y)) | at(f (y)− c) ≤ 0}
= {y | at(f (y)− c) ≤ 0}
= {y | at(Ly + c − c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 181/443

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx+ c;

The halfspace to be intersected: H = {x | at(x − c) ≤ 0};

f−1(H) = {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y)− c) ≤ 0}

= {y | at(f (y)− c) ≤ 0}
= {y | at(Ly + c − c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 181/443

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx+ c;

The halfspace to be intersected: H = {x | at(x − c) ≤ 0};

f−1(H) = {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y)− c) ≤ 0}
= {y | at(f (y)− c) ≤ 0}

= {y | at(Ly + c − c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 181/443

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx+ c;

The halfspace to be intersected: H = {x | at(x − c) ≤ 0};

f−1(H) = {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y)− c) ≤ 0}
= {y | at(f (y)− c) ≤ 0}
= {y | at(Ly + c − c) ≤ 0}

= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 181/443

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx+ c;

The halfspace to be intersected: H = {x | at(x − c) ≤ 0};

f−1(H) = {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y)− c) ≤ 0}
= {y | at(f (y)− c) ≤ 0}
= {y | at(Ly + c − c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 181/443

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx+ c;

The halfspace to be intersected: H = {x | at(x − c) ≤ 0};

f−1(H) = {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y)− c) ≤ 0}
= {y | at(f (y)− c) ≤ 0}
= {y | at(Ly + c − c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 181/443

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′

= R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′

= R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1

= − 1
n+ 1

Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′

= f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′)

= L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

For computing the matrix Q′ of the new ellipsoid we assume in

the following that Ê′, Ē′ and E′ refer to the ellispoids centered in

the origin.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 183/443

Recall that

Q̂′ =

a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2

This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
because for a = n/n+1 and b = n/

√
n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

Recall that

Q̂′ =

a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2

This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
because for a = n/n+1 and b = n/

√
n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

Recall that

Q̂′ =

a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2

This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
because for a = n/n+1 and b = n/

√
n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

Recall that

Q̂′ =

a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2

This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
because for a = n/n+1 and b = n/

√
n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

Recall that

Q̂′ =

a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2

This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
because for a = n/n+1 and b = n/

√
n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

Recall that

Q̂′ =

a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2

This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
because for a = n/n+1 and b = n/

√
n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

Recall that

Q̂′ =

a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2

This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
because for a = n/n+1 and b = n/

√
n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

Recall that

Q̂′ =

a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2

This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
because for a = n/n+1 and b = n/

√
n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

9 The Ellipsoid Algorithm

Ē′

= R(Ê′)

= {R(x) | xtQ̂′−1
x ≤ 1}

= {y | (R−1y)tQ̂′
−1
R−1y ≤ 1}

= {y | yt(Rt)−1Q̂′
−1
R−1y ≤ 1}

= {y | yt(RQ̂′Rt︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 185/443

9 The Ellipsoid Algorithm

Ē′ = R(Ê′)

= {R(x) | xtQ̂′−1
x ≤ 1}

= {y | (R−1y)tQ̂′
−1
R−1y ≤ 1}

= {y | yt(Rt)−1Q̂′
−1
R−1y ≤ 1}

= {y | yt(RQ̂′Rt︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 185/443

9 The Ellipsoid Algorithm

Ē′ = R(Ê′)

= {R(x) | xtQ̂′−1
x ≤ 1}

= {y | (R−1y)tQ̂′
−1
R−1y ≤ 1}

= {y | yt(Rt)−1Q̂′
−1
R−1y ≤ 1}

= {y | yt(RQ̂′Rt︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 185/443

9 The Ellipsoid Algorithm

Ē′ = R(Ê′)

= {R(x) | xtQ̂′−1
x ≤ 1}

= {y | (R−1y)tQ̂′
−1
R−1y ≤ 1}

= {y | yt(Rt)−1Q̂′
−1
R−1y ≤ 1}

= {y | yt(RQ̂′Rt︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 185/443

9 The Ellipsoid Algorithm

Ē′ = R(Ê′)

= {R(x) | xtQ̂′−1
x ≤ 1}

= {y | (R−1y)tQ̂′
−1
R−1y ≤ 1}

= {y | yt(Rt)−1Q̂′
−1
R−1y ≤ 1}

= {y | yt(RQ̂′Rt︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 185/443

9 The Ellipsoid Algorithm

Ē′ = R(Ê′)

= {R(x) | xtQ̂′−1
x ≤ 1}

= {y | (R−1y)tQ̂′
−1
R−1y ≤ 1}

= {y | yt(Rt)−1Q̂′
−1
R−1y ≤ 1}

= {y | yt(RQ̂′Rt︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 185/443

9 The Ellipsoid Algorithm

Hence,

Q̄′

= RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 186/443

9 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 186/443

9 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 186/443

9 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)

= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 186/443

9 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 186/443

9 The Ellipsoid Algorithm

E′

= L(Ē′)

= {L(x) | xtQ̄′−1x ≤ 1}

= {y | (L−1y)tQ̄′−1L−1y ≤ 1}

= {y | yt(Lt)−1Q̄′−1L−1y ≤ 1}
= {y | yt(LQ̄′Lt︸ ︷︷ ︸

Q′

)−1y ≤ 1}

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 187/443

9 The Ellipsoid Algorithm

E′ = L(Ē′)

= {L(x) | xtQ̄′−1x ≤ 1}

= {y | (L−1y)tQ̄′−1L−1y ≤ 1}

= {y | yt(Lt)−1Q̄′−1L−1y ≤ 1}
= {y | yt(LQ̄′Lt︸ ︷︷ ︸

Q′

)−1y ≤ 1}

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 187/443

9 The Ellipsoid Algorithm

E′ = L(Ē′)

= {L(x) | xtQ̄′−1x ≤ 1}

= {y | (L−1y)tQ̄′−1L−1y ≤ 1}

= {y | yt(Lt)−1Q̄′−1L−1y ≤ 1}
= {y | yt(LQ̄′Lt︸ ︷︷ ︸

Q′

)−1y ≤ 1}

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 187/443

9 The Ellipsoid Algorithm

E′ = L(Ē′)

= {L(x) | xtQ̄′−1x ≤ 1}

= {y | (L−1y)tQ̄′−1L−1y ≤ 1}

= {y | yt(Lt)−1Q̄′−1L−1y ≤ 1}
= {y | yt(LQ̄′Lt︸ ︷︷ ︸

Q′

)−1y ≤ 1}

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 187/443

9 The Ellipsoid Algorithm

E′ = L(Ē′)

= {L(x) | xtQ̄′−1x ≤ 1}

= {y | (L−1y)tQ̄′−1L−1y ≤ 1}

= {y | yt(Lt)−1Q̄′−1L−1y ≤ 1}

= {y | yt(LQ̄′Lt︸ ︷︷ ︸
Q′

)−1y ≤ 1}

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 187/443

9 The Ellipsoid Algorithm

E′ = L(Ē′)

= {L(x) | xtQ̄′−1x ≤ 1}

= {y | (L−1y)tQ̄′−1L−1y ≤ 1}

= {y | yt(Lt)−1Q̄′−1L−1y ≤ 1}
= {y | yt(LQ̄′Lt︸ ︷︷ ︸

Q′

)−1y ≤ 1}

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 187/443

9 The Ellipsoid Algorithm

Hence,

Q′

= LQ̄′Lt

= L · n2

n2 − 1

(
I − 2

n+ 1
LtaatL
atQa

)
· Lt

= n2

n2 − 1

(
Q− 2

n+ 1
QaatQ
atQa

)

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 188/443

9 The Ellipsoid Algorithm

Hence,

Q′ = LQ̄′Lt

= L · n2

n2 − 1

(
I − 2

n+ 1
LtaatL
atQa

)
· Lt

= n2

n2 − 1

(
Q− 2

n+ 1
QaatQ
atQa

)

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 188/443

9 The Ellipsoid Algorithm

Hence,

Q′ = LQ̄′Lt

= L · n2

n2 − 1

(
I − 2

n+ 1
LtaatL
atQa

)
· Lt

= n2

n2 − 1

(
Q− 2

n+ 1
QaatQ
atQa

)

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 188/443

9 The Ellipsoid Algorithm

Hence,

Q′ = LQ̄′Lt

= L · n2

n2 − 1

(
I − 2

n+ 1
LtaatL
atQa

)
· Lt

= n2

n2 − 1

(
Q− 2

n+ 1
QaatQ
atQa

)

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 188/443

Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

1: input: point c ∈ Rn, convex set K ⊆ Rn
2: output: point x ∈ K or “K is empty”

3: Q ← ???

4: repeat

5: if c ∈ K then return c
6: else

7: choose a violated hyperplane a

8: c ← c − 1
n+ 1

Qa√
atQa

9: Q ← n2

n2 − 1

(
Q− 2

n+ 1
QaatQ
atQa

)
10: endif

11: until ???

12: return “K is empty”

Repeat: Size of basic solutions

Lemma 7

Let P = {x ∈ Rn | Ax ≤ b} be a bounded polytop. Let 〈amax〉 be

the maximum encoding length of an entry in A. Then every

entry xj in a basic solution fulfills |xj| =
Dj
D with

Dj ,D ≤ 22n〈amax〉+n log2 n.

In the following we use δ := 2n〈amax〉+n log2 n.

Note that here we have P = {x | Ax ≤ b}. The previous lemmas

we had about the size of feasible solutions were slightly

different as they were for different polytopes.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 190/443

Repeat: Size of basic solutions

Lemma 7

Let P = {x ∈ Rn | Ax ≤ b} be a bounded polytop. Let 〈amax〉 be

the maximum encoding length of an entry in A. Then every

entry xj in a basic solution fulfills |xj| =
Dj
D with

Dj ,D ≤ 22n〈amax〉+n log2 n.

In the following we use δ := 2n〈amax〉+n log2 n.

Note that here we have P = {x | Ax ≤ b}. The previous lemmas

we had about the size of feasible solutions were slightly

different as they were for different polytopes.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 190/443

Repeat: Size of basic solutions

Proof:

Let Ā =
[
A
Im−A

]
, b̄ =

(
b
−b

)
, be the matrix and right-hand

vector after transforming the system to standard form.

The determinant of the matrices ĀB and M̄j (matrix obt. when

replacing the j-th column of ĀB by b̄) can become at most

det(ĀB),det(M̄j) ≤ ‖ ~̀max‖n

≤ (
√
n · 2〈amax〉)n ≤ 2n〈amax〉+n log2 n ,

where ~̀max is the longest column-vector that can be obtained

after deleting all but n rows and columns from Ā.

This holds because columns from Im selected when going from

Ā to ĀB do not increase the determinant. Only the at most n
columns from matrices A and −A that Ā consists of contribute.

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded.

In this case every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most RnB(0,1) ≤ (nδ)nB(0,1).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 192/443

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded.

In this case every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most RnB(0,1) ≤ (nδ)nB(0,1).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 192/443

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded.

In this case every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most RnB(0,1) ≤ (nδ)nB(0,1).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 192/443

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded.

In this case every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most RnB(0,1) ≤ (nδ)nB(0,1).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 192/443

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded.

In this case every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most RnB(0,1) ≤ (nδ)nB(0,1).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 192/443

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded.

In this case every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most RnB(0,1) ≤ (nδ)nB(0,1).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 192/443

When can we terminate?

Let P := {x | Ax ≤ b} with A ∈ Z and b ∈ Z be a bounded

polytop. Let 〈amax〉 be the encoding length of the largest entry

in A or b.

Consider the following polytope

Pλ :=
{
x | Ax ≤ b + 1

λ

1
...

1

}
,

where λ = δ2 + 1.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 193/443

When can we terminate?

Let P := {x | Ax ≤ b} with A ∈ Z and b ∈ Z be a bounded

polytop. Let 〈amax〉 be the encoding length of the largest entry

in A or b.

Consider the following polytope

Pλ :=
{
x | Ax ≤ b + 1

λ

1
...

1

}
,

where λ = δ2 + 1.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 193/443

When can we terminate?

Let P := {x | Ax ≤ b} with A ∈ Z and b ∈ Z be a bounded

polytop. Let 〈amax〉 be the encoding length of the largest entry

in A or b.

Consider the following polytope

Pλ :=
{
x | Ax ≤ b + 1

λ

1
...

1

}
,

where λ = δ2 + 1.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 193/443

Lemma 8

Pλ is feasible if and only if P is feasible.

⇐= : obvious!

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 194/443

Lemma 8

Pλ is feasible if and only if P is feasible.

⇐= : obvious!

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 194/443

=⇒:

Consider the polytops

P̄ =
{
x |

[
A
Im−A

]
x =

(
b
−b

)
;x ≥ 0

}
and

P̄λ =
{
x |

[
A
Im−A

]
x =

(
b
−b

)
+ 1
λ

1
...

1

 ;x ≥ 0
}
.

P is feasible if and only if P̄ is feasible, and Pλ feasible if and

only if P̄λ feasible.

P̄λ is bounded since Pλ and P are bounded.

=⇒:

Consider the polytops

P̄ =
{
x |

[
A
Im−A

]
x =

(
b
−b

)
;x ≥ 0

}
and

P̄λ =
{
x |

[
A
Im−A

]
x =

(
b
−b

)
+ 1
λ

1
...

1

 ;x ≥ 0
}
.

P is feasible if and only if P̄ is feasible, and Pλ feasible if and

only if P̄λ feasible.

P̄λ is bounded since Pλ and P are bounded.

=⇒:

Consider the polytops

P̄ =
{
x |

[
A
Im−A

]
x =

(
b
−b

)
;x ≥ 0

}
and

P̄λ =
{
x |

[
A
Im−A

]
x =

(
b
−b

)
+ 1
λ

1
...

1

 ;x ≥ 0
}
.

P is feasible if and only if P̄ is feasible, and Pλ feasible if and

only if P̄λ feasible.

P̄λ is bounded since Pλ and P are bounded.

=⇒:

Consider the polytops

P̄ =
{
x |

[
A
Im−A

]
x =

(
b
−b

)
;x ≥ 0

}
and

P̄λ =
{
x |

[
A
Im−A

]
x =

(
b
−b

)
+ 1
λ

1
...

1

 ;x ≥ 0
}
.

P is feasible if and only if P̄ is feasible, and Pλ feasible if and

only if P̄λ feasible.

P̄λ is bounded since Pλ and P are bounded.

Let Ā =
[
A
Im−A

]
, and b̄ =

(
b
−b

)
.

P̄λ feasible implies that there is a basic feasible solution

represented by

xB = Ā−1
B b̄ +

1
λ
Ā−1
B

1
...

1

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible

for P̄ is that one of the basic variables becomes negative.

Hence, there exists i with

(Ā−1
B b̄)i < 0 ≤ (Ā−1

B b̄)i +
1
λ
(Ā−1
B ~1)i

Let Ā =
[
A
Im−A

]
, and b̄ =

(
b
−b

)
.

P̄λ feasible implies that there is a basic feasible solution

represented by

xB = Ā−1
B b̄ +

1
λ
Ā−1
B

1
...

1

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible

for P̄ is that one of the basic variables becomes negative.

Hence, there exists i with

(Ā−1
B b̄)i < 0 ≤ (Ā−1

B b̄)i +
1
λ
(Ā−1
B ~1)i

Let Ā =
[
A
Im−A

]
, and b̄ =

(
b
−b

)
.

P̄λ feasible implies that there is a basic feasible solution

represented by

xB = Ā−1
B b̄ +

1
λ
Ā−1
B

1
...

1

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible

for P̄ is that one of the basic variables becomes negative.

Hence, there exists i with

(Ā−1
B b̄)i < 0 ≤ (Ā−1

B b̄)i +
1
λ
(Ā−1
B ~1)i

By Cramers rule we get

(Ā−1
B b̄)i < 0 =⇒ (Ā−1

B b̄)i ≤ −
1

det(ĀB)

and

(Ā−1
B ~1)i ≤ det(M̄j) ,

where M̄j is obtained by replacing the j-th column of ĀB by ~1.

However, we showed that the determinants of ĀB and M̄j can

become at most δ.

Since, we chose λ = δ2 + 1 this gives a contradiction.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 197/443

By Cramers rule we get

(Ā−1
B b̄)i < 0 =⇒ (Ā−1

B b̄)i ≤ −
1

det(ĀB)

and

(Ā−1
B ~1)i ≤ det(M̄j) ,

where M̄j is obtained by replacing the j-th column of ĀB by ~1.

However, we showed that the determinants of ĀB and M̄j can

become at most δ.

Since, we chose λ = δ2 + 1 this gives a contradiction.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 197/443

By Cramers rule we get

(Ā−1
B b̄)i < 0 =⇒ (Ā−1

B b̄)i ≤ −
1

det(ĀB)

and

(Ā−1
B ~1)i ≤ det(M̄j) ,

where M̄j is obtained by replacing the j-th column of ĀB by ~1.

However, we showed that the determinants of ĀB and M̄j can

become at most δ.

Since, we chose λ = δ2 + 1 this gives a contradiction.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 197/443

Lemma 9

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi +Ai ~̀

≤ bi + ‖Ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi +
1

δ2 + 1
≤ bi +

1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 198/443

Lemma 9

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi +Ai ~̀

≤ bi + ‖Ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi +
1

δ2 + 1
≤ bi +

1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 198/443

Lemma 9

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi +Ai ~̀

≤ bi + ‖Ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi +
1

δ2 + 1
≤ bi +

1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 198/443

Lemma 9

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi +Ai ~̀

≤ bi + ‖Ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi +
1

δ2 + 1
≤ bi +

1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 198/443

Lemma 9

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i

= (Ax)i + (A~̀)i ≤ bi +Ai ~̀

≤ bi + ‖Ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi +
1

δ2 + 1
≤ bi +

1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 198/443

Lemma 9

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i

≤ bi +Ai ~̀

≤ bi + ‖Ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi +
1

δ2 + 1
≤ bi +

1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 198/443

Lemma 9

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi +Ai ~̀

≤ bi + ‖Ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi +
1

δ2 + 1
≤ bi +

1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 198/443

Lemma 9

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi +Ai ~̀

≤ bi + ‖Ai‖ · ‖ ~̀‖

≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi +
1

δ2 + 1
≤ bi +

1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 198/443

Lemma 9

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi +Ai ~̀

≤ bi + ‖Ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi +
1

δ2 + 1
≤ bi +

1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 198/443

Lemma 9

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi +Ai ~̀

≤ bi + ‖Ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3

≤ bi +
1

δ2 + 1
≤ bi +

1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 198/443

Lemma 9

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi +Ai ~̀

≤ bi + ‖Ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi +
1

δ2 + 1
≤ bi +

1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 198/443

Lemma 9

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi +Ai ~̀

≤ bi + ‖Ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi +
1

δ2 + 1
≤ bi +

1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 198/443

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)
= 2(n+ 1) ln

(
nnδn · δ3n

)
= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n, 〈amax〉))

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 199/443

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)
= 2(n+ 1) ln

(
nnδn · δ3n

)
= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n, 〈amax〉))

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 199/443

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)
= 2(n+ 1) ln

(
nnδn · δ3n

)
= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n, 〈amax〉))

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 199/443

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i

> 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)
= 2(n+ 1) ln

(
nnδn · δ3n

)
= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n, 〈amax〉))

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 199/443

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)

= 2(n+ 1) ln
(
nnδn · δ3n

)
= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n, 〈amax〉))

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 199/443

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)
= 2(n+ 1) ln

(
nnδn · δ3n

)

= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n, 〈amax〉))

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 199/443

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)
= 2(n+ 1) ln

(
nnδn · δ3n

)
= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n, 〈amax〉))

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 199/443

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)
= 2(n+ 1) ln

(
nnδn · δ3n

)
= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n, 〈amax〉))

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 199/443

Algorithm 1 ellipsoid-algorithm

1: input: point c ∈ Rn, convex set K ⊆ Rn, radii R and r
2: with K ⊆ B(0, R), and B(x, r) ⊆ K for some x
3: output: point x ∈ K or “K is empty”

4: Q ← diag(R2, . . . , R2) // i.e., L = diag(R, . . . , R)
5: c ← 0

6: repeat

7: if c ∈ K then return c
8: else

9: choose a violated hyperplane a

10: c ← c − 1
n+ 1

Qa√
atQa

11: Q ← n2

n2 − 1

(
Q− 2

n+ 1
QaatQ
atQa

)
12: endif

13: until det(Q) ≤ r2n // i.e., det(L) ≤ rn
14: return “K is empty”

Separation Oracle:

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r))
iterations. Each iteration is polytime for a polynomial-time

Separation oracle.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 201/443

Separation Oracle:

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r))
iterations. Each iteration is polytime for a polynomial-time

Separation oracle.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 201/443

Separation Oracle:

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r))
iterations. Each iteration is polytime for a polynomial-time

Separation oracle.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 201/443

Separation Oracle:

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r))
iterations. Each iteration is polytime for a polynomial-time

Separation oracle.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 201/443

Separation Oracle:

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r))
iterations. Each iteration is polytime for a polynomial-time

Separation oracle.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 201/443

Separation Oracle:

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r))
iterations. Each iteration is polytime for a polynomial-time

Separation oracle.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 201/443

Separation Oracle:

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r))
iterations. Each iteration is polytime for a polynomial-time

Separation oracle.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 201/443

