Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

min
$$\sum_{i \in I} w_i x_i$$

s.t. $\forall u$ $\sum_{i:u \in S_i} x_i \ge 1$
 $x_i \ge 0$

Dual:

EADS II © Harald Räcke 13.2 Rounding the Dual

271

273

Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- ▶ Suppose there is a *u* that is not covered.
- ▶ This means $\sum_{u:u \in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i}y_u=w_i$$

EADS II © Harald Räcke

13.2 Rounding the Dual

272

Technique 2: Rounding the Dual Solution.

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \cot(x^*)$$

$$\leq f \cdot OPT$$

Let I denote the solution obtained by the first rounding algorithm and I' be the solution returned by the second algorithm. Then

$$I\subseteq I'$$
 .

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose S_i .

EADS II © Harald Räcke 13.2 Rounding the Dual

275

277

Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual

- 1: $y \leftarrow 0$
- 2: *I* ← Ø
- 3: while exists $u \notin \bigcup_{i \in I} S_i$ do
- 4: increase dual variable y_i until constraint for some new set S_ℓ becomes tight
- 5: $I \leftarrow I \cup \{\ell\}$

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that I is a cover.

EADS II © Harald Räcke 13.3 Primal Dual Technique

276

Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

- 1: *I* ← Ø
- 2: $\hat{S}_i \leftarrow S_i$ for all j
- 3: **while** I not a set cover **do**
- 4: $\ell \leftarrow \arg\min_{j:\hat{S}_j \neq 0} \frac{w_j}{|\hat{S}_j|}$
- 5: $I \leftarrow I \cup \{\ell\}$
- 6: $\hat{S}_j \leftarrow \hat{S}_j S_\ell$ for all j

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.