17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\ge (1 - \epsilon) \text{OPT} .$$
17.1 Knapsack

17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

Idea:

5

- 1. Find the optimum Makespan for the long jobs by brute force.
- 2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

EADS II © Harald Räcke

326

324

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

Together with the observation that if each $p_i \ge \frac{1}{3}C_{\text{max}}^*$ then LPT is optimal this gave a 4/3-approximation.

EADS II ©Harald Räcke

17.2 Scheduling Revisited

We still have the inequality

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

$$p_\ell \leq \sum_j p_j / (mk)$$

which is at most C^*_{\max}/k .

EADS II © Harald Räcke 17.2 Scheduling Revisited

325

Hence we get a schedule of length at most

 $(1+\frac{1}{k})C_{\max}^*$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 3

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

m	16	п	EADS II © Harald Räcke
	Ц		© Harald Räcke

17.2 Scheduling Revisited

328

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows: On input of *T* it either finds a schedule of length $(1 + \frac{1}{k})T$ or certifies that no schedule of length at most *T* exists (assume $T \ge \frac{1}{m} \sum_{j} p_{j}$).

We partition the jobs into long jobs and short jobs:

- A job is long if its size is larger than T/k.
- Otw. it is a short job.

EADS II © Harald Räcke

EADS II © Harald Räcke 17.2 Scheduling Revisited

329

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le (1 + \frac{1}{k})T$$

			1	
EADS II	17.2 Scheduling Revisited			50
UUU© Harald Räcke		332		

Let $OPT(n_1, \dots, n_{k^2})$ be the number of machines that are required to schedule input vector (n_1, \ldots, n_{k^2}) with Makespan at most T.

If $OPT(n_1, \ldots, n_{k^2}) \le m$ we can schedule the input.

We have

 $OPT(n_1,\ldots,n_{k^2})$

$$= \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0\\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} \operatorname{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ge 0\\ \infty & \text{otw.} \end{cases}$$

where *C* is the set of all configurations.

Hence, the running time is roughly $(k + 1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

EADS II © Harald Räcke

334

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, \dots, k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the *i*-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the *i*-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k + 1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

EADS II © Harald Räcke
© Harald Räcke

17.2 Scheduling Revisited

333

We can turn this into a PTAS by choosing $k = \lfloor 1/\epsilon \rfloor$ and using binary search. This gives a running time that is exponential in $1/\epsilon$.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

EADS II

There is no FPTAS for problems that are strongly NP-hard.

17.2 Scheduling Revisited

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector $(n_1, ..., n_A)$ with Makespan at most T (*A*: number of different sizes).

If $OPT(n_1, ..., n_A) \le m$ we can schedule the input.

 $OPT(n_1,\ldots,n_A)$

 $= \begin{cases} 0 & (n_1, \dots, n_A) = 0 \\ 1 + \min_{(s_1, \dots, s_A) \in C} OPT(n_1 - s_1, \dots, n_A - s_A) & (n_1, \dots, n_A) \ge 0 \\ \infty & \text{otw.} \end{cases}$

where C is the set of all configurations.

 $|C| \le (B+1)^A$, where *B* is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

Bin Packing

EADS II

∐||||| © Harald Räcke

Proof

▶ In the partition problem we are given positive integers $b_1, ..., b_n$ with $B = \sum_i b_i$ even. Can we partition the integers into two sets *S* and *T* s.t.

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ-approximation algorithm with ρ < 3/2 cannot output 3 or more bins when 2 are optimal.

17.3 Bin Packing

• Hence, such an algorithm can solve Partition.

Bin Packing

Given *n* items with sizes s_1, \ldots, s_n where

 $1 > s_1 \geq \cdots \geq s_n > 0$.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 5

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

EADS II © Harald Räcke

17.3 Bin Packing

Bin Packing

Definition 6

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_{\epsilon}\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1 + \epsilon)$ OPT + c for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

338