Spring Semester 2013 Problem Set 10 July 2, 2013

Complexity Theory

Due date: July 9, 2013 before class!

Problem 1 (10 Points)

Show the following two claims:

- (i) Perfect soundness collapses the class IP to \mathcal{NP} , where perfect soundness means soundness with error probability 0.
- (ii) Perfect completeness does not change the power of **IP**, where perfect completeness means completeness with error probability 0.

Problem 2 (10 Points)

Show that $\mathbf{IP} \subseteq \mathbf{PSPACE}$.

Problem 3 (10 Points)

Give an interactive protocol to show that Graph Isomorphism \in IP.

Problem 4 (10 Points)

Let p be a prime number. An integer a is a quadratic residue modulo p if there is some integer b s.t. $a \equiv b^2 \mod p$.

- (i) Show that $QR := \{(a, p) \in \mathbb{Z}^2 : a \text{ is a quadratic residue modulo } p\}$ is in \mathcal{NP} .
- (ii) Set QNR := $\{(a, p) \in \mathbb{Z}^2 : a \text{ is not a quadratic residue modulo } p\}$. Complete the following sketch of an interactive proof protocol for QNR and show its completeness and soundness:
 - 1.) Input: integer a and prime p.
 - 2.) V chooses $r \in \{0, \ldots, p-1\}$ and $b \in \{0, 1\}$ uniformly at random, keeping both secret.

If b = 0, V sends $r^2 \mod p$ to P. If b = 1, V sends $ar^2 \mod p$ to P.

3.) ...