Complexity Theory

Due date: May 7, 2013 before class!

Problem 1 (10 Points)

Consider a graph $G=(V, E)$. Recall the following definitions from the lecture:

- A clique is defined as a subset $V^{\prime} \subseteq V$ of vertices such that the induced subgraph of V^{\prime} is complete, i.e. all vertices in V^{\prime} are pairwise connected with edges.
Let Clique $=\{(G, k)$: the graph G has a clique of k vertices $\}$.
- An independent set is defined as a subset $V^{\prime} \subseteq V$ of vertices such that no two vertices of V^{\prime} are connected by an edge.
Let Indset $=\{(G, k):$ the graph G has an independent set of k vertices $\}$.
Show the following:
(i) Indset \preceq_{m}^{p} Clique,
(ii) Clique \preceq_{m}^{p} Indset,
(iii) $3 \mathrm{SAT} \preceq_{m}^{p}$ Clique,
(iv) Clique is $\mathcal{N} \mathcal{P}$-complete.

Problem 2 (10 Points)

Consider the problem of map coloring: Can you color a map with k different colors, such that no pair of adjacent countries has the same color?
(i) Describe the map coloring problem as a proper graph problem and redefine the language k-Colorability $=\{$ Maps that are colorable with at most k colors $\}$.
(ii) Show that 2-Colorability is in \mathcal{P}.
(iii) Show that 3-Colorability is $\mathcal{N} \mathcal{P}$-complete.

Hint: Use a reduction from 3sat.

Problem 3 (10 Points)

Recall the following definition: A language A is polynomial-time Cook-reducible to a language B if there is a polynomial-time TM M that, given an oracle deciding B, can decide A. (An oracle for B is a TM that can in decide membership in B in $\mathcal{O}(1)$ time.) Show that 3Sat is Cook-reducible to Tautology.

Problem 4 (10 Points)

In the Exactly One 3Sat problem, we are given a 3CNF formula φ and need to decide if there exists a satisfying assignment u for φ such that every clause of φ has exactly one true literal. Prove that Exactly One 3Sat is $\mathcal{N} \mathcal{P}$-complete.

