Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Chris Pinkau

Complexity Theory

Due date: May 7, 2013 before class!

Problem 1 (10 Points)

Consider a graph G = (V, E). Recall the following definitions from the lecture:

- A clique is defined as a subset $V' \subseteq V$ of vertices such that the induced subgraph of V' is complete, i.e. all vertices in V' are pairwise connected with edges. Let $CLIQUE = \{(G, k) : \text{the graph } G \text{ has a clique of } k \text{ vertices}\}.$
- An *independent set* is defined as a subset V' ⊆ V of vertices such that no two vertices of V' are connected by an edge.
 Let INDSET = {(G, k) : the graph G has an independent set of k vertices}.

Show the following:

- (i) INDSET \leq_m^p CLIQUE,
- (ii) CLIQUE \leq_m^p INDSET,
- (iii) 3SAT \leq_m^p CLIQUE,
- (iv) CLIQUE is \mathcal{NP} -complete.

Problem 2 (10 Points)

Consider the problem of *map coloring*: Can you color a map with k different colors, such that no pair of adjacent countries has the same color?

- (i) Describe the map coloring problem as a proper graph problem and redefine the language k-COLORABILITY = {Maps that are colorable with at most k colors}.
- (ii) Show that 2-COLORABILITY is in \mathcal{P} .
- (iii) Show that 3-COLORABILITY is \mathcal{NP} -complete. Hint: Use a reduction from 3SAT.

Problem 3 (10 Points)

Recall the following definition: A language A is *polynomial-time Cook-reducible* to a language B if there is a polynomial-time TM M that, given an oracle deciding B, can decide A. (An oracle for B is a TM that can in decide membership in B in $\mathcal{O}(1)$ time.) Show that 3SAT is Cook-reducible to TAUTOLOGY.

Problem 4 (10 Points)

In the EXACTLY ONE 3SAT problem, we are given a 3CNF formula φ and need to decide if there exists a satisfying assignment u for φ such that every clause of φ has exactly one TRUE literal. Prove that EXACTLY ONE 3SAT is \mathcal{NP} -complete.