Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Chris Pinkau

Complexity Theory

Due date: June 11, 2013 before class!

Problem 1 (10 Points)

Define the class $\mathbf{DP} = \{L = L_1 \cap L_2 : L_1 \in \mathcal{NP}, L_2 \in \mathrm{co}\mathcal{NP}\}$. (Note that we do not know if $\mathbf{DP} = \mathcal{NP} \cap \mathrm{co}\mathcal{NP}$.) Consider the following languages:

EXACTINDSET = {(G, k): the largest independent set of G has size exactly k},

CRITICAL SAT = { φ : φ is unsatisfiable, but deleting any clause makes it satisfiable}.

Show the following:

- (i) EXACTINDSET $\in \Sigma_2^p = \mathcal{NP}^{\mathcal{NP}}$.
- (ii) EXACTINDSET \in **DP**.
- (iii) CRITICAL SAT is **DP**-complete.

Problem 2 (10 Points)

Recall the definition of alternating Turing machines (ATM) with control states partitioned into sets Q_{\forall} and Q_{\exists} , and the corresponding class **AP**.

- (i) Show that a language $L \in \mathbf{AP}$ decided by an *existential* ATM (i.e. $Q_{\forall} = \emptyset$) is in \mathcal{NP} .
- (ii) Show that a language $L \in \mathbf{AP}$ decided by an *universal* ATM (i.e. $Q_{\exists} = \emptyset$) is in $co\mathcal{NP}$.
- (iii) Show that $\mathbf{AP} = \operatorname{co-}\mathbf{AP}$.
- (iv) Show that **PSPACE** is contained in **AP** by showing that $TQBF \in AP$.

Problem 3 (10 Points) Prove AL = P.

Problem 4 (10 Points)

- (i) Argue that at least one of the assumptions $\mathbf{L} \neq \mathcal{P}$ and $\mathcal{P} \neq \mathbf{PSPACE}$ is true.
- (ii) Use padding to show that if $\mathcal{P} = \mathbf{L}$, then $\mathbf{EXP} = \mathbf{PSPACE}$.