Complexity Theory

Due date: July 2, 2013 before class!

Problem 1 (10 Points)

Show that
(i) $\mathbf{R P}$ and $\mathbf{B P P}$ are closed under \preceq_{m}^{p},
(ii) RP and BPP are closed under union and intersection.

Problem 2 (10 Points)

Show that, if $\mathcal{N P} \subseteq \mathbf{B P P}$, then $\mathbf{R P}=\mathcal{N} \mathcal{P}$.

Problem 3 (10 Points)

Show that RP does not change if we replace $\geq 2 / 3$ in the definition of $\mathbf{R P}$ by $\geq n^{-k}$ or by $1-2^{-n^{d}}$.

Problem 4 (10 Points)

Prove that $\mathbf{Z P P}=\mathbf{R P} \cap \operatorname{coRP}$.

