
Technische Universität München
Fakultät für Informatik
Lehrstuhl für Effiziente Algorithmen
Prof. Dr. Ernst W. Mayr
Chris Pinkau, Stefan Toman

Wintersemester 2013/14
Aufgabenblatt 3

28.10.2013

Praktikum Algorithmen-Entwurf

Due date: Monday, 4th November 2013, 14:00

Aufgabe 1 (Shortest paths: the Dijkstra algorithm dijkstra)
Given is a directed graph G = (V,E) with positive edge weights. Every node is reachable
by all other nodes in G. Implement and animate the Dijkstra algorithm, such that the
shortest paths from a node of your choice to all other nodes are computed and displayed.
Each node’s label should be the length of the computed path to this node.

While the algorithm is running, at every time, the alredy processed nodes and the nodes in
the Priority Queue should be marked in terms of colors. The already found shortest paths
should be identifiable as well. For every node in the Priority Queue, you should additionally
mark the edge over which the currently shortest path from an already processed node to
this node is passing.

Aufgabe 2 (Shortest paths: the Bellman-Ford algorithm bellman)
Given is a directed graph G = (V,E) with edge weights c : E → R, which can be negative.
Implement the Bellman-Ford algorithm, which computes the shortest paths from a node
of your choice to all reachable nodes in time O(|V | · |E|). If the queue isn’t empty after
|V | phases, the algorithm signals that the graph contains a negative cycle, and computes
and marks such a cycle efficiently in time O(|V |).

Animate the algorithm such that the user is able to follow the course of events and such
that at every time the provisionally shortest paths, that are already computed by the
algorithm, as well as the nodes in the queue are displayed. Moreover, at every time,
the animation should display the phase in which the algorithm is. After the algorithm
terminated, the complete shortest-paths-tree should be displayed.

Hints
You may test the algorithm in exercise 1 with the graphs pos1.gw and pos2.gw. As input
for exercise 2 you may use the graphs neg1.gw to neg5.gw. Graphs neg3 to neg5 contain
negative cycles. The edge weights are stored as strings in the user-label and should be
read into an edge_array<double>.

Note that the processed graphs are directed. Thus, your programs should contain
gw.set_directed(true) and not g.make_undirected().

