
Praktikum Algorithmenentwurf (Teil 10) 16.12.2013 1

1 Pattern Matching in Texts

1.1 Overview

There are many applications which consist of or regard text editing. For these, it is
often important to search within a long text for a shorter text, a so-called pattern. We
consider an algorithm which is highly suitable to search the same text for several patterns
consecutively. In a case like this, it is helpful to do a slightly costly preprocessing step
on the text, in order to make the following searches for the patterns much more efficient.

A word w is a sequence of character from a fixed alphabet Σ (with a constant size
of the alphabet |Σ|, e.g. ASCII characters with |Σ| = 256). The length (number of
characters) of w is denoted by |w|, and the ith character of w is denoted by w[i] (for
0 ≤ i < |w|). The notation w[i..j] stands for the subword of w, beginning at the ith
character and ending at the jth. A subword w[i..|w|− 1] is called a suffix of w. A suffix
is proper if i 6= 0.

The given text is a (very long) word X. Let |X| = n. We assume the text to end
with the special character ’$’, which does not occur anywhere else in the text or in the
search patterns. ’$’ is called a sentinel. This assumption guarantees that no suffix can
be the start (prefix) of another new suffix of X. (A suffix which is a proper prefix of
another suffix is called nested.)
The suffix X[i..n− 1] of X is denoted by Xi.
A search pattern Y of length m occurs in X if there exists an i such that X[i..i+m−1] =
Y .
We want to have a data structure, which can be constructed in time O(n log n), and
allows us to search X for an arbitrary pattern Y of length m in time O(m log n).

A suitable data structure for this is a suffix array. We show how suffix arrays can be
constructed in an efficient and direct way in linear-logarithmic time (i.e. n log n). This
construction is by the original article of Udi Manber and Gene Myers [1]. The sorting
method could be called a Recursive Forward Bucket Sort.
Given a text of length n, we construct an integer array Pos of length n, containing the
indices (the starting position) of the lexicographically sorted suffixes.

Text b c c a a b a b a $
Index 0 1 2 3 4 5 6 7 8 9

Sorted index 9 8 3 6 4 7 5 0 2 1
Suffix $ a$ aab

ab
a$

ab
a$

ab
ab

a$

b
a$

b
ab

a$

b
ccaab

ab
a$

caab
ab

a$

ccaab
ab

a$

Figure 1: Suffix array for the text “bccaababa$”

Praktikum Algorithmenentwurf (Teil 10) 16.12.2013 2

1.2 Search

Searching for a pattern Y is done in two steps. First, we find the leftmost index LY

in Pos such that Y is a prefix of the Pos[LY]-th suffix. Afterwards, we find the corre-
sponding rightmost index RY . Because the suffix array Pos is ordered lexicographically,
binary search is used for both these searches.

For the first step, i.e. to find the leftmost index LY in Pos with Y as prefix of the
suffix at Pos[LY], we begin with the indices L = 0 and R = n− 1.
The invariant here is that the suffix at position Pos[L] is lexicographically smaller than
Y , and the suffix at position Pos[R] is lexicographically larger than or equal to Y .

We terminate if R − L = 1. In each step, we consider Pos[M]. If the suffix at
Pos[M] is lexicographically larger than or equal to Y , then we set R := M , otherwise
we set L := M . The index M is chosen according to the binary search. See Figure 2.

Input: text X, pattern Y , suffix array Pos.
Output: LY .
Algorithm:

if Y is lexicographically smaller than XPos[0] then
return 0;

else if Y is lexicographically larger than or equal to XPos[|X|−1] then
return |X|;

else
L := 0;
R := |X| − 1;
while R− L > 1 do

M := d(L + R)/2e;
if Y is lexicographically smaller than XPos[M] then

R := M ;
else

L := M ;
return R;

Figure 2: Binary search for the leftmost index LY in Pos, such that Y is a prefix of the
suffix at the position Pos[LY].

After the termination of the algorithm, the number of occurrences of Y in X can be
calculated by RY −LY + 1. Their left end points (i.e. their starting positions) are given
by Pos[LY],Pos[LY + 1], . . . ,Pos[RY].

In total, the suffix array Pos allows us to find all occurrences of a search pattern Y
within X in time O(|Y | log |X|).

Praktikum Algorithmenentwurf (Teil 10) 16.12.2013 3

1.3 Index creation: sorting the suffixes

The sorting of the suffixes is done in log n phases. In phase h (starting at 0), the
suffixes are sorted in such a way that the lexicographic order with respect to the first
2h characters is correct. For this, we use the information of the previous phase and the
fact that we are sorting suffixes.
The suffixes are put into several buckets, such that all suffixes within one bucket coincide
on the first 2h characters. Then we sort all suffixes within a bucket.
Suppose we have two suffixes Xj and Xk from a bucket, with the first 2h characters
being identical for both suffixes, i.e. X[j..j + 2h] = X[k..k + 2h]. We have to compare
the next 2h characters. But these are exactly the same as the first 2h characters of Xj+2h

and Xk+2h . By assumption, we know their relative order from the previous phase and
only need to find the positions of the indices j + 2h and k + 2h in the array Pos.
Because we want to have a cost of only O(n) per phase, we cannot simply sort the items
of a bucket with an n log n sorting algorithm. Instead, we go through the suffix array
from front to back bucket-wise and carry on the ordering of the suffixes to the other
buckets. This means, that if Xk is an element of the first bucket, than Xk−2h must
come before all other elements within its bucket which correspond to suffixes in higher
buckets.

Depending on how cleverly the buckets are managed, we need less or more space.
We use two additional boolean arrays BucketStart and BucketStart2 and two integer
arrays BucketSize and Suf (all of length n).
In addition, we use an array Bucket of length |Σ|, describing the up to |Σ| buckets.
BucketStart[i] contains true if a bucket in Pos starts at position i, and false oth-
erwise. Suf reverses Pos, i.e. it holds that Suf [Pos[i]] = i. The other two arrays store
temporary values.

During an initialization phase the suffixes are sorted with a Radix sorting step with
respect to the first character. This gives us the arrays Pos, Suf , and BucketStart for
the first phase in time O(n).
After the second loop we have that, for an arbitrary character d ∈ Σ, i := Bucket[d]
holds the last occurrence of d in X (or −1). Pos[i] holds a reference to the position of
the next-to-last occurrence of d in X (or −1).
This chain is passed in the third loop and then, in Suf [i] we store the position of the ith
suffix in the lexicographic order with respect to the first character (in Figure 3 this is c,
which is incremented by one for each suffix). See Figure 3 for the initialization phase.

We then begin with the sorting. There are blog nc phases, each taking O(n) time.
So assume that Pos, Suf , and BucketStart contain the right values after phase h, and
consider phase h + 1.
The left and right bucket boundaries for the current bucket are denoted by l and r,
respectively.
We reset BucketSize[l] to 0 for every l which is a left boundary of a bucket, as well
as resetting Suf [i] to the leftmost cell of the bucket containing the ith suffix (rather
than setting Suf [i] to the suffix’s exact position within the bucket). Afterwards, the
array Pos is scanned in an increasing order regarding the buckets, and we consider the
prolonged suffix in the bucket beginning at k := Suf [d] with d := Pos[i]− 2h. The first

Praktikum Algorithmenentwurf (Teil 10) 16.12.2013 4

BucketSize[k] elements are already set, so we insert the suffix into the next free cell,
and change the temporary information accordingly. (We increment the BucketSize[k]
counter and set BucketStart2[k] to true to mark those suffixes that were moved.)
Moreover, before we go on to the next bucket, we look again at all suffixes in the current
bucket and reset BucketStart2 such that only the cell corresponding to the leftmost
suffix in the new bucket is set to true. Thus, BucketStart2 correctly marks the
beginnings of the new buckets.
In the final loop, we update the Pos array, and set BucketStart. Figure 4 has the
pseudo code for the iterative sorting.

All buckets can be traversed in linear time, hence one phase takes O(n) time in total.

Praktikum Algorithmenentwurf (Teil 10) 16.12.2013 5

Input: Text X of length n.
Output: Suffix ordering Suf for the first character,

Initializing Suf , Pos,
BucketStart, BucketStart2 and BucketSize.

Algorithm:
Construct the arrays Suf , Pos,
BucketStart, BucketStart2 and BucketSize;
//Radix Sort with respect to the first character
for each c ∈ Σ do

Bucket[c] := −1;
for i = 0 . . . n− 1 do

b := Bucket[X[i]];
Bucket[X[i]] := i;
Pos[i] := b;

c := 1;
for each d ∈ Σ do

i := Bucket[d];
while i 6= −1 do

j := Pos[i];
Suf [i] := c;
if i = Bucket[d] then

BucketStart[c] := true;
else

BucketStart[c] := false;
c + +;
i := j;

//Initialize arrays
BucketStart[n] := true;
for i = 0 . . . n− 1 do

Pos[Suf [i]] := i;

Figure 3: Initializing sorting phase

Praktikum Algorithmenentwurf (Teil 10) 16.12.2013 6

Input: Text X of length n, initialized arrays Suf , Pos,
BucketStart, BucketStart2 and BucketSize.

Output: Suffix ordering in Pos.
Algorithm:

for h = 0 . . . blog nc do
for each Bucket [l, r) do

BucketSize[l] := 0;
for i = l . . . r − 1 do

Suf [Pos[i]] := l;
for each Bucket [l, r) do

for i = l . . . r − 1 do
d := Pos[i]− 2h;
if d < 0 or d ≥ n then continue;
k := Suf [d];
Suf [d] := k + BucketSize[k];
BucketSize[k] + +;
BucketStart2[Suf [d]] := true;

for i = l . . . r − 1 do
d := Pos[i]− 2h;
if d < 0 or d ≥ n or not BucketStart2[Suf [d]] then

continue;
k := min{j : j > Suf [d]

and (BucketStart[j] or not BucketStart2[j])};
for j = Suf [d] + 1 . . . k − 1 do

BucketStart2[j] := false;
for i = 0 . . . n− 1 do

Pos[Suf [i]] := i;
BucketStart[i] := BucketStart[i] or BucketStart2[i];

Figure 4: Recursive Bucket Sort Phase

Praktikum Algorithmenentwurf (Teil 10) 16.12.2013 7

References

[1] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. COMPUT., 22(5):935–948, oct 1993.

[2] Mohamed Ibrahim Abouelhoda, Enno Ohlebusch, and Stefan Kurtz. The enhanced
suffix array and its applications to genome analysis. In Proceedings of the 2nd
Workshop on Algorithms in Bioinformatics, volume 2452 of LNCS, pages 449–463.
Springer, 2002.

