Efficient Algorithms and Datastructures I

Question 1 (10 Points)

1. Solve the following recurrence relation without using generating functions:

$$
a_{n}=a_{n-1}+2^{n-1} \text { for } n \geq 1 \text { with } a_{0}=2 .
$$

2. Give tight asymptotic upper and lower bounds for $T(n)$:

$$
T(n)=T(n-1)+\log n
$$

Question 2 (5 Points)

Give tight asymptotic upper and lower bounds for $T(n)$:

$$
T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{4}\right)+T\left(\frac{n}{8}\right)+n .
$$

Question 3 (5 Points)

Given two $n \times n$ matrices A and B where n is a power of 2 , we know how to find $C=A \cdot B$ by performing n^{3} multiplications. Now let us consider the following approach. We partition A, B and C into equally sized block matrices as follows:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] C=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

Consider the following matrices:

$$
\begin{aligned}
& M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
& M_{2}=\left(A_{21}+A_{22}\right) B_{11} \\
& M_{3}=A_{11}\left(B_{12}-B_{22}\right) \\
& M_{4}=A_{22}\left(B_{21}-B_{11}\right) \\
& M_{5}=\left(A_{11}+A_{12}\right) B_{22} \\
& M_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) \\
& M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right)
\end{aligned}
$$

Then,

$$
\begin{aligned}
& C_{11}=M_{1}+M_{4}-M_{5}+M_{7} \\
& C_{12}=M_{3}+M_{5} \\
& C_{21}=M_{2}+M_{4} \\
& C_{22}=M_{1}-M_{2}+M_{3}+M_{6}
\end{aligned}
$$

1. Convince yourself that the matrices $C_{i j}$ evaluated as above are indeed correct. Don't write anything to prove this.
2. Design an efficient algorithm for multiplying two $n \times n$ matrices based on these facts. Analyze its running time.

Question 4 (10 Points)

Consider the following procedure:
RECURSIVE-SORT $(A, i, j)\{$
if $(A[i]>A[j])$ then $\operatorname{swap} A[i] \leftrightarrow A[j]$
if $i+1 \geq j$ then return
$k \leftarrow\lfloor(j-i+1) / 3\rfloor$
RECURSIVE-SORT $(A, i, j-k)$
RECURSIVE-SORT $(A, i+k, j)$
RECURSIVE-SORT $(A, i, j-k)$
\}

1. Argue that $\operatorname{RECURSIVE-SORT}(A, 1, n)$ correctly sorts a given array $A[1 \ldots n]$.
2. Analyze the running time of RECURSIVE-SORT using a recurrence relation.
