Efficient Algorithms and Data Structures I

Question 1 (10 Points)

Solve the following recurrence relations:

$$
\text { 1. } a_{n}=-a_{n-1}+9 a_{n-2}-11 a_{n-3}+4 a_{n-4} \text { with } a_{0}=-7, a_{1}=4, a_{2}=48 \text { and } a_{3}=0 .
$$

Question 2 (10 Points)

Calculate the value of $\sum_{i=1}^{n} i^{2}$ by setting up a recurrence relation; transforming it into a homogeneous relation via the method developed in the lecture and then solving this relation via the characteristic polynomial.

Question 3 (10 Points)

Give tight asymptotic bounds for the following recurrence relation:

$$
T(n)=T(\sqrt{n})+1
$$

Extra Question 4 (10 Points)

Give tight asymptotic bounds for the following recurrence relation:

$$
T(n)=T\left(\frac{n}{\log n}\right)+1
$$

Hint: How often do you have to apply the iteration $n \mapsto n / \log n$ until the problem size drops to \sqrt{n} ? How often do you have to apply it to bring it down from \sqrt{n} to $\sqrt{\sqrt{n}}$? Also use the fact that $\sum_{i=1}^{k} \frac{2^{i}}{i}=\mathcal{O}\left(\frac{2^{k}}{k}\right)$.

Question 5 (10 Points)

Solve the following recurrence relations using generating functions:

1. $a_{n}=a_{n-1}+2^{n-1}$ for $n \geq 1$ with $a_{0}=2$.
2. $a_{n}=3 a_{n-1}-3 a_{n-2}+a_{n-3}$ for $n \geq 3$ with $a_{0}=a_{1}=a_{2}=1$.
